Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (367)

Search Parameters:
Keywords = MWD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1873 KB  
Article
Peak Soil Erosion Risk in Mixed Forests: A Critical Transition Phase Driven by Moso Bamboo Expansion
by Jie Wang, Xin Wang, Youjin Yan, Liangjie Wang, Haibo Hu, Bing Ma, Hongwei Zhou, Jiacai Liu, Fengling Gan and Yuchuan Fan
Agriculture 2025, 15(16), 1772; https://doi.org/10.3390/agriculture15161772 - 18 Aug 2025
Viewed by 216
Abstract
Driven by climate change and human activities, the expansion of highly invasive moso bamboo (Phyllostachys edulis) into coniferous forests induces a serious ecological imbalance. Its rapidly spreading underground roots significantly alter soil structure, yet the mechanisms by which this expansion affects [...] Read more.
Driven by climate change and human activities, the expansion of highly invasive moso bamboo (Phyllostachys edulis) into coniferous forests induces a serious ecological imbalance. Its rapidly spreading underground roots significantly alter soil structure, yet the mechanisms by which this expansion affects soil detachment capacity (Dc), a key soil erosion parameter, remain unclear. While bamboo expansion modifies soil physicochemical properties and root characteristics, influencing Dc and, consequently, soil erosion resistance, the underlying mechanisms, particularly stage-specific variations, are not thoroughly understood. In this study, we examined Japanese white pine (Pinus parviflora Siebold & Zucc.) forest (CF), moso bamboo–Japanese white pine mixed forest (MF), and moso bamboo forest (BF) as representative stages of bamboo expansion. By integrating laboratory-controlled measurements of soil physicochemical properties and root traits with field-based flume experiments, we comprehensively investigate the effects of moso bamboo expansion into CF on soil detachment capacity. The results of the study can be summarized as follows: (1) Expansion of moso bamboo significantly changed soil physicochemical properties and root characteristics. Soil bulk density was the highest in the MF (1.13 g·cm−3), followed by the CF (1.08 g·cm−3) and BF (1.03 g·cm−3); non-capillary porosity increased significantly with expansion (CF 0.03% to MF 0.10%); and although the stability of aggregates (MWD) increased by 24.5% from the CF to MF, root mass density (RMD) in the MF (0.0048 g·cm−3) was much higher than that in the CF (0.0009 g·cm−3). This intense root competition between forest types, combined with increased macroporosity development, compromised overall soil structural integrity. This weakening may lead to a looser soil structure during the transition phase, thereby increasing erosion risk. (2) There were significant stage differences in Dc: it was significantly higher in the MF (0.034 kg·m−2·s−1) than in the CF (0.023 kg·m−2·s−1) and BF (0.018 kg·m−2·s−1), which revealed that the MF was an erosion-sensitive stage. (3) Our Partial Least Squares Structural Equation Modeling (PLS-SEM) results revealed that soil physicochemical properties (soil moisture content and soil total nitrogen) dominated Dc changes through direct effects (total effect −0.547); in comparison, root properties indirectly affected Dc by modulating soil structure (indirect effect: −0.339). The results of this study reveal the dynamics and mechanisms of Dc changes during bamboo expansion, and for the first time, we identify a distinct Dc peak during the mixed forest transition phase. These findings provide a scientific basis for moso bamboo forest management, soil erosion risk assessment, and optimization of soil and water conservation strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 4418 KB  
Article
A Pressure Wave Recognition and Prediction Method for Intelligent Sliding Sleeve Downlink Communication Systems Based on LSTM
by Xingming Wang, Zhipeng Xu, Yukun Fu, Xiangyu Wang, Lin Zhang and Qiaozhu Wang
Energies 2025, 18(16), 4384; https://doi.org/10.3390/en18164384 - 18 Aug 2025
Viewed by 282
Abstract
To address the challenges of signal recognition and prediction in intelligent sliding sleeve downlink communication systems, this paper proposes a dual-model framework based on Long Short-Term Memory (LSTM) networks. The system comprises a classifier for identifying pressure wave edge types and a generator [...] Read more.
To address the challenges of signal recognition and prediction in intelligent sliding sleeve downlink communication systems, this paper proposes a dual-model framework based on Long Short-Term Memory (LSTM) networks. The system comprises a classifier for identifying pressure wave edge types and a generator for predicting pressure waveforms. High-quality training data are generated by simulating pressure wave propagation caused by throttle valve modulations. A sliding window strategy and Z-score normalization are applied to enhance temporal modeling. The classifier achieves a high accuracy in identifying rising and falling edges under noise-free conditions. The generator, trained on down-sampled waveform segments, accurately reconstructs pressure dynamics using a dual-input strategy based on historical segments and hypothetical labels. A residual-based decision mechanism is employed to complete the full sequence label prediction. To evaluate robustness, noise intensities of 30 dB and 40 dB are introduced. The proposed system maintains high performance under both conditions, achieving label prediction accuracies of 100%. Error metrics such as MAE and RMSE remain within acceptable bounds, even in noisy environments. The results demonstrate that the proposed LSTM-based method has been validated on simulated data, showing its potential to approximate performance in real-world conditions. It provides a promising solution for cable-free measurement-while-drilling (MWD) and remote control of intelligent sliding sleeves in complex downhole environments. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

15 pages, 3768 KB  
Article
Application of MWD Sensor System in Auger for Real-Time Monitoring of Soil Resistance During Pile Drilling
by Krzysztof Trojnar and Aleksander Siry
Sensors 2025, 25(16), 5095; https://doi.org/10.3390/s25165095 - 16 Aug 2025
Viewed by 343
Abstract
Measuring-while-drilling (MWD) techniques have great potential for use in geotechnical engineering research. This study first addresses the current use of MWD, which consists of recording data using sensors in a drilling machine operating on site. It then addresses the currently unsolved problems of [...] Read more.
Measuring-while-drilling (MWD) techniques have great potential for use in geotechnical engineering research. This study first addresses the current use of MWD, which consists of recording data using sensors in a drilling machine operating on site. It then addresses the currently unsolved problems of quality control in drilled piles and assessments of their interaction with the soil under load. Next, an original method of drilling displacement piles using a special EGP auger (Electro-Geo-Probe) is presented. The innovation of this new drilling system lies in the placement of the sensors inside the EGP auger in the soil. These innovative sensors form an integrated measurement system, enabling improved real-time control during pile drilling. The most original idea is the use of a Cone Penetration Test (CPT) probe that can be periodically and remotely inserted at a specific depth below the pile base being drilled. This new MWD-EGP system with cutting-edge sensors to monitor the soil’s impact on piles during drilling revolutionizes pile drilling quality control. Furthermore, implementing this in-auger sensor system is a step towards the development of digital drilling rigs, which will provide better pile quality thanks to solutions based on the results of real-time, on-site soil testing. Finally, examples of measurements taken with the new sensor-equipped auger and a preliminary interpretation of the results in non-cohesive soils are presented. The obtained data confirm the usefulness of the new drilling system for improving the quality of piles and advancing research in geotechnical engineering. Full article
Show Figures

Figure 1

17 pages, 2142 KB  
Article
Assessment of Right Ventricular Pressure in Chronic Thromboembolic Pulmonary Hypertension: Comparison of Diagnostic Modalities and Balloon Pulmonary Angioplasty Outcomes
by Gábor Kolodzey, Andrea Péter, Andrea Daragó, László Balogh, Zsuzsanna Bereczky, Judit Barta, Zoltán Csanádi and Tibor Szűk
Diagnostics 2025, 15(16), 2050; https://doi.org/10.3390/diagnostics15162050 - 15 Aug 2025
Viewed by 312
Abstract
Background/Objectives:: Right ventricular (RV) pressure assessment is crucial in both the diagnosis and follow-up of patients with chronic thromboembolic pulmonary hypertension (CTEPH). While right heart catheterization (RHC) and pulmonary angiography (PA) are gold-standard invasive methods, transthoracic echocardiography (TTE) offers a safer and [...] Read more.
Background/Objectives:: Right ventricular (RV) pressure assessment is crucial in both the diagnosis and follow-up of patients with chronic thromboembolic pulmonary hypertension (CTEPH). While right heart catheterization (RHC) and pulmonary angiography (PA) are gold-standard invasive methods, transthoracic echocardiography (TTE) offers a safer and more accessible alternative. This study aimed to evaluate the reliability of echocardiographic RV pressure estimation compared to invasive techniques and to identify clinical predictors of response to balloon pulmonary angioplasty (BPA). Methods: In this prospective study, 17 patients with confirmed CTEPH underwent RV pressure assessment via TTE, RHC (Swan-Ganz catheterization), and PA within the same hospitalization period. BPA responders were defined based on clinical improvement and were compared to poor responders using pre- and post-treatment parameters. Results: A strong correlation was found between Swan-Ganz and PA-derived pressures (r = 0.96), with a slightly lower correlation between TTE and PA (r = 0.84), and the lowest between TTE and Swan-Ganz (r = 0.78). In the well-responding group, the 6 min walk distance (6MWD) increased by 60 ± 18 m, compared to 12 ± 10 m in poor responders (p < 0.01). NT-proBNP levels decreased by 40% in responders versus 10% in non-responders (p < 0.01). TAPSE improved significantly in responders (from 16.0 ± 2.0 mm to 19.5 ± 2.5 mm, p < 0.01), while RV basal diameter decreased by 15% (p < 0.05). No significant echocardiographic improvement was observed in poor responders. Conclusions: TTE provides a reliable estimate of RV pressure in CTEPH when standardized protocols are followed. NT-proBNP levels and RV size may serve as useful predictors of BPA response. Full article
Show Figures

Figure 1

25 pages, 6522 KB  
Article
Arctic Wave Climate Including Marginal Ice Zone and Future Climate Scenario
by Hamid Goharnejad, William Perrie, Bechara Toulany, Minghong Zhang, Zhenxia Long, Michael Casey and Michael H. Meylan
J. Mar. Sci. Eng. 2025, 13(8), 1562; https://doi.org/10.3390/jmse13081562 - 14 Aug 2025
Viewed by 199
Abstract
This study examines the variation and trends in wave parameters across the Arctic, including the marginal ice zone (MIZ), by comparing historical data (1980–2009) with projections for a future climate scenario (2070–2099) as outlined by the IPCC. Utilizing the WAVEWATCH III (WW3) numerical [...] Read more.
This study examines the variation and trends in wave parameters across the Arctic, including the marginal ice zone (MIZ), by comparing historical data (1980–2009) with projections for a future climate scenario (2070–2099) as outlined by the IPCC. Utilizing the WAVEWATCH III (WW3) numerical wave prediction model, we simulate the wave climate for these periods, incorporating advanced parameterizations to account for wave-ice interactions within the MIZ. Our analysis focuses on the extreme values of significant wave heights (Hs), mean wave periods (T0), and dominant mean wave direction (MWD), calculated for both winter and summer seasons. To assess changes in wave climate under future climate scenarios, we first use a similarity matrix, applying the kappa variable and cell-by-cell numerical comparison methods to assess model congruence across different conditions. We also follow a standard approach, by assessing the extreme wave conditions for 20 and 100-year return periods using standard stochastic models, including Gumbel, exponential, and Weibull distributions. Full article
Show Figures

Figure 1

14 pages, 6782 KB  
Article
Effects of Short-Term Structural Exercise on Cardiopulmonary Function, Quality of Life, and Oxidative Status in Liver Transplant Recipients: A Case Series
by Narubet Mekkhayai, Jirakrit Leelarungrayub, Supatcha Konghakote, Rungtiwa Kanthain, Khanittha Wonglangka, Sunhawit Junrungsee and Mujalin Prasannarong
J. Funct. Morphol. Kinesiol. 2025, 10(3), 313; https://doi.org/10.3390/jfmk10030313 - 14 Aug 2025
Viewed by 352
Abstract
Background: Living donor liver transplantation (LDLT) poses significant physiological challenges, especially during early postoperative recovery. While the long-term benefits of structured rehabilitation are well documented, data on short-term effects—particularly during the critical early inpatient phase—remain limited. This study aimed to evaluate the short-term [...] Read more.
Background: Living donor liver transplantation (LDLT) poses significant physiological challenges, especially during early postoperative recovery. While the long-term benefits of structured rehabilitation are well documented, data on short-term effects—particularly during the critical early inpatient phase—remain limited. This study aimed to evaluate the short-term impact of a structured exercise program on cardiopulmonary function, respiratory muscle strength, physical performance, oxidative stress markers, and quality of life in LDLT recipients. Methods: Four LDLT recipients (2 males, 2 females; mean age 48.00 ± 18.35 years) underwent a 4-week inpatient rehabilitation protocol. Weeks 1–2 involved conventional care, while weeks 3–4 included structured exercise consisting of early mobilization and inspiratory muscle training. Outcome measures included cardiopulmonary exercise testing (CPET), spirometry, maximal inspiratory and expiratory pressures (PImax, PEmax), 6 min walk distance (6MWD), lower limb muscle strength, Chronic Liver Disease Questionnaire (CLDQ), and serum oxidative stress markers (total antioxidant capacity [TAC] and malondialdehyde [MDA]). Results: All patients demonstrated postoperative declines in VO2 peak, PImax, PEmax, and TAC. Structured exercise yielded clinically meaningful improvements in respiratory muscle strength, notably in female and younger participants. Two younger patients showed increased 6MWD; however, no patient regained preoperative VO2 peak. TAC levels decreased following the intervention, and MDA levels remained stable in most cases. Conclusions: A two-week structured exercise program during early postoperative recovery may provide partial benefits in respiratory muscle strength and physical performance but is insufficient to restore full cardiopulmonary function in LDLT recipients. Longer rehabilitation periods may be necessary to achieve preoperative recovery levels. Full article
(This article belongs to the Section Physical Exercise for Health Promotion)
Show Figures

Figure 1

20 pages, 2088 KB  
Article
Sustainable Soil Management in Reservoir Riparian Zones: Impacts of Long-Term Water Level Fluctuations on Aggregate Stability and Land Degradation in Southwestern China
by Pengcheng Wang, Zexi Song, Henglin Xiao and Gaoliang Tao
Sustainability 2025, 17(15), 7141; https://doi.org/10.3390/su17157141 - 6 Aug 2025
Viewed by 344
Abstract
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), [...] Read more.
Soil structural instability in reservoir riparian zones, induced by water level fluctuations, threatens sustainable land use by accelerating land degradation. This study examined the impact of water-level variations on soil aggregate composition and stability based on key indicators, including water-stable aggregate content (WSAC), mean weight diameter (MWD), and geometric mean diameter (GMD). The Savinov dry sieving, Yoder wet sieving, and Le Bissonnais (LB) methods were employed for analysis. Results indicated that, with decreasing water levels and increasing soil layer, aggregates larger than 5 mm decreased, while aggregates smaller than 0.25 mm increased. Rising water levels and increasing soil layer corresponded to reductions in soil stability indicators (MWD, GMD, and WSAC), highlighting a trend toward soil structural instability. The LB method revealed the lowest aggregate stability under rapid wetting and the highest under slow wetting conditions. Correlation analysis showed that soil organic matter positively correlated with the relative mechanical breakdown index (RMI) (p < 0.05) and negatively correlated with the relative slaking index (RSI), whereas soil pH was negatively correlated with both RMI and RSI (p < 0.05). Comparative analysis of aggregate stability methods demonstrated that results from the dry sieving method closely resembled those from the SW treatment of the LB method, whereas the wet sieving method closely aligned with the FW (Fast Wetting) treatment of the LB method. The Le Bissonnais method not only reflected the outcomes of dry and wet sieving methods but also effectively distinguished the mechanisms of aggregate breakdown. The study concluded that prolonged flooding intensified aggregate dispersion, with mechanical breakdown influenced by water levels and soil layer. Dispersion and mechanical breakdown represent primary mechanisms of soil aggregate instability, further exacerbated by fluctuating water levels. By elucidating degradation mechanisms, this research provides actionable insights for preserving soil health, safeguarding water resources, and promoting sustainable agricultural in ecologically vulnerable reservoir regions of the Yangtze River Basin. Full article
Show Figures

Figure 1

18 pages, 2357 KB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Viewed by 290
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

14 pages, 604 KB  
Article
Functional Benefits of Inpatient Cardiac Rehabilitation After Open Aortic and Valvular Surgery: A Retrospective Cohort Study
by Younji Kim, Suk-Won Song, Ha Lee, Myeong Su Kim, Seoyon Yang and You Gyoung Yi
Healthcare 2025, 13(15), 1816; https://doi.org/10.3390/healthcare13151816 - 25 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Patients undergoing open aortic and valvular surgery often experience postoperative deconditioning, yet research on the role of inpatient cardiac rehabilitation (CR) in this population remains limited. This study aimed to examine the effects of inpatient CR on muscle strength, mobility, psychological well-being, [...] Read more.
Background/Objectives: Patients undergoing open aortic and valvular surgery often experience postoperative deconditioning, yet research on the role of inpatient cardiac rehabilitation (CR) in this population remains limited. This study aimed to examine the effects of inpatient CR on muscle strength, mobility, psychological well-being, and quality of life in patients recovering from open aortic surgery. Methods: We conducted a retrospective study using the medical records of patients who participated in inpatient CR after open aortic surgery. Functional and psychological outcomes were evaluated using the Medical Research Council (MRC) sum score, Timed Up and Go (TUG) test, Five Times Sit-to-Stand test (5STS), Six-Minute Walk Distance (6MWD), Berg Balance Scale (BBS), Modified Barthel Index (MBI), Patient Health Questionnaire-9 (PHQ-9), and the EuroQol-5D (EQ-5D). Pre- and post-rehabilitation scores were compared to assess changes in functional status, mobility, and quality of life. A post-discharge satisfaction survey was also analyzed. Results: A total of 33 patients were included. Significant improvements were observed in MBI (p < 0.001), MRC sum score (p < 0.001), 6MWD (p < 0.001), BBS (p < 0.001), TUG (p = 0.003), 5STS (p < 0.001), EQ-5D (p = 0.011), and PHQ-9 (p = 0.009) following inpatient CR. Patients with lower baseline mobility (6MWD ≤ 120 m) exhibited greater improvement in MBI (p = 0.034). Of the 33 patients, 26 completed the satisfaction survey; most reported high satisfaction, perceived health improvements, and willingness to recommend the program. Conclusions: Inpatient CR following open aortic and valvular surgery resulted in significant gains in muscle strength, mobility, psychological health, and overall quality of life. Patients with greater initial impairment demonstrated especially notable functional improvement, supporting the value of tailored CR in this population. Full article
Show Figures

Figure 1

11 pages, 892 KB  
Article
Sotatercept for Connective Tissue Disease-Associated Pulmonary Arterial Hypertension with Concomitant Interstitial Lung Disease: Efficacy and Safety Insights
by Chebly Dagher, Maria Akiki, Kristin Swanson, Brett Carollo, Garett Fiscus, Harrison W. Farber and Raj Parikh
J. Clin. Med. 2025, 14(15), 5177; https://doi.org/10.3390/jcm14155177 - 22 Jul 2025
Viewed by 847
Abstract
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited [...] Read more.
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited treatment options for pulmonary hypertension in patients with interstitial lung disease (PH-ILD), this study aimed to evaluate the use of sotatercept in CTD-PAH patients with concomitant ILD. Methods: Eligible patients (n = 7) had a confirmed diagnosis of CTD-PAH with concomitant ILD. The patients were already receiving background PAH therapy. Baseline hemodynamic and clinical measurements were reassessed after 24 weeks of sotatercept therapy. The variables assessed included six-minute walk distance (6MWD), pulmonary vascular resistance (PVR), echocardiographic right ventricular systolic pressure (eRVSP), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, World Health Organization (WHO) functional class, and supplemental oxygen requirements. Results: The study included seven patients with a mean age of 57 years (range: 39–73 years). After 24 weeks, the mean 6MWT distance increased from 211 m to 348 m (p < 0.01). Mean PVR decreased from 7.77 WU at baseline to 4.53 WU (p < 0.01). Mean eRVSP decreased from 79.43 mmHg to 54.14 mmHg (p < 0.01). NT-proBNP decreased from 3056.86 pg/mL to 1404.29 pg/mL (p < 0.01). The WHO functional class and supplemental oxygen requirements improved in all patients. Conclusions: Sotatercept was tolerated in patients with CTD-PAH and ILD, with no evidence of adverse respiratory effects. When added to foundational PAH therapy, sotatercept resulted in significant improvements across multiple parameters. These findings suggest that sotatercept may be a promising therapeutic option as an adjunctive treatment in this patient population. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

32 pages, 6134 KB  
Article
Nonlinear Dynamic Modeling and Analysis of Drill Strings Under Stick–Slip Vibrations in Rotary Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3860; https://doi.org/10.3390/en18143860 - 20 Jul 2025
Viewed by 436
Abstract
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical [...] Read more.
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical boundary conditions and consider an identical nonlinear friction torque dynamic involving the Stribeck effect and dry friction phenomena. The high-DOF model is calculated with the Finite Element Method (FEM) to enable accurate simulation of the dynamic behavior of the drill string and accurate representation of wave propagation, energy build-up, and torque response. Field data obtained from an Algerian oil well with Measurement While Drilling (MWD) equipment are used to guide modeling and determine simulations. According to the findings, the FEM-based high-DOF model demonstrates better performance in simulating basic stick–slip dynamics, such as drill bit velocity oscillation, nonlinear friction torque formation, and transient bit-to-surface contacts. On the other hand, the 2-DOF model is not able to represent these effects accurately and can lead to inappropriate control actions and mitigation of vibration severity. This study highlights the importance of robust model fidelity in building reliable real-time rotary drilling control systems. From the performance difference measurement between low-resolution and high-resolution models, the findings offer valuable insights to optimize drilling efficiency further, minimize non-productive time (NPT), and improve the rate of penetration (ROP). This contribution points to the need for using high-fidelity models, such as FEM-based models, in facilitating smart and adaptive well control strategies in modern petroleum drilling engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

11 pages, 862 KB  
Article
Level 3 Cardiopulmonary Exercise Testing to Guide Therapeutic Decisions in Non-Severe Pulmonary Hypertension with Lung Disease
by Raj Parikh, Chebly Dagher and Harrison W. Farber
Life 2025, 15(7), 1089; https://doi.org/10.3390/life15071089 - 11 Jul 2025
Viewed by 518
Abstract
Inhaled treprostinil is approved for the treatment of pulmonary hypertension-associated interstitial lung disease (PH-ILD); however, it has not shown significant benefit in patients with a pulmonary vascular resistance (PVR) < 4 WU. As such, treatment for non-severe PH-ILD remains controversial. A total of [...] Read more.
Inhaled treprostinil is approved for the treatment of pulmonary hypertension-associated interstitial lung disease (PH-ILD); however, it has not shown significant benefit in patients with a pulmonary vascular resistance (PVR) < 4 WU. As such, treatment for non-severe PH-ILD remains controversial. A total of 16 patients with non-severe PH-ILD were divided into two groups based on changes in PVR during exercise: a dynamic PVR group (n = 10), characterized by an increase in PVR with exertion, and a static PVR group (n = 6), with no increase in PVR with exercise. The dynamic PVR group received inhaled treprostinil, while the static PVR group was monitored off therapy. Baseline and 16-week follow-up values were compared within each group. At 16 weeks, the dynamic PVR group demonstrated significant improvements in mean 6 min walk distance (6MWD) (+32.5 m, p < 0.05), resting PVR (−1.04 WU, p < 0.05), resting mean pulmonary arterial pressure (mPAP) (−5.8 mmHg, p < 0.05), exercise PVR (−1.7 WU, p < 0.05), exercise mPAP (−13 mmHg, p < 0.05), and estimated right ventricular systolic pressure (−9.2 mmHg, p < 0.05). In contrast, the static PVR group remained clinically stable. These observations suggest that an exercise-induced increase in PVR, identified through Level 3 CPET, may help select patients with non-severe PH-ILD who are more likely to benefit from early initiation of inhaled treprostinil. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

17 pages, 1952 KB  
Article
Feasibility and Safety of Early Cardiac Rehabilitation Using Remote Electrocardiogram Monitoring in Patients with Cardiac Surgery: A Pilot Study
by Yeon Mi Kim, Bo Ryun Kim, Sung Bom Pyun, Jae Seung Jung, Hee Jung Kim and Ho Sung Son
J. Clin. Med. 2025, 14(14), 4887; https://doi.org/10.3390/jcm14144887 - 10 Jul 2025
Viewed by 531
Abstract
Purpose: We aimed to evaluate the safety and feasibility of a remote electrocardiogram (ECG) monitoring-based cardiac rehabilitation (CR) program during an early postoperative period in patients who underwent cardiac surgery. Methods: Five days after cardiac surgery, patients were referred to a [...] Read more.
Purpose: We aimed to evaluate the safety and feasibility of a remote electrocardiogram (ECG) monitoring-based cardiac rehabilitation (CR) program during an early postoperative period in patients who underwent cardiac surgery. Methods: Five days after cardiac surgery, patients were referred to a CR department and participated in a low-intensity inpatient CR program while wearing an ECG monitoring device. Prior to discharge, the patients underwent a cardiopulmonary exercise test (CPET) and squat endurance test to determine the suitable intensity and target heart rate (HR) for home-based CR (HBCR). During 2 weeks of the HBCR period after discharge, patients participated in aerobic and resistance exercises. Electrocardiogram data were transmitted to a cloud, where researchers closely monitored them through a website and provided feedback to the patients via telephone calls. Grip strength (GS), 6 min walk distance (6 MWD), EuroQol-5 dimension (EQ-5D), short-form 36-item health survey (SF-36), and Korean Activity Scale/Index (KASI) were measured at three different time points: 5 d post-surgery (T1), pre-discharge (T2), and 2 weeks after discharge (T3). Squat endurance tests and CPET were performed only at T2 and T3. Result: Sixteen patients completed the study, seven (44%) of whom underwent coronary artery bypass graft surgery (CABG). During the study period between T2 and T3, peak VO2 improved from 12.39 ± 0.57 to 17.93 ± 1.25 mL/kg/min (p < 0.01). The squat endurance test improved from 16.69 ± 2.31 to 21.81 ± 2.31 (p < 0.01). In a comparison of values of time points between T1 and T3, the GS improved from 28.30 ± 1.66 to 30.40 ± 1.70 kg (p = 0.02) and 6 MWD increased from 249.33 ± 20.92 to 387.02 ± 22.77 m (p < 0.01). The EQ-5D and SF-36 improved from 0.59 ± 0.03 to 0.82 ± 0.03 (p < 0.01) and from 83.99 ± 3.40 to 122.82 ± 6.06 (p < 0.01), and KASI improved from 5.44 ± 0.58 to 26.11 ± 2.70 (p < 0.01). In a subgroup analysis, the CABG group demonstrated a greater increase in 6 MWD (102.29 m, p < 0.01) than the non-CABG group. At the end of the study, 75% of the patients expressed satisfaction with the early CR program guided by remote ECG monitoring. Conclusions: Our findings suggest that early remote ECG monitoring-based CR programs are safe and feasible for patients who have undergone cardiac surgery. Additionally, the program improved aerobic capacity, functional status, and quality of life. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

20 pages, 1338 KB  
Article
Two-Dimensional Fuel Assembly Study for a Supercritical Water-Cooled Small Modular Reactor
by Valerio Giusti
J. Nucl. Eng. 2025, 6(3), 26; https://doi.org/10.3390/jne6030026 - 9 Jul 2025
Viewed by 248
Abstract
Burnable poisoning and fuel enrichment zoning are two techniques often combined in order to optimize the fuel assembly behavior during the burnup cycle. In the present work, these two techniques will be applied to the 2D optimization of the fuel assembly conceptual design [...] Read more.
Burnable poisoning and fuel enrichment zoning are two techniques often combined in order to optimize the fuel assembly behavior during the burnup cycle. In the present work, these two techniques will be applied to the 2D optimization of the fuel assembly conceptual design for the supercritical water-cooled reactor developed in the framework of the Joint European Canadian Chinese development of Small Modular Reactor Technology project, funded within the Euratom Research and Training programme 2019–2020. The initial configuration of the fuel assembly does not include any burnable absorbers and uses a homogeneous fuel enrichment of 7.5% in 235U. The infinite multiplication factor, k, starts from approximately 1.32 and drops, almost linearly, to 1.0 after a burnup of 40.0 MWd·kg−1. The uniform enrichment is, however, responsible for a pin-power peaking factor that with fresh fuel starts from 1.32 and reduces to 1.08 at the end of the burnup cycle. A simplified analytical model is developed to assess the effect of different lumped burnable absorbers on the time dependence of the assembly k. It is shown that using an adequate number of B4C rods, positioned in the outer wall of the fuel assembly, together with a suitable distribution of six different 235U enrichments, it allows for obtaining an assembly k factor that starts from 1.11 at the beginning of the cycle and remains quite constant over a large fraction of the burnup cycle. Moreover, the pin-power peaking factor is reduced to 1.03 at the beginning of the cycle and remains almost unchanged until the end of the burnup cycle. Full article
Show Figures

Figure 1

31 pages, 7541 KB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 337
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop