Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,642)

Search Parameters:
Keywords = MiRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2558 KB  
Case Report
Clinical and Molecular Presentation of a Patient with Paternal Uniparental Isodisomy of Chromosome 16
by Elizaveta Panchenko, Natalia Semenova, Olga Sereda, Daria Guseva, Zhanna Markova, Nadezhda Shilova, Olga Simonova, Anton Smirnov, Dmitry Pustoshilov, Arina Khalilova, Vasilisa Udalova, Ilya Kanivets, Dmitry Zaletaev, Vladimir Strelnikov and Sergey Kutsev
Int. J. Mol. Sci. 2025, 26(17), 8521; https://doi.org/10.3390/ijms26178521 - 2 Sep 2025
Abstract
Uniparental disomies (UPDs) are among the causes of imprinting disorders. Specific phenotypes of most causative UPDs have been described. Here, we describe the case of a 2-year-old female patient who presented a syndromic phenotype. Chromosomal microarray analysis revealed UPD of the whole chromosome [...] Read more.
Uniparental disomies (UPDs) are among the causes of imprinting disorders. Specific phenotypes of most causative UPDs have been described. Here, we describe the case of a 2-year-old female patient who presented a syndromic phenotype. Chromosomal microarray analysis revealed UPD of the whole chromosome 16. Microsatellite analysis demonstrated paternal origin of the UPD and its isodisomic pattern (UPiD (16) pat). Mosaic trisomy 16 was not detected using the FISH method. Whole-exome sequencing revealed no pathogenetic genetic variants sufficient to explain the syndromic phenotype nor unmasked pathogenic recessive genetic variants on chromosome 16. Whole-genome trio DNA sequencing revealed no additional candidate pathogenic genetic variants to those detected by whole-exome sequencing, including miRNAs and lncRNAs. Imprinting disorders at 6q24.2, 7p12.2, 7q32.2, 11p15.5, 14q32.2, 15q11.2, and 20q13.32, as well as multilocus imprinting disturbances (MLIDs), were excluded by Methylation-Specific Multiplex Ligation-Dependent Probe Amplification (MS-MLPA). At the same time, we detected abnormal hypermethylation of the ZNF597 transcription start site differentially methylated region (ZNF597:TSS-DMR), accompanied by hypomethylation of the neighbouring ZNF597:3′ DMR. Both DMRs were normally imprinted, and the DNA alterations in our patient with UPD (16) pat are opposite to those previously described for maternal uniparental disomy (UPD (16) mat). To date, several cases of UPD (16) pat have been reported. Our case report describes the syndromic phenotype of a patient with paternal uniparental disomy of chromosome 16 in contrast to the previously described patients with a normal phenotype or with abnormal phenotypes caused by acquired homozygosity of pathogenic variants at autosomal recessive genes located on this chromosome. Reporting such observations will help systematize data on the phenotypes of imprinting disorders on chromosome 16. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3290 KB  
Article
MiRNA Profiling in Premalignant Lesions and Early Glottic Cancer
by Anna Rzepakowska, Agnieszka Zajkowska, Marta Mękarska, Julia Śladowska, Aleksandra Borowy and Maciej Małecki
Cancers 2025, 17(17), 2883; https://doi.org/10.3390/cancers17172883 - 2 Sep 2025
Abstract
Background: miRNA profiling across different stages of laryngeal carcinogenesis explores dysregulated molecules relevant to engaged gene pathways and identifies markers for differential diagnosis and prognosis in early mucosal lesions of the larynx. Methods: Tissue samples were prospectively collected from 28 patients [...] Read more.
Background: miRNA profiling across different stages of laryngeal carcinogenesis explores dysregulated molecules relevant to engaged gene pathways and identifies markers for differential diagnosis and prognosis in early mucosal lesions of the larynx. Methods: Tissue samples were prospectively collected from 28 patients with hypertrophic vocal fold lesions: no dysplasia (ND), low-grade dysplasia (LGD), high-grade dysplasia (HGD), and invasive cancer (IC), as well as from 3 patients with vocal fold polyps. miRNA profiling of the samples was performed using microfluidic cards—TaqMan® Human MicroRNA Array A. A comparative analysis of ΔCt (dCt) miRNA expression levels was conducted between groups. Results: hsa-miR-216a-5p and hsa-miR-488-3p were selectively expressed in control tissues, while hsa-miR-105-5p and hsa-miR-516a-5p were exclusively detected in HGD and IC samples. Significant differences in miRNA expression were identified across 4, 16, 17, and 38 miRNA types between control and ND, LGD, HGD, and IC groups, respectively. hsa-miR-185-5p and hsa-miR-21-5p showed significantly altered expression between ND and LGD, HGD, and IC (p = 0.026, 0.001, 0.002; and p = 0.021, 0.002, 0.001, respectively). Twenty-five miRNAs were differentially expressed between LGD and both HGD and IC, while eleven miRNAs distinguished HGD from IC. Notably, hsa-miR-503-5p expression decreased progressively with increasing histological severity. Conclusions: Distinct miRNA expression profiles are associated with progressive stages of laryngeal mucosal lesions. Specific miRNAs may serve as valuable biomarkers for early detection, risk stratification, and prognosis in vocal fold carcinogenesis. Full article
Show Figures

Figure 1

14 pages, 266 KB  
Review
Inflammation and Perioperative Cardiovascular Events
by Peter Poredos and Radko Komadina
Cells 2025, 14(17), 1362; https://doi.org/10.3390/cells14171362 - 1 Sep 2025
Abstract
Surgery and anesthesia induce a stress response that provokes increased sympathetic stimulation, secretion of cortisol, hypercoagulability, and systemic inflammatory response. All these homeostatic deteriorations, especially systemic inflammation, represent a risk for organ damage. Perioperative cardiac complications have an increasing impact on morbidity and [...] Read more.
Surgery and anesthesia induce a stress response that provokes increased sympathetic stimulation, secretion of cortisol, hypercoagulability, and systemic inflammatory response. All these homeostatic deteriorations, especially systemic inflammation, represent a risk for organ damage. Perioperative cardiac complications have an increasing impact on morbidity and mortality, not only in cardiovascular but also in non-cardiac surgery. Surgical procedures represent a potential trigger for systemic inflammation that causes secretion of proinflammatory cytokines, activation of neutrophils, and tissue damage. Also, increased levels of preoperative inflammatory markers predict perioperative cardiovascular events. Systemic inflammatory biomarkers increase during the first days after surgical procedures and decline within a few weeks. Besides contemporary traditional biomarkers (CRP, BNP), newer biomarkers, such as galectin-3, TNF-α, and various MiRNAs, can predict inflammatory response and related cardiac injury. Determination of inflammatory markers in the perioperative period could help identify patients at risk for cardiovascular events. The reduction in perioperative inflammatory response may improve surgical outcomes. Prevention and treatment of systemic inflammation can be achieved by optimization of surgical procedures, anesthetic regimen, and pharmacological agents, especially interleukin inhibitors. Determination of inflammatory biomarkers, along with prevention and treatment of inflammation, can improve perioperative cardiac risk reduction strategies. Full article
(This article belongs to the Special Issue New Research on Immunity and Inflammation in Cardiovascular Disease)
17 pages, 3740 KB  
Article
Diversity Characteristics and Composition of Gut Microbiota in Antheraea pernyi (Lepidoptera: Saturniidae) Larvae Across Different Instars
by Peng Hou, Li Liu, Xin Ma, Ying Men, Ding Yang, Jianfeng Wang and Chuntian Zhang
Insects 2025, 16(9), 909; https://doi.org/10.3390/insects16090909 - 1 Sep 2025
Abstract
Antheraea pernyi (Lepidoptera: Saturniidae) is an economically important silk-producing insect, whose gut microbiota play a crucial role in growth, development, and nutrient metabolism. This study focused on the entire larval developmental stages of A. pernyi. Using the Illumina MiSeq high-throughput sequencing platform, we [...] Read more.
Antheraea pernyi (Lepidoptera: Saturniidae) is an economically important silk-producing insect, whose gut microbiota play a crucial role in growth, development, and nutrient metabolism. This study focused on the entire larval developmental stages of A. pernyi. Using the Illumina MiSeq high-throughput sequencing platform, we performed 16S rRNA gene amplicon sequencing on the gut microbiota of laboratory-reared A. pernyi larvae, analyzing in detail the composition and diversity characteristics of the gut microbial communities across all five instars (1st to 5th instar). Additionally, functional predictions were conducted to explore the potential roles of these microbiota during larvae development. The study revealed that the core gut microbiota of A. pernyi larvae primarily consisted of Actinomycetota (39.78%), Cyanobacteriota (32.46%), Bacillota (18.08%), and Pseudomonadota (9.02%). Among these, Actinomycetota dominated in the 1st to 4th-instar larvae, while Cyanobacteriota became the predominant phylum in the 5th instar. Linear discriminant analysis effect size identified statistically significant biomarkers across different instar larvae of A. pernyi. Alpha diversity analysis showed that gut microbiota diversity initially increased and then decreased with larval development, peaking in the 3rd instar, and reaching its lowest level in the 5th instar. Principal coordinate analysis (PCoA) of beta diversity indicated that the gut microbiota structures of the 1st to 4th instars were similar but significantly differed from that of the 5th instar. Functional prediction analysis based on the KEGG database revealed that Carbohydrate metabolism and Amino acid metabolism-related genes were significantly lower in the 5th instar compared to other instars, while Energy metabolism and Cofactor and vitamin metabolism-related genes were significantly higher. This study offers valuable insights for the development of gut microbial resources in Lepidoptera insects. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

13 pages, 1898 KB  
Article
Radiation Modifies Let-7 miRNA Binding to AGO2 Independent of Changes in Transcription to Influence Tumor Cell Radiosensitivity
by Taqveema Ali, Charlotte Degorre and Philip J. Tofilon
Int. J. Mol. Sci. 2025, 26(17), 8483; https://doi.org/10.3390/ijms26178483 - 1 Sep 2025
Abstract
Alterations in gene expression induced by ionizing radiation (IR) were commonly explained by transcriptional activation. However, the weak correlation between mRNA and protein levels following IR indicates the significant role for post-transcriptional regulation. microRNAs (miRNAs) bound to AGO2 play a significant role in [...] Read more.
Alterations in gene expression induced by ionizing radiation (IR) were commonly explained by transcriptional activation. However, the weak correlation between mRNA and protein levels following IR indicates the significant role for post-transcriptional regulation. microRNAs (miRNAs) bound to AGO2 play a significant role in post-transcriptional regulation; however, their role in radiation response is not clear. miRNA sequencing was performed to analyze the miRNAome of glioma cells. The effect of IR on Let-7 miRNAs and their association with AGO2 was examined using RT-qPCR and RNA immunoprecipitation (RIP) assays. Clonogenic assays were performed to measure radiosensitivity following Let-7a overexpression or knockdown. DNA damage (γH2AX foci) and cell cycle distribution were analyzed by immunofluorescence and flow cytometry. Let-7 miRNA regulatory networks were identified through target prediction and pathway enrichment analysis. AGO2-Let-7 binding decreased post IR, indicating impaired RISC loading. Let-7 overexpression increased radiosensitivity, DNA damage and G2/M cell cycle arrest in glioma and other cells (HeLa and MDA-MB-231). Let-7 miRNAs mainly targeted cell cycle and DNA damage response (DDR) pathways. Our study showed radiation impairs AGO2-miRNA binding, while restoring Let-7-AGO2 interaction enhances radiosensitivity by modulating DNA repair and cell cycle checkpoint activation. Targeting AGO2-miRNA dynamics represents a promising approach to improve radiotherapy outcomes. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 362 KB  
Review
Immune–Epigenetic Effects of Environmental Pollutants: Mechanisms, Biomarkers, and Transgenerational Impact
by Sandeep R Reddy, Manjunatha Bangeppagari and Sang Joon Lee
Curr. Issues Mol. Biol. 2025, 47(9), 703; https://doi.org/10.3390/cimb47090703 - 1 Sep 2025
Abstract
Environmental pollutants such as heavy metals, endocrine-disrupting chemicals, microplastics, and airborne particulates are increasingly recognized for their potential to influence immune function through epigenetic mechanisms. This review examines conserved pollutant-associated pathways at interfaces of immunity and epigenetics, with particular attention to Toll-like receptor–NF-κB [...] Read more.
Environmental pollutants such as heavy metals, endocrine-disrupting chemicals, microplastics, and airborne particulates are increasingly recognized for their potential to influence immune function through epigenetic mechanisms. This review examines conserved pollutant-associated pathways at interfaces of immunity and epigenetics, with particular attention to Toll-like receptor–NF-κB signalling, NLRP3 inflammasome activity, and reactive oxygen species-driven cascades. Evidence from cellular, animal, and epidemiological studies indicates that these pathways may converge on chromatin regulators such as DNA methyltransferases, histone deacetylases, and EZH2, leading to DNA methylation shifts, histone modifications, and altered chromatin accessibility. Pollutants are also reported to modulate non-coding RNAs, including miR-21, miR-155, and several lncRNAs, which can act as intermediaries between cytokine signalling and epigenetic remodelling. Findings from transgenerational models suggest that pollutant-linked immune–epigenetic alterations might persist across generations, raising the possibility of long-term consequences for immune and neurodevelopmental health. Comparative analyses further indicate convergence across diverse pollutant classes, pointing to a shared mechanistic axis of immune–epigenetic disruption. Overall, these insights suggest that pollutant-induced immune–epigenetic signatures may contribute to inflammation, altered immune responses, and heritable disease risks, and their clarification could inform biomarker discovery and future precision approaches in immunotoxicology. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

21 pages, 2662 KB  
Article
CX3CR1–TLR4 Axis as a Shared Neuroimmune Target in COVID-19 and Epilepsy: Integrative Transcriptomics and Gabapentin Repositioning
by Nannan Pan, Penghui Cao, Ben Chen, Li Chen, Xuezhen Liao and Yuping Ning
Biomedicines 2025, 13(9), 2133; https://doi.org/10.3390/biomedicines13092133 - 31 Aug 2025
Abstract
Introduction: Neuroinflammation is a common pathological hallmark of Coronavirus Disease 2019 (COVID-19) and epilepsy; however, their shared immunogenomic mechanisms remain poorly defined. This study explores shared immune-inflammatory transcriptomic signatures and identifies potential repositioning therapeutics. Methods: We integrated single-cell RNA-seq data from peripheral blood [...] Read more.
Introduction: Neuroinflammation is a common pathological hallmark of Coronavirus Disease 2019 (COVID-19) and epilepsy; however, their shared immunogenomic mechanisms remain poorly defined. This study explores shared immune-inflammatory transcriptomic signatures and identifies potential repositioning therapeutics. Methods: We integrated single-cell RNA-seq data from peripheral blood mononuclear cells (PBMCs) of COVID-19 patients and healthy donors (GSE149689), and bulk RNA-seq data from hippocampal tissue of patients with Temporal Lobe Epilepsy with Hippocampal Sclerosis (TLE-HS) and healthy controls (GSE256068). Common Differentially Expressed Genes (DEGs) were identified and subjected to GO/KEGG enrichment, a PPI network, hub gene detection (cytoHubba), and transcriptional regulation analysis (ENCODE-based TF/miRNA networks). Drug repositioning was performed using the LINCS L1000 database. Results: We identified 25 DEGs shared across datasets, including 22 upregulated genes enriched in cytokine–cytokine receptor interaction, NF-κB, and Toll-like receptor pathways. PPI analysis revealed a CX3CR1–TLR4-centered immune module. Gabapentin emerged as a promising repositioning candidate with potential to downregulate CX3CR1, TLR4, and selectin P ligand (SELPLG). Receiver Operating Characteristic (ROC) analysis confirmed the diagnostic value of these targets (AUC > 0.90 in epilepsy). A mechanistic model was proposed to illustrate Gabapentin’s dual action on microglial polarization and cytokine suppression. Conclusions: Our results reveal a shared CX3CR1–TLR4–NF-κB inflammatory axis in COVID-19 and epilepsy, supporting Gabapentin as a potential dual-action immunomodulator. These findings reveal a previously underappreciated immunomodulatory role for Gabapentin, providing mechanistic rationale for its repositioning in neuroinflammatory conditions beyond seizure control. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

16 pages, 8551 KB  
Article
Pharmacoepigenomic Impact of Antihypertensive Drugs on miRNome and Proteome and Its Potential Influence on Health and Side Effects
by Samyukta Bhass and Moinak Banerjee
Cells 2025, 14(17), 1359; https://doi.org/10.3390/cells14171359 - 31 Aug 2025
Abstract
Antihypertensive drugs are widely used for the treatment of hypertension, and the choice of drug and dosage is based on trial and error. The variability in drug response and adverse reactions leads to the poor adherence to treatment. Epigenetic modulation is one of [...] Read more.
Antihypertensive drugs are widely used for the treatment of hypertension, and the choice of drug and dosage is based on trial and error. The variability in drug response and adverse reactions leads to the poor adherence to treatment. Epigenetic modulation is one of the major mechanisms that may contribute to the variability in drug responses, and microRNAs (miRNAs) can serve as crucial epigenetic regulators and have also been reported to be associated with hypertension pathogenesis. The objective of this study is to investigate the regulatory effects of commonly used antihypertensive drugs on the endothelial miRNome in human aortic endothelial cells. We aim to integrate miRNA expression data with proteomic analyses to elucidate drug-induced molecular mechanisms relevant to hypertension treatment. Whole genome small RNA sequencing was performed, followed by whole proteome analysis using LC-MS/MS comparing between control and treated samples. The treatments induced significant differential regulation of several miRNAs and proteins; among these, a few reflected reverse relationships with miRNA regulation and protein expression. Certain miRNAs and their corresponding target proteins seem to distinguish between good therapeutic outcomes and potential side effects. This study unravels the potential role of drug-induced miRNAs in inducing post-transcriptional modifications to cause the differential expression of certain proteins that may induce not only therapeutic effects or drug side effects but can also indicate the potential for drug-repurposing in other diseases. Full article
Show Figures

Graphical abstract

43 pages, 3469 KB  
Review
Navigating the Landscape of Exosomal microRNAs: Charting Their Pivotal Role as Biomarkers in Hematological Malignancies
by Manlio Fazio, Fabio Stagno, Giuseppa Penna, Giuseppe Mirabile and Alessandro Allegra
Non-Coding RNA 2025, 11(5), 64; https://doi.org/10.3390/ncrna11050064 - 31 Aug 2025
Viewed by 45
Abstract
Under physiological and pathological conditions, all cells release extracellular vesicles named exosomes, which act as transporters of lipidic, protein, and genetic material from parent to recipient cells. Neoplastic cells can secrete higher number of exosomes to exert pro-tumoral effects such as microenvironmental changes, [...] Read more.
Under physiological and pathological conditions, all cells release extracellular vesicles named exosomes, which act as transporters of lipidic, protein, and genetic material from parent to recipient cells. Neoplastic cells can secrete higher number of exosomes to exert pro-tumoral effects such as microenvironmental changes, disease progression, immunosuppression and drug-resistance. This holds true for both organ-specific cancers and hematologic malignancies. One of the most important components of exosomal cargo are microRNAs which can mediate all the abovementioned effects. More specifically, microRNAs are small non-coding RNAs, routinely detected through quantitative real-time PCR, which act as translational suppressors by regulating protein-coding genes. Considering their high stability in all body fluids and viability in circulation, research is currently focusing on this type of RNAs for the so called “liquid biopsy”, a non-invasive tool for disease diagnosis and longitudinal monitoring. However, several issues remain to be solved including the lack of standardized protocols for exosome isolation and miRNA detection. Starting with this premise, our review aims to provide a wide description of the known microRNA panels employed in the prominent hematological malignancies, which will hopefully redefine the approach to these very challenging diseases in the near future. Full article
Show Figures

Figure 1

17 pages, 13754 KB  
Article
Identifying Key Genes of Proanthocyanidin Intervention in Fluoride-Induced Liver Injury: Integrated Molecular Docking and Experimental Validation
by Zhiyu Wu, Menghuan Xiao, Zelin Gong, Benjie Wang, Wenxin Zhao, Yiyuan Guo and Lu Yang
Genes 2025, 16(9), 1037; https://doi.org/10.3390/genes16091037 - 31 Aug 2025
Viewed by 72
Abstract
Objectives: The objectives of this study are to investigate the therapeutic targets and mechanisms of proanthocyanidins in alleviating fluoride-induced liver injury through network pharmacology and animal experimental validation and to explore the medicinal value of grape seed proanthocyanidins. Methods: Potential targets [...] Read more.
Objectives: The objectives of this study are to investigate the therapeutic targets and mechanisms of proanthocyanidins in alleviating fluoride-induced liver injury through network pharmacology and animal experimental validation and to explore the medicinal value of grape seed proanthocyanidins. Methods: Potential targets of proanthocyanidins were predicted using databases such as PubChem, SwissTargetPrediction, and GeneCards, and disease-related targets of fluoride-induced liver injury were retrieved to identify common targets between proanthocyanidins and fluoride-induced liver injury. The STRING database was utilized to construct a protein–protein interaction network, and key targets were analyzed for network topology using Cytoscape software. GO and KEGG enrichment analyses were performed on core target genes to explore the potential molecular mechanisms by which proanthocyanidins alleviate fluoride-induced liver injury. The Genes-miRNA interaction network was generated using Networkanalyst, and the molecular docking results between active components and key targets were validated using the CB-Dock2 visualization tool. In the academic context, a rat model of chronic fluoride poisoning was successfully established by means of intragastric administration of sodium fluoride. The protein expression levels of p-mTOR, p-p70s6, p62, LC3-II, and PARP1 in rat liver tissues were detected via Western blot analysis. Results: Network pharmacological analysis successfully identified 96 key genes, through which proanthocyanidins mitigate fluoride-induced liver injury. KEGG enrichment analysis predicted that proanthocyanidins mainly exert their therapeutic effects through the mTOR signaling pathway. The molecular docking results further demonstrated strong binding affinities between proanthocyanidins and key targets, including mTOR and PARP1. The in vivo experimental results indicate that, compared with the control group, the protein expression levels of p-mTOR, p-p70s6k, and p62 in the liver tissues of rats exposed to sodium fluoride significantly increase. Conversely, the protein expression levels of LC3-II and PARP1 significantly decrease (p < 0.05). The outcome of liver intervention with proanthocyanidins is exactly the opposite. Conclusions: Proanthocyanidins can effectively alleviate fluoride-induced liver injury, potentially by regulating the mTOR signaling pathway, autophagy, and apoptosis mechanisms. This study provides valuable insights into the protective effects of proanthocyanidins against fluoride-induced hepatic damage and offers a theoretical basis for further research in this field. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

17 pages, 3843 KB  
Article
Comprehensive Characterization of the FATs Gene Family in Maize: Phylogeny, Expression Patterns, and Regulatory Networks
by Yunlong Li, Shuai Hou, Yan Sun, Shujun Li, Minghao Sun, Baitao Guo, Luyao Wang, Quan Cai, Xin Li, Sinan Li and Jianguo Zhang
Genes 2025, 16(9), 1035; https://doi.org/10.3390/genes16091035 - 30 Aug 2025
Viewed by 80
Abstract
Background: Fatty acyl–ACP thioesterase (FAT) genes regulate fatty acid composition and content, yet the FAT family in maize has not been systematically characterized. Methods: Ten ZmFAT genes were identified from the maize genome and analyzed for gene structure, protein properties, phylogeny, collinearity, cis-acting [...] Read more.
Background: Fatty acyl–ACP thioesterase (FAT) genes regulate fatty acid composition and content, yet the FAT family in maize has not been systematically characterized. Methods: Ten ZmFAT genes were identified from the maize genome and analyzed for gene structure, protein properties, phylogeny, collinearity, cis-acting elements, and predicted interactions. Transcriptome and qRT–PCR data were used to assess expression patterns during seed development. Results: The ten ZmFAT genes were grouped into two subfamilies (three ZmFATA and seven ZmFATB genes). Two pairs of collinear genes were detected within maize and one pair between maize and rice. Promoter analysis revealed light- and development-responsive elements. Two genes were functionally annotated in fatty acid biosynthesis, while five proteins exhibited interactions and 14 miRNAs were predicted to regulate ZmFAT genes. Expression analysis showed that ZmFATA1/2 and ZmFATB4/6/7 maintained high expression in both upper and lower seed parts, and qRT–PCR confirmed their gradual upregulation during seed development. Conclusion: This study provides the first comprehensive characterization of the maize ZmFAT family, offering insights into fatty acid metabolism and valuable genetic resources for improving maize oil composition. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

41 pages, 2467 KB  
Review
Crosstalk Between Skeletal Muscle and Proximal Connective Tissues in Lipid Dysregulation in Obesity and Type 2 Diabetes
by Nataša Pollak, Efua Gyakye Janežič, Žiga Šink and Chiedozie Kenneth Ugwoke
Metabolites 2025, 15(9), 581; https://doi.org/10.3390/metabo15090581 - 30 Aug 2025
Viewed by 258
Abstract
Background/Objectives: Obesity and type 2 diabetes mellitus (T2DM) profoundly disrupt lipid metabolism within local microenvironments of skeletal muscle and its associated connective tissues, including adipose tissue, bone, and fascia. However, the role of local communication between skeletal muscle and its proximal connective tissues [...] Read more.
Background/Objectives: Obesity and type 2 diabetes mellitus (T2DM) profoundly disrupt lipid metabolism within local microenvironments of skeletal muscle and its associated connective tissues, including adipose tissue, bone, and fascia. However, the role of local communication between skeletal muscle and its proximal connective tissues in propagating metabolic dysfunction is incompletely understood. This narrative review synthesizes current evidence on these local metabolic interactions, highlighting novel insights and existing gaps. Methods: We conducted a comprehensive literature analysis of primary research published in the last decade, sourced from PubMed, Web of Science, and ScienceDirect. Studies were selected for relevance to skeletal muscle, adipose tissue, fascia, and bone lipid metabolism in the context of obesity and T2DM, with emphasis on molecular, cellular, and paracrine mechanisms of local crosstalk. Findings were organized into thematic sections addressing physiological regulation, pathological remodeling, and inter-organ signaling pathways. Results: Our synthesis reveals that local lipid dysregulation in obesity and T2DM involves altered fatty acid transporter dynamics, mitochondrial overload, fibro-adipogenic remodeling, and compartment-specific adipose tissue dysfunction. Crosstalk via myokines, adipokines, osteokines, bioactive lipids, and exosomal miRNAs integrates metabolic responses across these tissues, amplifying insulin resistance and lipotoxic stress. Emerging evidence highlights the underappreciated roles of fascia and marrow adipocytes in regional lipid handling. Conclusions: Collectively, these insights underscore the pivotal role of inter-tissue crosstalk among skeletal muscle, adipose tissue, bone, and fascia in orchestrating lipid-induced insulin resistance, and highlight the need for integrative strategies that target this multicompartmental network to mitigate metabolic dysfunction in obesity and T2DM. Full article
(This article belongs to the Special Issue Lipid Metabolism Disorders in Obesity)
Show Figures

Graphical abstract

16 pages, 992 KB  
Article
Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study
by Claudio Villota Arcos, Emanuel Jeldes Jerez, Jorge Carrasco Contreras, Mauricio Bittner Ortega, Susana Contreras Duarte and Ángel Roco Videla
Medicina 2025, 61(9), 1560; https://doi.org/10.3390/medicina61091560 - 29 Aug 2025
Viewed by 206
Abstract
Background and Objectives: Human breast milk contains essential nutrients for infant growth, as well as bioactive molecules such as exosomes and miRNAs, which play a key role in the maturation of the infant’s immune system. Breast milk from mothers of preterm and [...] Read more.
Background and Objectives: Human breast milk contains essential nutrients for infant growth, as well as bioactive molecules such as exosomes and miRNAs, which play a key role in the maturation of the infant’s immune system. Breast milk from mothers of preterm and term infants shows significant differences in its nutrient contents and bioactive components. This preliminary study aimed to compare the expressions of 13 immunomodulatory microRNAs present in breast milk from the mothers of preterm and term infants. Materials and Methods: Breast milk samples were obtained from 5 breastfeeding mothers of term infants and 5 breastfeeding mothers of preterm infants. Every mother provided morning, noon, and evening milk samples. The total protein, fat, and lactose concentrations were measured. In addition, miRNAs were extracted from the exosomal fraction of each sample. The expression levels of the 13 miRNAs were compared and analyzed at the three time points each day. Results: The preterm infants’ milk had higher average fat and lactose levels. There were no differences in the total protein concentrations. The expressions of miRNAs in the preterm infants’ milk showed significantly higher variations in miR-17-5p, miR-24, miR-29b, miR-30a-5p, and miR-146a. The other miRNAs did not show variations. Interestingly, the highest miRNA expression was only observed in breast milk from the nighttime. The morning and midday samples showed distinct expression patterns. Conclusions: We identified the immunomodulatory microRNA components and their changes in expression levels at different times of the day, as well as those most strongly expressed in breast milk consumed by preterm infants. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Figure 1

13 pages, 2361 KB  
Article
Grazing-Induced Changes in circRNAs, miRNAs and mRNAs Expression in Tibetan Sheep Biceps Femoris
by Xiong Ma, Shaobin Li, Zhanzhao Chen, Zhaohua He, Jianming Ren, Shiyu Tao, Lan Zhang and Pengfei Zhao
Biology 2025, 14(9), 1143; https://doi.org/10.3390/biology14091143 - 29 Aug 2025
Viewed by 118
Abstract
The present study is aimed at investigating the effects of grazing on the meat quality of Tibetan sheep, as well as the associated molecular mechanisms. A total of ten Tibetan sheep were utilized and equally allocated into two groups: grazing and pen-feeding. To [...] Read more.
The present study is aimed at investigating the effects of grazing on the meat quality of Tibetan sheep, as well as the associated molecular mechanisms. A total of ten Tibetan sheep were utilized and equally allocated into two groups: grazing and pen-feeding. To assess the intramuscular fat (IMF) content, Soxhlet extraction was performed on the biceps femoris muscle. Additionally, transcriptome sequencing was carried out to evaluate the expression profiles of RNAs, facilitating the construction of a ceRNA regulatory network. The results demonstrated that the IMF content in the grazing group was significantly higher compared to the pen-feeding group, implying that grazing might foster the formation of Type I muscle fibers, thereby enhancing meat quality. Moreover, the expression levels of circRNAs, such as novel_circ_001331, novel_circ_012918, novel_circ_029843, and novel_circ_059962, were markedly up-regulated in the grazing group. These circRNAs may alleviate the inhibitory effects on genes like COL8A1, MYLK3, and NOX4 by interacting with miR-381-y, miR-7144-x, miR-16-z, miR-8159-x, novel-m0040-3p, novel-m0092-5p, and oar-miR-329a-3p. These circRNAs and miRNAs are predominantly involved in the MAPK, Wnt, and VEGF signaling pathways and could be implicated in biological processes such as muscle fiber type switching and energy metabolism. This research offers valuable insights for improving the meat quality of Tibetan sheep and provides a foundation for exploring the role of circRNA and miRNA in the regulation of meat quality under grazing conditions. Full article
(This article belongs to the Special Issue Bioinformatics in RNA Modifications and Non-Coding RNAs)
Show Figures

Figure 1

25 pages, 5121 KB  
Article
Biomarker Signatures in Time-Course Progression of Neuropathic Pain at Spinal Cord Level Based on Bioinformatics and Machine Learning Analysis
by Kexin Li, Ruoxi Wang, He Zhu, Bei Wen, Li Xu and Yuguang Huang
Biomolecules 2025, 15(9), 1254; https://doi.org/10.3390/biom15091254 - 29 Aug 2025
Viewed by 201
Abstract
Neuropathic pain (NP) is a debilitating chronic pain condition with complex molecular mechanisms and inadequate therapeutic solutions. This study aims to identify temporal transcriptomic changes in NP using multiple bioinformatics and machine learning algorithms. A total of 10 mouse samples (5 per group) [...] Read more.
Neuropathic pain (NP) is a debilitating chronic pain condition with complex molecular mechanisms and inadequate therapeutic solutions. This study aims to identify temporal transcriptomic changes in NP using multiple bioinformatics and machine learning algorithms. A total of 10 mouse samples (5 per group) were harvested at each time point (day three, day seven, and day fourteen), following spared nerve injury and a sham operation. Differentially expressed gene (DEG) analysis and an intersection among the three time-point groups revealed 54 common DEGs. The GO and KEGG analyses mainly showed enrichment in terms of immune response, cell migration, and signal transduction functions. In addition, the interaction of the LASSO, RF, and SVM-RFE machine learning models on 54 DEGs resulted in Ngfr and Ankrd1. The cyan module in WGCNA was selected for a time-dependent upward trend in gene expression. Then, 172 genes with time-series signatures were integrated with 54 DEGs, resulting in 11 shared DEGs. Quantitative RT-PCR validated the temporal expressions of the above genes, most of which have not been reported yet. Additionally, immune infiltration analysis revealed significant positive correlations between monocyte abundance and the identified genes. The TF-mRNA-miRNA network and drug-target network revealed potential therapeutic drugs and posttranscriptional regulatory mechanisms. In conclusion, this study explores genes with time-series signatures as biomarkers in the development and maintenance of NP, potentially revealing novel targets for analgesics. Full article
(This article belongs to the Section Bioinformatics and Systems Biology)
Show Figures

Figure 1

Back to TopTop