Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,040)

Search Parameters:
Keywords = Maxent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5228 KB  
Article
Habitat Quality Assessment Based on Ecological Network Construction: A Case Study of Eremias multiocellata in Xinjiang, China
by Zhengyu Li, Junzhe Zhang, Jinhu Hai, Wenhan Chen, Chunhua Hai, Zhenkun Pang, Haifan Yan, Luoxue Jiang, Wei Zhao and You Li
Sustainability 2025, 17(17), 7764; https://doi.org/10.3390/su17177764 (registering DOI) - 28 Aug 2025
Abstract
Habitat fragmentation represents a significant threat to biodiversity, particularly the survival of wild species. Constructing and optimizing ecological networks are critical for promoting sustainable biodiversity, especially in the conservation of unmanaged wildlife. To address this, this study focused on designing and optimizing an [...] Read more.
Habitat fragmentation represents a significant threat to biodiversity, particularly the survival of wild species. Constructing and optimizing ecological networks are critical for promoting sustainable biodiversity, especially in the conservation of unmanaged wildlife. To address this, this study focused on designing and optimizing an ecological network tailored to the preservation of the Xinjiang desert lacertid lizard (Eremias multiocellata). This study integrated a dual-model approach, applying the InVEST model for habitat quality assessment and the MaxEnt model for suitable habitat prediction. An overlay analysis identified 15 core ecological source areas spanning 126,044 km2, primarily located in the desert–grassland transition zones of the central and western study areas. A total of 34 ecological corridors were established utilizing the minimum cumulative resistance model, totaling 3764 km in length. These include 11 long corridors, 17 short corridors, and 6 potential corridors. Additionally, 100 strategic points were identified: 41 pinch points, 38 barrier points, and 21 stepping stones. This study identifies priority areas and obstacles affecting the ecological connectivity of the species’ habitats and highlights the importance of small habitat patches for long-term species dispersal and habitat expansion, providing more comprehensive guidance for sustainable development and species conservation. Furthermore, the methodology provides valuable insights into biodiversity conservation and the optimization of the natural habitat spatial layout in desert ecosystems, along with novel methods for managing and conserving other unmonitored animal species in various ecosystems. Full article
(This article belongs to the Special Issue Landscape Connectivity for Sustainable Biodiversity Conservation)
17 pages, 1405 KB  
Article
Projecting Range Shifts of Hippophae neurocarpa in China Under Future Climate Change Using CMIP6 Models
by Bing Zhu, Yaqin Peng and Danping Xu
Diversity 2025, 17(9), 609; https://doi.org/10.3390/d17090609 - 28 Aug 2025
Abstract
Hippophae neurocarpa S. W. Liu & T. N. Ho exhibits established medicinal characteristics, valuable dietary attributes, and remarkable adaptability, displaying strong resistance to cold, drought, and to acidic and alkaline soils. These traits and others make it a valuable species for soil erosion [...] Read more.
Hippophae neurocarpa S. W. Liu & T. N. Ho exhibits established medicinal characteristics, valuable dietary attributes, and remarkable adaptability, displaying strong resistance to cold, drought, and to acidic and alkaline soils. These traits and others make it a valuable species for soil erosion control and a distinctive economic forest tree in western China. However, research on its geographic distribution remains limited. To address this gap, we employed the MaxEnt model to map its current distribution and to predict the future geographic distribution of suitable habitats for this species under SSP1-2.6, SSP2-4.5, and SSP5-8.5 climate scenarios. Collectively, these data suggest that the species’ current and future suitable habitats are predominantly concentrated at the junction of the northeastern Qinghai-Tibet Plateau and the Loess Plateau. Under present climatic conditions, highly suitable habitats are primarily located in the northeastern Qinghai-Tibet Plateau, with smaller patches in the Hengduan and Himalaya mountains. The AUC value of this model reached 0.954; projections under three future emission scenarios indicate an overall expansion trend in suitable habitat area. Notably, by the 2070s under the SSP2-4.5 scenario, the total suitable habitat area is projected to increase by 11.64%—the highest among all scenarios. Additionally, climate change is expected to drive a slight northward shift in the species’ distribution center toward higher latitudes. Key environmental factors influencing its projected distribution include elevation (elev), temperature seasonality (bio04), mean temperature of the coldest quarter (bio11), and precipitation of the warmest quarter (bio18). These insights are critical for conserving H. neurocarpa’s genetic resources and guiding future biodiversity conservation strategies. Full article
(This article belongs to the Topic Responses of Trees and Forests to Climate Change)
11 pages, 1510 KB  
Article
Unravelling Anopheles Dynamics in a Malaria-Free Paraguay: Species Distributions, Bioclimatic Niches, and Implications for Resurgence Risks
by Florencia del Puerto, Mauricio Grissetti, Luis Ferreira, Luciano Franco and Leidi Herrera
Pathogens 2025, 14(9), 849; https://doi.org/10.3390/pathogens14090849 (registering DOI) - 26 Aug 2025
Abstract
Malaria, caused by a protozoan parasite of the genus Plasmodium and transmitted by mosquitoes of the genus Anopheles, remains a significant vector-borne disease worldwide. In 2018, Paraguay became the first country in the Americas in 45 years to be certified malaria-free by [...] Read more.
Malaria, caused by a protozoan parasite of the genus Plasmodium and transmitted by mosquitoes of the genus Anopheles, remains a significant vector-borne disease worldwide. In 2018, Paraguay became the first country in the Americas in 45 years to be certified malaria-free by the World Health Organization. Between 2016 and 2017, a period with no reported human malaria cases, the presence of Plasmodium spp. in Anopheles mosquitoes was investigated in the departments of Caaguazú and Alto Paraná. These studies found that the most prevalent Anopheles species in Paraguay, including Anopheles albitarsis (59.4%), Anopheles strodei (21.5%), and other Anopheles species in smaller proportions, were all negative to the parasite. The objective of this study was to re-evaluate these presence data and to define environmentally suitable areas for Anopheles spp. and their association with bioclimatic variables using DIVA-GIS/MaxEnt software for the entomological surveillance of malaria risk in Paraguay. Results showed that areas of bioclimatic suitability included the Humid Chaco, Cerrado, Paraná Atlantic Forest, and Southern Cone Mesopotamian savanna ecoregions. The most relevant climatic variables were the precipitation of the wettest month (contribution of 80.4%) and the precipitation of the driest month (contribution of 18.4%). Anopheles albitarsis, also reported as a vector of the Venezuelan equine encephalitis virus in neighbouring countries, was the most abundant mosquito species. Anopheles darlingi, the main vector of malaria in Paraguay, was not found. However, species richness indices (Chao/ACE) suggest that cryptic or sibling species may be present. Finally, the possible succession of Anopheles species and their geographical segregation are discussed in scenarios of entomological surveillance and epidemiological risk. Full article
Show Figures

Figure 1

23 pages, 9126 KB  
Article
Assessment and Spatial Optimization of Cultural Ecosystem Services in the Central Urban Area of Lhasa
by Yuqi Li, Shouhang Zhao, Aibo Jin, Ziqian Nie and Yunyuan Li
Land 2025, 14(9), 1722; https://doi.org/10.3390/land14091722 - 25 Aug 2025
Viewed by 120
Abstract
Assessment of cultural ecosystem services (CESs) is a key component in advancing the sustainable development of urban ecosystems. Mapping the spatial distribution of CESs provides spatially explicit insights for urban landscape planning. However, most assessments lack regional adaptability, particularly in cities with pronounced [...] Read more.
Assessment of cultural ecosystem services (CESs) is a key component in advancing the sustainable development of urban ecosystems. Mapping the spatial distribution of CESs provides spatially explicit insights for urban landscape planning. However, most assessments lack regional adaptability, particularly in cities with pronounced environmental and cultural heterogeneity. To address this gap, this study focused on the central urban area of Lhasa, using communities as units to develop a tailored CES assessment framework. The framework integrated the MaxEnt model with multi-source indicators to analyze the spatial distribution of five CES categories and their relationships with environmental variables. Spatial statistics and classification at community level informed the CES spatial optimization strategies. Results indicated that high-value CES areas were predominantly concentrated in the old city cluster, typified by Barkhor and Jibenggang subdistricts, following an east–west spatial pattern along the Lhasa River. Distance to tourist spot contributed 78.3% to cultural heritage, 86.1% to spirit and religion, and 42.2% to ecotourism and aesthetic services, making it the most influential environmental variable. At the community level, CESs exhibited a distinct spatial gradient, with higher values in the central area and lower values in the eastern and western peripheries. For the ecotourism and aesthetic category, 61.47% of the community area was classified as low service, whereas only 1.48% and 7.33% were identified as excellent and high. Moreover, communities within subdistricts such as Barkhor and Zhaxi demonstrated excellent service across four CES categories, with notably lower performance in the health category. This study presents a quantitative and adaptable framework and planning guidance to support the sustainable development of CESs in cities with similar characteristics. Full article
Show Figures

Figure 1

25 pages, 7225 KB  
Article
Integrating Remote Sensing and Ecological Modeling to Assess Marine Habitat Suitability for Endangered Chinese Sturgeon
by Shuhui Cao, Yingchao Dang, Xuan Ban, Qi Feng, Yadong Zhou, Jiahuan Luo, Jiazhi Zhu and Fei Xiao
Remote Sens. 2025, 17(16), 2901; https://doi.org/10.3390/rs17162901 - 20 Aug 2025
Viewed by 225
Abstract
The Chinese sturgeon (Acipenser sinensis), a critically endangered anadromous fish species, spends over 90% of its life cycle in marine habitats, yet research on its marine ecology and habitat requirements is limited due to sparse data. To address this, we integrated [...] Read more.
The Chinese sturgeon (Acipenser sinensis), a critically endangered anadromous fish species, spends over 90% of its life cycle in marine habitats, yet research on its marine ecology and habitat requirements is limited due to sparse data. To address this, we integrated satellite remote sensing with ecological modeling to assess spatiotemporal dynamics in marine habitat suitability across China’s continental shelf (2003–2020). Nine key habitat factors were derived from multi-source remote sensing data and inverted transparency algorithms. Species occurrence data were coupled with the Maximum Entropy (MaxEnt) model to evaluate habitat preferences and seasonal shifts. Results revealed distinct environmental preferences: shallow depths (≤20 m), sea surface and bottom temperature (10–30 °C and 10–25 °C), salinity (10–35‰), transparency (0.40–3.00 m), eastward and northward seawater velocity (−0.20–0.15 m/s and −0.20–0.20 m/s), moderate productivity (1000–3000 mg/m2), and zooplankton carbon (0.20–6.00 g/m2). Habitat factor importance varied seasonally—salinity, depth, and net primary productivity dominated in spring; bottom temperature and productivity in summer/autumn; salinity and transparency in winter. Spatially, high-suitability areas peaked in autumn (70% total suitable habitat), concentrating near the Yangtze Estuary, northern Jiangsu coast, and Zhoushan Archipelago. This study emphasizes the need to prioritize these areas for protection and inform proliferation and release schemes for Chinese sturgeon. It also demonstrates the efficacy of remote sensing for mapping essential habitats of migratory megafauna in complex coastal ecosystems and provides actionable insights for targeted conservation strategies. Full article
Show Figures

Figure 1

21 pages, 4445 KB  
Article
Mitigating Human–Nature Tensions Through Adaptive Zoning Informed by the Habitat Suitability of Flagship Species: Insights from the Longbao Reserve on the Qinghai–Tibet Plateau
by Yurun Ding, Hairui Duo, Zhi Zhang, Dongxiao Zhang, Tingting Wei, Deqing Cuo, Basang Cairen, Jingbao An, Baorong Huang and Yonghuan Ma
Land 2025, 14(8), 1662; https://doi.org/10.3390/land14081662 - 17 Aug 2025
Viewed by 322
Abstract
Zoning is vital for balancing biodiversity conservation and sustainable development in protected areas, yet traditional approaches often lead to ecological overprotection and social conflict. This study introduces an integrative modeling framework to optimize zoning strategies in the Longbao Reserve on the Qinghai–Tibet Plateau. [...] Read more.
Zoning is vital for balancing biodiversity conservation and sustainable development in protected areas, yet traditional approaches often lead to ecological overprotection and social conflict. This study introduces an integrative modeling framework to optimize zoning strategies in the Longbao Reserve on the Qinghai–Tibet Plateau. We employed MaxEnt and Random Forest algorithms to evaluate habitat suitability for two flagship species: the bar-headed goose (Anser indicus) and the black-necked crane (Grus nigricollis). Results showed that 7.9% of the reserve comprised highly suitable habitats, mainly in the southeast, characterized by wetlands, water proximity, and low human disturbance. Land use and June NDVI emerged as key predictors, contributing over 30% and 35% to model performance, respectively. Based on habitat suitability and current zoning mismatches, we propose a revised four-tier zoning scheme: Core Habitat Conservation (16.9%), Ecological Rehabilitation (7.2%), Ecological Management (53.5%), and Sustainable Utilization Zones (22.4%). This refined framework aligns conservation priorities with local development needs and offers a scalable approach to adaptive protected area management. Full article
Show Figures

Figure 1

22 pages, 5363 KB  
Article
Forecasting Northward Range Expansion of Switchgrass in China via Multi-Scenario MaxEnt Simulations
by Yangzhou Xiang, Suhang Li, Qiong Yang, Jun Ren, Ying Liu, Yang Luo, Ling Zhao, Xuqiang Luo, Bin Yao and Xinzhao Guo
Biology 2025, 14(8), 1061; https://doi.org/10.3390/biology14081061 - 15 Aug 2025
Viewed by 342
Abstract
Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. Panicum virgatum (switchgrass) is recognized for its dual value in China’s dual-carbon strategy: mitigating food–energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is [...] Read more.
Global warming is accelerating the poleward and upward shifts in climatically suitable ranges of species. Panicum virgatum (switchgrass) is recognized for its dual value in China’s dual-carbon strategy: mitigating food–energy land competition and restoring marginal ecosystems. However, the accuracy of habitat projections is constrained by three limitations: reliance on North American provenance data, uncalibrated model parameters, and insufficient scenario coverage. To address these, 48 switchgrass occurrence records and 22 climatic–topographic variables were integrated. The MaxEnt model was optimized with ENMeval (RM = 4.0, FC = LQH) and coupled with three SSP scenarios (SSP1-2.6, SSP3-7.0, SSP5-8.5) to quantify habitat area changes and centroid shifts across China. The key findings were as follows: (1) The mean temperature of the coldest quarter (Bio11) and elevation were identified as the key limiting factors for the suitable distribution of switchgrass, with their corresponding optimal thresholds determined as −8.79 to 8.11 °C and 0 to 2893 m, respectively. (2) The current suitable habitat covers 583.58 × 104 km2, concentrated in the North China Plain. (3) Under SSP5-8.5, the high-suitability habitat is projected to reach 229.44 × 104 km2 by the 2090s, with the centroid migrating 305 km northwestward to the Inner Mongolia–Jilin belt. This study highlights the climate–topography coupling that drives northward migration and proposes cold-tolerant cultivar development, priority zoning of marginal lands, and ecological corridor establishment to inform climate-smart biomass energy planning in China. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

19 pages, 3286 KB  
Article
Climate Change Alters Ecological Niches and Distribution of Two Major Forest Species in Korea, Accelerating the Pace of Forest Succession
by Sang Kyoung Lee, Dong-Ho Lee, Yeo Bin Park, Do Hun Ryu, Jun Mo Kim, Eui-Joo Kim, Jae Hoon Park, Ji Won Park, Kyeong Mi Cho, Ji Hyun Seo, Sang Pil Lee, Seung Jun Lee, Ji Su Ko, Hye Jeong Jang and Young Han You
Forests 2025, 16(8), 1331; https://doi.org/10.3390/f16081331 - 15 Aug 2025
Viewed by 257
Abstract
Temperate forest ecosystems in Korea are currently undergoing a successional transition from Pinus densiflora Siebold & Zucc. (evergreen conifer) communities to Quercus mongolica Fisch. ex Ledeb. (deciduous broadleaf) communities. This study aimed to assess interspecific differences in ecological responses to climate change [Representative [...] Read more.
Temperate forest ecosystems in Korea are currently undergoing a successional transition from Pinus densiflora Siebold & Zucc. (evergreen conifer) communities to Quercus mongolica Fisch. ex Ledeb. (deciduous broadleaf) communities. This study aimed to assess interspecific differences in ecological responses to climate change [Representative Concentration Pathway (RCP) 4.5] by evaluating changes in ecological niche characteristics and species distribution. Controlled-environment experiments, principal component analysis (PCA), and MaxEnt species distribution modeling were employed to quantify and predict ecological shifts in the two dominant species under climate change scenarios. Both species exhibited increases in niche breadth and interspecific overlap under climate change conditions. However, Q. mongolica showed a more pronounced increase in niche breadth compared to P. densiflora, indicating greater ecological flexibility and adaptive potential to warming conditions. According to the MaxEnt model projections, climate change is expected to result in an approximate 30% reduction in suitable habitat for P. densiflora in lowland areas. In contrast, Q. mongolica is projected to expand its suitable habitat by over 80%, notably in both low-elevation (below 800 m) and high-elevation (above 1400 m) zones, without being restricted to any specific altitudinal range. Our findings suggest that climate change may increase ecological similarity between P. densiflora and Q. mongolica, thereby raising the potential for interspecific competition. This convergence in niche traits could contribute to an accelerated successional transition, although actual competitive interactions in natural ecosystems require further empirical validation. Consequently, Korean forests are likely to transform into predominantly deciduous forest ecosystems under future climate conditions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

20 pages, 11433 KB  
Article
Global Invasion Potential of Black-Headed and Red-Headed Webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae: Arctiidae) Following Climatic Niche Simulations
by Jie Pan, Fan Shao, Jia Liu, Dongxiao Xu and Gaosheng Liu
Insects 2025, 16(8), 843; https://doi.org/10.3390/insects16080843 - 15 Aug 2025
Viewed by 359
Abstract
The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae: Arctiidae), is a highly dangerous global invasive pest. It exhibits two races: the “red-headed” and “black-headed,” each with distinct ecological traits. However, much remains unknown regarding the climatic niche and potential global distribution suitability of [...] Read more.
The fall webworm, Hyphantria cunea (Drury) (Lepidoptera: Erebidae: Arctiidae), is a highly dangerous global invasive pest. It exhibits two races: the “red-headed” and “black-headed,” each with distinct ecological traits. However, much remains unknown regarding the climatic niche and potential global distribution suitability of these two races. This study utilized the COUE framework, and Maxent models to investigate the climatic niche differences between these two races and predict their respective potential suitable distributions globally. Our findings indicate substantial differences in the climatic niches between the two races of H. cunea, with the red-headed race demonstrating greater invasive potential compared to the black-headed race. Both races pose significantly larger potential threats globally than currently recognized. They are capable of survival in North America, South America, Europe, Asia, Africa, and Australia. Specifically, Asia and Europe exhibit potentially greater threats from the black-headed race, while other regions show greater potential harm from the red-headed race. This study highlights significant differences in the climatic niches between the two races of H. cunea, as well as the substantial presence of uninvaded suitable habitats globally for both races. Therefore, future efforts to prevent H. cunea invasions should prioritize control strategies tailored to each race and especially emphasize potential regions that have their respective suitable habitats that have not yet been invaded. Full article
Show Figures

Figure 1

25 pages, 7157 KB  
Article
Climate Change Drives Northwestward Migration of Betula alnoides: A Multi-Scenario MaxEnt Modeling Approach
by Yangzhou Xiang, Qiong Yang, Suhang Li, Ying Liu, Yuan Li, Jun Ren, Jiaxin Yao, Xuqiang Luo, Yang Luo and Bin Yao
Plants 2025, 14(16), 2539; https://doi.org/10.3390/plants14162539 - 15 Aug 2025
Viewed by 331
Abstract
Climate change poses unprecedented challenges to forest ecosystems. Betula alnoides, a tree species with significant ecological and economic value in southern China, has been the subject of studies on its distribution pattern and response to climate change. However, research on the distribution [...] Read more.
Climate change poses unprecedented challenges to forest ecosystems. Betula alnoides, a tree species with significant ecological and economic value in southern China, has been the subject of studies on its distribution pattern and response to climate change. However, research on the distribution pattern of B. alnoides and its response to climate change remains relatively limited. In this study, we developed a MaxEnt model incorporating multiple environmental variables, including climate, topography, soil, vegetation, and human activities, to evaluate model performance, identify key factors influencing the distribution of B. alnoides, and project its potential distribution under various future climate scenarios. Species occurrence data and environmental layers were compiled for China, and model parameters were optimized using the ENMeval package. The results showed that the optimized model achieved an AUC value of 0.956, indicating extremely high predictive accuracy. The four key factors affecting the distribution of B. alnoides were standard deviation of temperature seasonality (Bio4), normalized difference vegetation index (NDVI), mean temperature of driest quarter (Bio9), and annual precipitation (Bio12). Among them, the cumulative contribution rate of climatic factors reached 68.9%, but the influence of NDVI was significantly higher than that of precipitation factors. The current suitable habitat of B. alnoides is mainly concentrated in the southwestern region, covering an area of 179.32 × 104 km2, which accounts for 18.68% of China’s land area. Under the SSP126 scenario, the suitable habitat area first decreases and then increases in the future, while under the SSP370 and SSP585 scenarios, the suitable habitat area continues to shrink, with significant losses in high-suitability areas. In addition, the centroid of the suitable habitat of B. alnoides shows an overall trend of shifting northwestward. This indicates that B. alnoides is highly sensitive to climate change and its distribution pattern will undergo significant changes in the future. In conclusion, the distribution pattern of B. alnoides shows a significant response to climate change, with particularly prominent losses in high-suitability areas in the future. Therefore, it is recommended to strengthen the protection of high-suitability areas in the southwestern region and consider B. alnoides as an alternative tree species for regions facing warming and drying trends to enhance its climate adaptability. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

14 pages, 2911 KB  
Article
Ecological Modeling of the Potential Distribution of the Mistletoe Phoradendron nervosum (Viscaceae) Parasitism in Ecuador
by Daniela Chavez, Nancy Nénger, Carlos Bolaños-Carriel, Jorge Espinosa Marín, Wellington Bastidas and Ligia García
Agriculture 2025, 15(16), 1732; https://doi.org/10.3390/agriculture15161732 - 12 Aug 2025
Viewed by 320
Abstract
This study characterizes Phoradendron nervosum, a hemiparasitic mistletoe species prevalent in Ecuador, using morphological, molecular, and ecological modeling approaches. Morphological analysis revealed that P. nervosum possesses green-yellowish cylindrical stems, lanceolate leaves with entire margins, and berry-like fruits with mucilaginous pulp. DNA sequencing [...] Read more.
This study characterizes Phoradendron nervosum, a hemiparasitic mistletoe species prevalent in Ecuador, using morphological, molecular, and ecological modeling approaches. Morphological analysis revealed that P. nervosum possesses green-yellowish cylindrical stems, lanceolate leaves with entire margins, and berry-like fruits with mucilaginous pulp. DNA sequencing of the internal transcribed spacer (ITS) region confirmed a 99.43% identity with P. nervosum (GenBank: AH009776.2), supporting the taxonomic classification. A maximum entropy (MaxEnt version 3.4.4) model was developed using 36 occurrence points and 19 bioclimatic variables to assess potential distribution across the Tumbaco region in Ecuador. Key environmental factors influencing the species’ distribution were precipitation during the warmest quarter (BIO_18), temperature seasonality (BIO_4), and mean diurnal temperature range (BIO_2). The model showed good predictive performance (AUC = 0.736), identifying areas with high suitability for P. nervosum, particularly in habitats with adequate water availability and thermal stability. Findings suggest that this mistletoe parasitizes both native and exotic tree species, potentially impacting biodiversity and forest health. This research provides a baseline for monitoring mistletoe spread under climate change scenarios and emphasizes the need for management strategies in agroforestry systems where host trees are vulnerable. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

13 pages, 2919 KB  
Article
Evaluation of Spatial Distribution of Pulse Blue Butterfly (Lampides boeticus), Pest of Legume Crops, in Response to Climate Change
by Jeong Ho Hwang, Sunhee Yoon and Wang-Hee Lee
Insects 2025, 16(8), 826; https://doi.org/10.3390/insects16080826 - 8 Aug 2025
Viewed by 461
Abstract
The potential distribution of the pulse blue butterfly, Lampides boeticus (Lepidoptera: Lycaenidae), was determined using MaxEnt, random forest, and ensemble models. The results indicate that most tropical, subtropical, and some temperate regions are suitable habitats. Climate change is projected to expand the species’ [...] Read more.
The potential distribution of the pulse blue butterfly, Lampides boeticus (Lepidoptera: Lycaenidae), was determined using MaxEnt, random forest, and ensemble models. The results indicate that most tropical, subtropical, and some temperate regions are suitable habitats. Climate change is projected to expand the species’ habitat northward in the Northern Hemisphere. Predicted distributions aligned well with the known occurrence records for the species. The minimum temperature of the coldest month was the climatic variable that most strongly influenced the distribution of L. boeticus. As a tropical and subtropical species, it is assumed that cold temperatures are the main factor limiting its habitat range. Because the potential distribution of this pest covers major pulse cultivation areas under both current and future climate scenarios, these findings highlight the urgent need for developing a sustainable pest management strategy. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 12456 KB  
Article
Predicting the Global Distribution of Fusarium circinatum Using MaxEnt Modeling
by Xiaorui Zhang, Chao Chen, Fengqi Wang and Tingting Dai
Agronomy 2025, 15(8), 1913; https://doi.org/10.3390/agronomy15081913 - 8 Aug 2025
Viewed by 414
Abstract
Fusarium circinatum poses severe threats to agroforestry ecosystem as a globally significant pathogenic fungus. This study utilized multi-source species distribution data and environmental variables (climatic, topographic, and soil factors) to predict the global potential habitat suitability of F. circinatum and its response to [...] Read more.
Fusarium circinatum poses severe threats to agroforestry ecosystem as a globally significant pathogenic fungus. This study utilized multi-source species distribution data and environmental variables (climatic, topographic, and soil factors) to predict the global potential habitat suitability of F. circinatum and its response to future climate change using an optimized MaxEnt model (RM = 1, FC = LQ). The results indicate that the current total suitable area spans approximately 69.29 million km2, with highly suitable habitats (>0.493) accounting for 15.07%, primarily concentrated in East Asia, southwestern North America, western South America, the Mediterranean coast, and eastern Australia. The distribution of F. circinatum’s suitable habitats is primarily constrained by the following environmental factors, ranked by contribution rate: coldest quarter precipitation (29.4%), coldest quarter mean temperature (18.2%), annual mean temperature (17.2%), and annual precipitation (12%). Under future climate scenarios, the suitable habitats exhibited an overall contraction and poleward shift, with the most significant decline in highly suitable areas observed under SSP370-2050s (−52.1%). The centroid of suitable habitats continuously migrated northwestward from Gombe State, Nigeria, with the maximum displacement reaching 1077.6 km by SSP585-2090s. This study reveals a latitude gradient redistribution pattern of F. circinatum driven by climate warming, providing a scientific basis for transboundary biosecurity and early warning systems. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

19 pages, 2987 KB  
Article
Predicting Range Shifts in the Distribution of Arctic/Boreal Plant Species Under Climate Change Scenarios
by Yan Zhang, Shaomei Li, Yuanbo Su, Bingyu Yang and Xiaojun Kou
Diversity 2025, 17(8), 558; https://doi.org/10.3390/d17080558 - 7 Aug 2025
Viewed by 477
Abstract
Climate warming is anticipated to significantly alter the distribution and composition of plant species in the Arctic, thereby cascading through food webs and affecting both associated fauna and entire ecosystems. To elucidate the trend in plant distribution in response to climate change, we [...] Read more.
Climate warming is anticipated to significantly alter the distribution and composition of plant species in the Arctic, thereby cascading through food webs and affecting both associated fauna and entire ecosystems. To elucidate the trend in plant distribution in response to climate change, we employed the MaxEnt model to project the future ranges of 25 representative Arctic and Circumpolar plant species (including grasses and shrubs). Species distribution data, in conjunction with bioclimatic variables derived from climate projections of three selected General Circulation Models (GCMs), ESM2, IPSL, and MPIE, were utilized to fit the MaxEnt models. Subsequently, we predicted the potential distributions of these species under three Shared Socioeconomic Pathways (SSPs)—SSP126, SSP245, and SSP585—across a timeline spanning 2010, 2050, 2100, 2200, 2250, and 2300 AD. Range shift indices were applied to quantify changes in plant distribution and range sizes. Our results show that the ranges of nearly all species are projected to diminish progressively over time, with a more pronounced rate of reduction under higher emission scenarios. The species are generally expected to shift northward, with the distances of these shifts positively correlated with both the time intervals from the current state and the intensity of thermal forcing associated with the SSPs. Arctic species (A_Spps) are anticipated to face higher extinction risks compared to Boreal–Arctic species (B_Spps). Additional indices, such as range gain, loss, and overlap, consistently corroborate these patterns. Notably, the peak range shift speeds differ markedly between SSP245 and SSP585, with the latter extending beyond 2100 AD. In conclusion, under all SSPs, A_Spps are generally expected to experience more significant range shifts than B_Spps. In the SSP585 scenario all species are projected to face substantial range reductions, with Arctic species being more severely affected and consequently facing the highest extinction risks. These findings provide valuable insights for developing conservation recommendations for polar plant species and have significant ecological and socioeconomic implications. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

14 pages, 9090 KB  
Article
Effects of Climate Change on the Global Distribution of Trachypteris picta (Coleoptera: Buprestidae)
by Huafeng Liu, Shuangyi Wang, Yunchun Li, Shuangmei Ding, Aimin Shi, Ding Yang and Zhonghua Wei
Insects 2025, 16(8), 802; https://doi.org/10.3390/insects16080802 - 2 Aug 2025
Viewed by 499
Abstract
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats [...] Read more.
Trachypteris picta (Pallas, 1773) is a significant pest that can cause serious damage to poplars and willows. To assess the impact of climate change on the suitable habitats of T. picta, this study conducted a comparative analysis of its global suitable habitats using climatic factors, global land use type, and global vegetation from different periods, in combination with the maximum entropy (MaxEnt) model. The results indicate that the annual mean temperature (Bio01), mean temperature of the coldest quarter (Bio11), precipitation of the coldest quarter (Bio19), and isothermality (Bio03) are the four most important climate variables determining the distribution of T. picta. Under the current climate conditions, the highly suitable areas are primarily located in southern Europe, covering an area of 2.22 × 106 km2. Under future climate scenarios, the suitable habitat for T. picta is expected to expand and shift towards higher latitudes. In the 2050s, the SSP5-8.5 scenario has the largest suitable area compared to other scenarios, while the SSP2-4.5 scenario has the largest suitable area in the 2090s. In addition, the centroids of the total suitable areas are expected to shift toward higher latitudes under future climate conditions. The results of this study provide valuable data for the monitoring, control, and management of this pest. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

Back to TopTop