Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (25,918)

Search Parameters:
Keywords = Mass Spectrometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1138 KB  
Review
Determination of Inorganic Elements in Paper Food Packaging Using Conventional Techniques and in Various Matrices Using Microwave Plasma Atomic Emission Spectrometry (MP-AES): A Review
by Maxime Chivaley, Samia Bassim, Vicmary Vargas, Didier Lartigue, Brice Bouyssiere and Florence Pannier
Analytica 2025, 6(4), 41; https://doi.org/10.3390/analytica6040041 (registering DOI) - 9 Oct 2025
Abstract
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be [...] Read more.
As one of the world’s most widely used packaging materials, paper obtains its properties from its major component: wood. Variations in the species of wood result in variations in the paper’s mechanical properties. The pulp and paper production industry is known to be a polluting industry and a consumer of a large amount of energy but remains an essential heavy industry globally. Paper production, based largely on the kraft process, is mainly intended for the food packaging sector and, thus, is associated with contamination risks. The lack of standardized regulations and the different analytical techniques used make information on the subject complex, particularly for inorganic elements where little information is available in the literature. Most research in this field is based on sample preparation using mineralization via acid digestion to obtain a liquid and homogeneous matrix, mainly with a HNO3/H2O2 mixture. The most commonly used techniques are Atomic Absorption Spectrometry (AAS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and Inductively Coupled Plasma Mass Spectrometry (ICP-MS), each with its advantages and disadvantages, which complicates the use of these tech-niques for routine analyses on an industrial site. In the same field of inorganic compound analysis, Microwave Plasma Atomic Emission Spectrometry (MP-AES) has become a real alternative to techniques such as AAS or ICP-AES. This technique has been used in several studies in the food and environmental fields. This publication aims to examine, for the first time, the state of the art regarding the analysis of inorganic elements in food packaging and different matrices using MP-AES. The entire manufacturing process is studied to identify possible sources of inorganic contaminants. Various analytical techniques used in the field are also presented, as well as research conducted with MP-AES to highlight the potential benefits of this technique in the field. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

18 pages, 1984 KB  
Article
PGRMC1 Promotes the Development of Cervical Intraepithelial Neoplasia in HPV-Positive Patients
by Wen Lai, Shuyu Liu, Tianming Wang, Min Gong, Qiaoling Liu, Ling Ling and Jianquan Chen
Biomedicines 2025, 13(10), 2454; https://doi.org/10.3390/biomedicines13102454 (registering DOI) - 9 Oct 2025
Abstract
Background/Objectives: Persistent human papillomavirus (HPV) infection is the leading cause of cervical intraepithelial neoplasia (CIN), a known precursor to cervical squamous carcinoma. While progesterone receptor membrane component 1 (PGRMC1) has been implicated in various cancers, its specific role in cervical carcinogenesis has [...] Read more.
Background/Objectives: Persistent human papillomavirus (HPV) infection is the leading cause of cervical intraepithelial neoplasia (CIN), a known precursor to cervical squamous carcinoma. While progesterone receptor membrane component 1 (PGRMC1) has been implicated in various cancers, its specific role in cervical carcinogenesis has remained uncertain. This study aimed to elucidate the function of PGRMC1 in the progression of CIN. Methods: Bioinformatics techniques were employed to assess the expression levels of PGRMC1 in cervical cancer tissues and to investigate its correlation with patient prognosis. To explore the functional role of PGRMC1, we manipulated its expression in the cervical cancer cell line HeLa using siRNA. Subsequently, we evaluated cell migration via the scratch assay, and invasion through the Transwell assay. We employed mass spectrometry to identify proteins interacting with PGRMC1 and confirmed these interactions using co-immunoprecipitation (co-IP). Further co-IP experiments were conducted to pinpoint the specific binding sites of these protein interactions, and immunofluorescence staining was utilized to observe the spatial distribution of interacting proteins within the cells. The phosphorylation status of VIM was further confirmed by WB. At the clinical level, we collected cervical biopsy specimens from HPV-positive patients and verified the expression patterns of PGRMC1 and VIM using immunohistochemical staining in cervical squamous cell carcinoma (CSCC) tissues. Results: We discovered a correlation between progressively increasing PGRMC1 expression and the severity of CIN as well as a poor prognosis. Knockdown of PGRMC1 resulted in the inhibition of migration and invasion capabilities in cervical cancer cells. Furthermore, PGRMC1 was found to physically interact and colocalize with Vimentin (VIM). Notably, PGRMC1 knockdown specifically increased phosphorylation at the Ser-39 residue of VIM. Conclusions: Our findings suggest that PGRMC1 facilitates CIN progression by binding to VIM and suppressing Ser-39 phosphorylation, thereby promoting the migration and invasion of cervical carcinoma cells. This study enhances our understanding of PGRMC1’s role in CIN progression and lays an experimental foundation for targeted therapeutic approaches to cervical squamous carcinoma. Full article
(This article belongs to the Special Issue Current Perspectives on Human Papillomavirus (HPV)—Second Edition)
Show Figures

Figure 1

14 pages, 581 KB  
Article
Seasonal Influence on Volatile Organic Compounds from Flowers and Leaves of Lepechinia mutica Extracted by SPME-GC-MS
by James Calva, Dayanna Suquilanda, Ángel Benítez, Chabaco Armijos and Jorge Ramírez
Plants 2025, 14(19), 3103; https://doi.org/10.3390/plants14193103 (registering DOI) - 9 Oct 2025
Abstract
Lepechinia mutica, an endemic species of the Ecuadorian Andes, was studied to identify the seasonal variation in volatile organic compounds emitted from leaves and flowers in winter and summer using solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS). A total of 101 and 100 volatile compounds [...] Read more.
Lepechinia mutica, an endemic species of the Ecuadorian Andes, was studied to identify the seasonal variation in volatile organic compounds emitted from leaves and flowers in winter and summer using solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS). A total of 101 and 100 volatile compounds were identified in flowers and leaves, respectively. The main compounds in flowers were β-phellandrene (7.81–17.74%), dictamnol (3.57–31.89%) and 9-epi-(E)-caryophyllene (3.93–14.37%), while in the leaves, they were dictamnol (9.85–34.64%), (Z)-β-ocimene (1.24–29.24%) and δ-3-carene (1.14–11.51%). This is the first report of enantiomeric separation in L. mutica using a capillary column with 2,3-diethyldecyl-6-tert-butyl-dimethylsilyl-β-cyclodextrin, revealing three enantiomerically pure compounds as (S)-(-)-β-pinene, (1S,3R)-(+)-δ-3-carene and (S)-(+)-linalool, while (+) (-) α-pinene, (+) (-) δ-cadinene and (+) (-) α-muurolene were found as racemic mixtures. Principal component analysis confirmed distinct chemical profiles between plant parts and seasons. This result has important implications for the future highlighting its potential as a source of seasonally variables components with applications in fragrance and phytotherapy. Full article
(This article belongs to the Special Issue Phytochemical Profiling and Bioactive Potential of Plants)
Show Figures

Figure 1

16 pages, 1937 KB  
Article
eDNA- and eRNA-Based Detection of 2-Methylisoborneol-Producing Cyanobacteria and Intracellular Synthesis Dynamics in Freshwater Ecosystem
by Keonhee Kim, Chaehong Park, Nan-Young Kim and Soon-Jin Hwnag
Biology 2025, 14(10), 1377; https://doi.org/10.3390/biology14101377 - 9 Oct 2025
Abstract
Taste and odor (T&O) compounds in freshwater are frequently produced by certain cyanobacteria; however, their occurrence remains difficult to predict. This study examined the temporal and spatial variations in the mibC gene, which encodes a critical enzyme in the biosynthesis of 2-methylisoborneol (2-MIB), [...] Read more.
Taste and odor (T&O) compounds in freshwater are frequently produced by certain cyanobacteria; however, their occurrence remains difficult to predict. This study examined the temporal and spatial variations in the mibC gene, which encodes a critical enzyme in the biosynthesis of 2-methylisoborneol (2-MIB), by analyzing environmental DNA (eDNA) and RNA (eRNA) in the North Han River, Republic of Korea, from July 2019 to October 2021. Surface water was sampled at twelve sites and analyzed for mibC DNA copy number, RNA expression, cyanobacterial cell density, and 2-MIB concentration using quantitative PCR (qPCR), microscopy, and gas chromatography–mass spectrometry (GC–MS). The mibC gene was present throughout the year, exhibiting peaks from late summer to early winter; higher concentrations typically initiated upstream and subsequently moved downstream. RNA expression was elevated from summer to autumn, rapidly declined following heavy rainfall, and reliably preceded increases in 2-MIB concentrations by 2–4 weeks. RNA levels were strongly correlated with 2-MIB concentrations (r = 0.879, p < 0.001) but showed only a moderate association with Pseudanabaena cell density, whereas DNA demonstrated weaker correlations. More than 95% of total 2-MIB was dissolved, limiting the ability to directly estimate concentrations from eRNA data alone. The results indicate that eRNA monitoring is an effective early warning tool for T&O events. In addition, combining eDNA and eRNA analyses enables a more accurate evaluation of T&O-producing cyanobacteria, presenting practical benefits for proactive management of drinking water. Full article
(This article belongs to the Special Issue Biology, Ecology and Management of Harmful Algae)
Show Figures

Figure 1

14 pages, 2513 KB  
Article
Long-Term Chemical Solubility of 2.3Y-TZP Dental Ceramics
by Lidija Ćurković, Sanja Štefančić, Irena Žmak, Vilko Mandić, Ivana Gabelica and Ketij Mehulić
J. Funct. Biomater. 2025, 16(10), 374; https://doi.org/10.3390/jfb16100374 - 8 Oct 2025
Abstract
In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with [...] Read more.
In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with inductively coupled plasma mass spectrometry (ICP-MS) and by analyzing phase composition with X-ray diffraction (XRD). While ISO 6872 prescribes chemical stability testing in a 4 wt.% aqueous acetic acid solution at 80 °C for 16 h, the exposure duration in this study was extended to 768 h (32 days) to allow a more accurate determination of long-term solubility behavior. Additionally, the surface roughness parameters (Ra, Rmax, Rz, Sa, Sq) were analyzed and evaluated before and after solubility testing. Kinetic analysis revealed that degradation followed a near-parabolic rate law, with power-law exponents of n = 2.261 for Group 1 and n = 1.935 for Group 2. The corresponding dissolution rate constants were 3.85 × 10−5 µgn·cm−2n·h−1 for Group 1 and 132.3 µgn·cm−2n·h−1 for Group 2. XRD results indicated that the long exposure to acetic acid induced a partial phase transformation of zirconia from the tetragonal to the monoclinic phase. Under prolonged acetic exposure, the glaze layer on 2.3Y-TZP exhibited significantly higher dissolution, whereas the zirconia (polished, unglazed) showed low ion release. The temporal change in the total amount of dissolved ions was statistically analyzed for Group 1 and Group 2. The samples showed a strong correlation, but ANOVA confirmed significant differences between them. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

17 pages, 2692 KB  
Article
Chemical Composition and Biological Activities of the Essential Oils from Different Parts of Rosa bracteata J.C.Wendl
by Shiyu Song, Yifang Chen, Hongrui Chen, Qinglei Han and Pengxiang Lai
Molecules 2025, 30(19), 4021; https://doi.org/10.3390/molecules30194021 - 8 Oct 2025
Abstract
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, [...] Read more.
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, leaves, and flowers of Rosa bracteata for the first time. The chemical composition of the essential oils obtained through hydro-distillation was characterized by means of gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID). Thirty-seven, thirty-six, and forty-two constituents were identified from leaf oil (LEO), stem oil (SEO), and flower oil (FEO), representing 96.3%, 95.9%, and 97.4% of the total oil constituents, respectively. The LEO was mainly composed of 1-pentadecene, α-cadinol, and hexadecanoic acid. However, the main identified components of SEO were (E)-nerolidol, phytol, and benzyl benzoate, and the main components of the flower oil were ethyl octanoate, octanoic acid, and α-cadinol. All of the EOs exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria with MIC values ranging from 40.00 to 640.00 μg/mL. In addition, the checkerboard method demonstrates potent synergistic effects of Rosa bracteata EOs when combined with commercial antibiotics (chloramphenicol and streptomycin). In the MTT test, SEO (IC50: 37.91 ± 2.10 to 51.15 ± 6.42 μg/mL) showed stronger cytotoxic activity against four cancer cell lines (MCF-7, A549, HepG2, and HCT-116) during the incubation time of 48 h in comparison to the EOs isolated from the other plant parts. Overall, these findings reveal the chemical composition and significant bioactivity of R. bracteata EOs for the first time, suggesting their potential as promising natural agents for therapeutic applications, especially in combination therapies to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Evaluation of Essential Oils)
Show Figures

Graphical abstract

22 pages, 3210 KB  
Article
Absorption and Tissue Distribution of Environmental Pollutant HFPO-DA, and Its Effect on Hepatic Lipid Metabolism Reprogramming in Mice
by Jie Peng, Wei Jiang, Zi Long, Yueying Cui, Guizhen Zhu, Rui Liu, Deqin Kong, Weihua Yu, Yuliang Li and Chunxu Hai
Toxics 2025, 13(10), 850; https://doi.org/10.3390/toxics13100850 - 8 Oct 2025
Abstract
Objective: Hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX, is widely used globally, raising concerns about its safety and public health implications. However, its toxicity mechanism remains unclear. The purpose of this study was to develop a reliable method for detecting HFPO-DA [...] Read more.
Objective: Hexafluoropropylene oxide dimer acid (HFPO-DA), also known as GenX, is widely used globally, raising concerns about its safety and public health implications. However, its toxicity mechanism remains unclear. The purpose of this study was to develop a reliable method for detecting HFPO-DA in mice and to investigate its absorption, distribution, and impact on hepatic lipid metabolism. Method: HFPO-DA levels were measured in the serum and eight tissues of C57BL/6J mice after oral administration using ultra-performance liquid chromatography–tandem mass spectrometry (UPLC-MS/MS). Lipid metabolites in the liver were also detected and analyzed. Results: HFPO-DA was rapidly absorbed into the bloodstream and widely distributed throughout all tested tissues. It penetrated the blood–brain barrier, with the highest concentration in the liver; however, long-term effects on the lungs also warrant attention. HFPO-DA disrupted liver lipid metabolism, leading to acylcarnitine accumulation while lowering triglycerides and cholesterol. Conclusion: This study on the pharmacokinetics and tissue distribution of HFPO-DA in mice following oral exposure revealed that HFPO-DA exacerbates liver injury by altering hepatic lipid metabolism. These findings provide theoretical support for toxicological studies on the emerging environmental pollutant HFPO-DA. Full article
Show Figures

Graphical abstract

16 pages, 1522 KB  
Article
Assessment of Mold-Specific Volatile Organic Compounds and Molds Using Sorbent Tubes and a CDC/NIOSH-Developed Tool in Homes Affected by Hurricane Ian
by Atin Adhikari, Oluwatosin Jegede, Victor Chiedozie Ezeamii, Oluwatoyin Ayo-Farai, Michael Savarese and Jayanta Gupta
Appl. Sci. 2025, 15(19), 10805; https://doi.org/10.3390/app151910805 - 8 Oct 2025
Abstract
Flooding from hurricanes creates damp indoor environments that support mold growth and microbial contamination, posing long-term health risks for occupants. This pilot study evaluated TMVOCs, microbial activity, and environmental conditions in 13 Hurricane Ian-affected residences across multiple flood-affected neighborhoods. Air samples were collected [...] Read more.
Flooding from hurricanes creates damp indoor environments that support mold growth and microbial contamination, posing long-term health risks for occupants. This pilot study evaluated TMVOCs, microbial activity, and environmental conditions in 13 Hurricane Ian-affected residences across multiple flood-affected neighborhoods. Air samples were collected using sorbent tubes and analyzed by gas chromatography–mass spectrometry, while microbial activity on surfaces was assessed via ATP bioluminescence. Visible mold and dampness were documented with the CDC/NIOSH Dampness and Mold Assessment Tool, and environmental measurements included temperature, relative humidity, and surface as well as hidden moisture. Median (IQR) TMVOC concentrations were 12 (8) µg/m3, with 61% of homes exceeding the 10 µg/m3 benchmark set by previous researchers despite minimal visible contamination. Spearman’s correlation revealed significant negative relationships between odor and surface microbial activity (ρ = −0.569, p < 0.05), indicating that organic debris may play a more crucial role in microbial activity within the tested homes, and that odors might originate from hidden microbes instead of surface microbial growth. Our study emphasizes the necessity of utilizing both chemical (TMVOC) and biological (ATP) indicators to evaluate poor air quality caused by molds in flood-affected homes, serving as a supplement to routine visible mold assessments. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

22 pages, 2533 KB  
Article
DST-3, a Novel Modified Cryptotanshinone, Protects Against Pulmonary Fibrosis via Inhibiting STAT3/Smad Signaling Pathway and Improves Bioavailability
by Ruoqing Guan, Xiangjun He, Yuxing Dai, Guangye Huang, Zhaoyun Xue, Jianwen Chen and Peiqing Liu
Pharmaceutics 2025, 17(10), 1307; https://doi.org/10.3390/pharmaceutics17101307 - 8 Oct 2025
Abstract
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive loss of lung function and poor prognosis. Cryptotanshinone (CTS), a small-molecule compound extracted from Salvia miltiorrhiza, possesses diverse pharmacological activities but suffers from poor oral bioavailability, which restricts its [...] Read more.
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive loss of lung function and poor prognosis. Cryptotanshinone (CTS), a small-molecule compound extracted from Salvia miltiorrhiza, possesses diverse pharmacological activities but suffers from poor oral bioavailability, which restricts its clinical development, particularly in pulmonary fibrosis. DST-3, a newly synthesized derivative of CTS, was designed to overcome these limitations. Methods: The antifibrotic effects of DST-3 were investigated in a bleomycin-induced pulmonary fibrosis model in C57BL/6 mice through lung function assessment, histopathological evaluation, hydroxyproline quantification, and cytokine profiling. In vitro, TGF-β1-stimulated MRC5 fibroblasts were employed to explore the mechanism of action, focusing on STAT3/Smad signaling via Western blotting and molecular binding assays. Furthermore, a validated HPLC–MS/MS method was developed for DST-3, and its pharmacokinetic profile was characterized in Sprague–Dawley rats and compared with that of CTS. Results: DST-3 markedly attenuated pulmonary fibrosis in vivo, as evidenced by improved lung function, reduced collagen deposition, and decreased proinflammatory cytokine levels. In vitro, DST-3 inhibited TGF-β1-induced fibroblast activation by directly binding to STAT3 and suppressing STAT3/Smad signaling. Pharmacokinetic analysis demonstrated that, compared with CTS, DST-3 exhibited more rapid absorption, a higher peak plasma concentration, a greater area under the curve (AUC), improved hepatic metabolic stability, and enhanced lung tissue exposure. Conclusions: Our study demonstrates that DST-3 exerts potent antifibrotic effects in vivo and in vitro, primarily through STAT3 pathway inhibition. Its improved pharmacokinetic characteristics further support its potential as a promising candidate for the treatment of pulmonary fibrosis. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

17 pages, 1830 KB  
Article
Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents
by Theaveraj Ravi, Alba Reyes-Ávila, Laura Carbonell-Rozas, Asiah Nusaibah Masri, Antonia Garrido Frenich and Roberto Romero-González
Foods 2025, 14(19), 3438; https://doi.org/10.3390/foods14193438 - 8 Oct 2025
Abstract
Natural Deep Eutectic Solvents (NADES) were synthesized from food-grade components and evaluated as green extractants for the simultaneous recovery and liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry (LC–Q-Orbitrap-MS) analysis of biopesticide residues in a complex matrix like honey. Conventional solid–liquid extraction (SLE) was [...] Read more.
Natural Deep Eutectic Solvents (NADES) were synthesized from food-grade components and evaluated as green extractants for the simultaneous recovery and liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry (LC–Q-Orbitrap-MS) analysis of biopesticide residues in a complex matrix like honey. Conventional solid–liquid extraction (SLE) was applied, initially using choline chloride-2,3-butanediol (1:4, molar ratio) as the NADES extractant solvent, before systematically evaluating other NADES formulations. Extraction parameters, such as time (10 min, 20 min, and 30 min), technique (rotary mixing vs. sonication), and NADES composition, namely lactic acid–glucose–water (LGH, 5:1:9, molar ratio), lactic acid–glycerol–water (LGLH, 1:1:3, molar ratio), urea–glycerol–water (UGLH, 1:1:2, molar ratio), and choline chloride–2,3-butanediol (ChClBt, 1:4, molar ratio), were systematically optimized. Rotating agitation for 10 min yielded the highest overall recoveries and was therefore selected as the optimal extraction time. Rotary shaking was chosen over sonication due to its superior performance across both simple and complex matrices. Among the NADES tested, UGLH proved to be the most effective composition for the honey matrix. The analytical method was validated for the honey matrix. Linearity showed excellent performance across the tested concentration range, with R2 values above 0.95 for all analytes. Matrix effects were within ±20% for nearly half of the compounds, while a few exhibited moderate matrix enhancement. Recoveries ranged from 50.1% to 120.5% at 500 µg/kg and 1000 µg/kg, demonstrating acceptable extraction performance. Intra-day and inter-day precision showed relative standard deviations (RSDs) below 20% for most analytes. Limits of quantification (LOQs) were established at 500 µg/kg for eight compounds based on recovery and precision criteria. These results confirm the suitability of the proposed NADES-based method for sensitive and reliable analysis of biopesticide residues in honey. When compared to conventional extraction methods, the proposed NADES-based protocol proved to be a greener alternative, achieving the highest AGREEprep score due to its use of non-toxic solvents, lower waste generation, and overall sustainability. Full article
Show Figures

Figure 1

21 pages, 850 KB  
Article
From Chemistry to Bioactivity: HS-SPME-GC-MS Profiling and Bacterial Growth Inhibition of Three Different Propolis Samples from Romania, Australia, and Uruguay
by Radosław Balwierz, Katarzyna Kasperkiewicz, Martyna Straszak, Daria Siodłak, Katarzyna Pokajewicz, Ibtissem Ben Hammouda, Piotr P. Wieczorek, Anna Kurek-Górecka, Zenon P. Czuba and Tomasz Baj
Molecules 2025, 30(19), 4014; https://doi.org/10.3390/molecules30194014 - 8 Oct 2025
Abstract
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against [...] Read more.
Propolis is a valuable natural product whose chemical composition and bioactivity are strongly dependent on its geographical and botanical origin. This study presents a comprehensive comparative analysis of the volatile profiles and antibacterial properties of propolis from Romania, Australia, and Uruguay, benchmarked against previously published data from samples from Poland and Turkey. Volatile compounds were profiled using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. The resulting data were interrogated using multivariate chemometric analyses (HCA, PCA), and antibacterial activity was assessed via the disk diffusion method against five bacterial strains. Chemometric analysis revealed a clear demarcation into two primary chemotypes: a European type (Poland, Romania, Turkey) dominated by aromatic compounds such as benzoic acid, and a non-European type (Australia, Uruguay) characterized by a high abundance of terpenes. The Australian propolis exhibited a complex terpene profile rich in α-copaene and pinenes, while the Uruguayan sample was distinguished by an exceptionally high concentration of α-pinene. All active extracts showed selective, concentration-dependent inhibition against Gram-positive Staphylococcus aureus and Streptococcus mutans. The terpene-rich Australian propolis displayed the highest antibacterial potency, particularly against S. mutans. Crucially, Pearson correlation analysis revealed a counter-intuitive relationship: the most abundant terpenes in the non-European samples (e.g., α-pinene, verbenone) were significantly negatively correlated with antibacterial activity (r ≈ −0.99). Conversely, less abundant compounds, including linalool and acetic acid, were identified as strong positive predictors of inhibition (r > 0.90). These findings underscore a complex geography-chemotype-bioactivity relationship, where the overall synergistic effect of a mixed chemical profile, rather than the dominance of a single compound, determines antibacterial potency. The initially proposed markers provide a basis for origin-based standardization and highlight Australian propolis as a promising source of natural antibacterial agents. Full article
(This article belongs to the Special Issue Bee Products: Recent Progress in Health Benefits Studies, 2nd Edition)
Show Figures

Figure 1

28 pages, 5673 KB  
Article
Liver-Specific Nanoparticle-Mediated Delivery and MMP-Triggered Release of Veratridine to Effectively Target Metastatic Colorectal Cancer
by Mahadi Hasan, Morgan Eikanger, Sanam Sane, Krishantha S. K. Wijewardhane, John L. Slunecka, Jessica Freeling, Khosrow Rezvani and Grigoriy Sereda
Cancers 2025, 17(19), 3253; https://doi.org/10.3390/cancers17193253 - 8 Oct 2025
Abstract
Background: Despite considerable advances to improve colorectal cancer (CRC) survival over the last decade, therapeutic challenges remain due to the rapid metastatic dissemination of primary tumors. This study revealed the apoptotic and anti-growth mechanism of VTD, a previously used anti-hypertensive supplement, can elevate [...] Read more.
Background: Despite considerable advances to improve colorectal cancer (CRC) survival over the last decade, therapeutic challenges remain due to the rapid metastatic dissemination of primary tumors. This study revealed the apoptotic and anti-growth mechanism of VTD, a previously used anti-hypertensive supplement, can elevate UBXN2A, a known tumor suppressor protein in CRC, and simultaneously enhance intrinsic and extrinsic apoptosis in metastatic cancer cells. Methods and Results: An AOM/DSS mouse model of CRC showed that UBXN2A haplosufficient (UBXN2A +/−) mice treated with VTD had less tumor burden than mice with the full UBXN2A gene treated with vehicle. We have previously shown that casein-coated mesoporous silica nanoparticles (MSNs) offer an effective local delivery of drugs at tumor sites. Our findings demonstrate that the high rate of extracellular release of matrix metalloproteinases (MMPs), particularly MMP-7, by metastatic colon cancer cells, triggers the release of VTD from casein-coated mesoporous MSNs. This shows the “Zip Code” mechanism for the local enrichment of VTD at the tumor sites. After in vitro drug release verification, two independent mouse experiments, a xenograft and a splenolepatic metastatic mouse model of CRC, were used to evaluate the therapeutic efficacy of VTD-loaded and casein-coated carboxylated mesoporous silica nanoparticles, MSN-COOH/VTD/CAS (VTD, 0.2 mg/kg). Animal experiments revealed that MSN-COOH/VTD/CAS (VTD, 0.2 mg/kg) slows down the progress of tumors. Mass spectrometry (MS) revealed improved pharmacokinetics (PK) profile as MSN-COOH/VTD/CAS had less VTD accumulation in non-cancerous organs compared to pure VTD. We further improved nanoparticle targeting and drug release by shifting to calcium-based particles (CBPs). The engineered CBPs demonstrated higher drug-releasing performance. Without the MMPs trigger, MSNs show slow and continuous “drug leak” over longer period of time whereas CCSMPs stops leakage within an hour. Additionally, CBPs showed higher sensitivity to MMP-7 than MMP-9, enhancing the targetability of CBPs for CRC metastatic tumors with excessive extracellular MMP-7. Conclusions: This study introduces a new platform utilizing nanoparticle-based site-specific delivery of a plant-based anti-metastatic molecule, veratridine, with enhanced safety and therapeutic efficacy for the treatment of metastatic CRC. Full article
Show Figures

Figure 1

12 pages, 2898 KB  
Article
Unraveling the Electrochemical Reaction Mechanism of Bronze-Phase Titanium Dioxide in Sodium-Ion Batteries
by Denis Opra, Sergey Sinebryukhov, Alexander Sokolov, Andrey Gerasimenko, Sviatoslav Sukhoverkhov, Andrey Sidorin, Alexandra Zavidnaya and Sergey Gnedenkov
Reactions 2025, 6(4), 56; https://doi.org/10.3390/reactions6040056 - 7 Oct 2025
Abstract
Searching anode materials is an important task for the development of sodium-ion batteries. In this regard, bronze-phase titanium dioxide, TiO2(B), has been considered as one of the promising materials, owing to its crystal structure with open channels and voids facilitating Na [...] Read more.
Searching anode materials is an important task for the development of sodium-ion batteries. In this regard, bronze-phase titanium dioxide, TiO2(B), has been considered as one of the promising materials, owing to its crystal structure with open channels and voids facilitating Na+ diffusion and storage. However, the electrochemical de-/sodiation mechanism of TiO2(B) has not been clearly comprehended, and further experiments are required. Herein, in situ and ex situ observations by a combination of X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, gas chromatography–mass spectrometry was used to provide additional insights into the electrochemical reaction scenario of bronze-phase TiO2 in Na-ion batteries. The findings reveal that de-/sodiation of TiO2(B) occurs through a reversible intercalation reaction and without the involvement of the conversion reaction (no metallic titanium is formed and no oxygen is released). At the same time, upon the first Na+ uptake process, crystalline TiO2(B) becomes partially amorphous, but is still driven by the Ti4+/Ti3+ redox couple. Importantly, TiO2(B) has pseudocapacitive electrochemical behavior during de-/sodiation based on a quantitative analysis of the cyclic voltammetry data. The results obtained in this study complement existing insights into the sodium storage mechanisms of TiO2(B) and provide useful knowledge for further improving its anode performance for SIBs application. Full article
Show Figures

Figure 1

22 pages, 834 KB  
Review
Proteomic Insights into Edible Nut Seeds: Nutritional Value, Allergenicity, Stress Responses, and Processing Effects
by Qi Guo and Bronwyn J. Barkla
Agronomy 2025, 15(10), 2353; https://doi.org/10.3390/agronomy15102353 - 7 Oct 2025
Abstract
Nuts, including tree nuts such as almonds, walnuts, cashews, and macadamias, as well as peanuts, are widely consumed for their health benefits owing to their high-quality protein content. Globally, the nut industry represents a multi-billion-dollar sector, with increasing demand driven by consumer interest [...] Read more.
Nuts, including tree nuts such as almonds, walnuts, cashews, and macadamias, as well as peanuts, are widely consumed for their health benefits owing to their high-quality protein content. Globally, the nut industry represents a multi-billion-dollar sector, with increasing demand driven by consumer interest in nutrition, functional foods, and plant-based diets. Recent advances in proteomic technologies have enabled comprehensive analyses of nut seed proteins, shedding light on their roles in nutrition, allergenicity, stress responses, and food functionality. Seed storage proteins such as 2S albumins, 7S vicilins, and 11S legumins, are central to nutrition and allergenicity. Their behavior during processing has important implications for food safety. Proteomic studies have also identified proteins involved in lipid and carbohydrate metabolism, stress tolerance, and defense against pathogens. Despite technical challenges such as high lipid content and limited genomic resources for many nut species, progress in both extraction methods and mass spectrometry has expanded the scope of nut proteomics. This review underscores the central role of proteomics in improving nut quality, enhancing food safety, guiding allergen risk management, and supporting breeding strategies for sustainable crop improvement. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 3191 KB  
Article
The Effects of Hot Air and Microwave Drying on the Structural and Physicochemical Properties of Soluble Dietary Fiber from Sugar Beet Pulp
by Xinmeng Huang, Zunqi Zhang, Yuanpeng Li, Yuting Yang, Ailikemu Mulati, Dilireba Shataer and Jiayi Wang
Foods 2025, 14(19), 3435; https://doi.org/10.3390/foods14193435 - 7 Oct 2025
Abstract
Sugar beet pulp (SBP), a byproduct of the sugar industry, presents significant potential for enhancing economic benefits and promoting sustainable development through its comprehensive utilization. SBP is rich in fiber, with its soluble dietary fiber (SDF) constituting a high-value component. The initial step [...] Read more.
Sugar beet pulp (SBP), a byproduct of the sugar industry, presents significant potential for enhancing economic benefits and promoting sustainable development through its comprehensive utilization. SBP is rich in fiber, with its soluble dietary fiber (SDF) constituting a high-value component. The initial step in the preparation of SDF involves the drying of fresh SBP. This study compares the effects of hot air and microwave drying on the composition, structure, and physicochemical properties of SDF in SBP. Technologies such as gel permeation chromatography, gas chromatography–mass spectrometry, Fourier transform infrared spectroscopy, scanning electron microscopy, and Zeta potential analysis were employed. Results indicated that microwave drying enhanced sugar components in SDF, reduced polysaccharide molecular weight, and formed a uniform and porous microstructure. This resulted in a higher Zeta potential (−24.76 mV) and increased water holding capacity (5.01 g/g). Hot air-dried samples preserved a more intact cell wall network, exhibiting higher swelling capacity (5.18 mL/g). The study demonstrated how both drying methods differentially regulated SDF quality from sugar beet pulp, suggesting that drying process selection should be based on specific application needs. Full article
Show Figures

Figure 1

Back to TopTop