Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = Microcystis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2020 KB  
Article
Environmental Drivers of Aquatic Community Structures in a Shallow Eutrophic Lake of the Taihu Lake Basin
by Zishu Ye, Qinghuan Zhang, Chunhua Li, Chun Ye and Yang Wang
Water 2025, 17(16), 2372; https://doi.org/10.3390/w17162372 - 10 Aug 2025
Viewed by 376
Abstract
Gehu Lake in the lower reaches of the Taihu Lake Basin has experienced water quality degradation due to increasing human activities, pollutant discharge, and non-point source pollution, which requires ecosystem restoration. Currently, the community structure of aquatic organisms and their influencing environmental factors [...] Read more.
Gehu Lake in the lower reaches of the Taihu Lake Basin has experienced water quality degradation due to increasing human activities, pollutant discharge, and non-point source pollution, which requires ecosystem restoration. Currently, the community structure of aquatic organisms and their influencing environmental factors remain poorly understood. Thus, in this study, we conducted comprehensive fieldwork in June 2024 and analyzed the community structures of plankton (i.e., phytoplankton and zooplankton) and macroinvertebrates, and their influencing environmental factors in Gehu Lake and the inflowing river. The trophic level index (TLI) and biodiversity indices (Shannon–Wiener, Pielou, and Margalef) were utilized to assess water quality status. Pearson correlation analysis and redundancy analysis (RDA) were applied to identify key factors influencing plankton and macroinvertebrate community structures. The dominant phytoplankton species included Merismopedia tranquilla, Microcystis aeruginosa, Aphanizomenon flos-aquae, Aphanocapsa elachista, and Aulacoseira granulata. The dominant zooplankton species were mainly Brachionus diversicornis, Brachionus calyciflorus, and Asplanchna priodonta. The dominant macroinvertebrate species were Microchironomus tabarui and Chironomus flaviplumus. The findings suggest that Gehu Lake exhibited moderate pollution levels, while the diversity indices were significantly correlated with environmental factors. The Shannon–Wiener index of zooplankton displayed a markedly negative correlation with Chl-a (p < 0.05). The results from redundancy analysis showed that TP, TN, SD, CODMn, and Chl-a were key environmental factors shaping the aquatic community structure in the lake. Full article
Show Figures

Figure 1

27 pages, 11944 KB  
Article
Heatwave-Induced Thermal Stratification Shaping Microbial-Algal Communities Under Different Climate Scenarios as Revealed by Long-Read Sequencing and Imaging Flow Cytometry
by Ayagoz Meirkhanova, Adina Zhumakhanova, Polina Len, Christian Schoenbach, Eti Ester Levi, Erik Jeppesen, Thomas A. Davidson and Natasha S. Barteneva
Toxins 2025, 17(8), 370; https://doi.org/10.3390/toxins17080370 - 27 Jul 2025
Viewed by 541
Abstract
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were [...] Read more.
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were based on IPCC climate warming scenarios, enabling simulation of future warming conditions. Surface oxygen levels reached 19.37 mg/L, while bottom layers dropped to 0.07 mg/L during stratification. Analysis by FlowCAM revealed dominance of Cyanobacteria under ambient conditions (up to 99.2%), while Cryptophyta (up to 98.9%) and Chlorophyta (up to 99.9%) were predominant in the A2 and A2+50% climate scenarios, respectively. We identified temperature changes and shifts in nutrient concentrations, particularly phosphate, as critical factors in microbial community composition. Furthermore, five distinct Microcystis morphospecies identified by FlowCAM-based analysis were associated with different microbial clusters. The combined use of imaging flow cytometry, which differentiates phytoplankton based on morphological parameters, and nanopore long-read sequencing analysis has shed light into the dynamics of microbial communities associated with different Microcystis morphospecies. In our observations, a peak of algicidal bacteria abundance often coincides with or is followed by a decline in the Cyanobacteria. These findings highlight the importance of species-level classification in the analysis of complex ecosystem interactions and the dynamics of algal blooms in freshwater bodies in response to anthropogenic effects and climate change. Full article
Show Figures

Figure 1

25 pages, 2090 KB  
Article
Microcystis aeruginosa msoT1/msoA1 Locus Displays Features of a Type I Toxin–Antitoxin System
by Matija Ruparčič and Marko Dolinar
Toxins 2025, 17(8), 360; https://doi.org/10.3390/toxins17080360 - 22 Jul 2025
Viewed by 348
Abstract
Type I toxin–antitoxin (TA) systems consist of a protein toxin that exerts a cytostatic or cytotoxic effect and an antisense RNA antitoxin that prevents translation of the toxin. Although well studied, type I TA systems have so far only been discovered in bacteria [...] Read more.
Type I toxin–antitoxin (TA) systems consist of a protein toxin that exerts a cytostatic or cytotoxic effect and an antisense RNA antitoxin that prevents translation of the toxin. Although well studied, type I TA systems have so far only been discovered in bacteria from the phyla Proteobacteria, Firmicutes, and Tenericutes. We hypothesized that type I systems could also be present in Cyanobacteria. Through bioinformatic analysis of the Microcystis aeruginosa PCC 7806SL genome, we discovered ten putative type I TA loci and characterized six of them experimentally. Two of the six putative type I toxins, BH695_0320 and MsoT1 (BH695_4017), were observed to negatively affect Escherichia coli cell growth, with MsoT1 exerting a phenotype similar to SrnB, a known type I toxin. We focused on the MsoT1/MsoA1 TA system and confirmed the expression of MsoT1 and MsoA1 in our assay. Additionally, we found that MsoA1 delays the toxic effects of MsoT1, indicating its role as a cognate antitoxin of MsoT1. Our results suggest that MsoT1/MsoA1 represents a novel candidate type I TA system, the first to be discovered in the Cyanobacteria phylum. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

12 pages, 2374 KB  
Article
The Complete Genomes of Microcystis ichthyoblabe Kützing and Microcystis protocystis (Crow) Komárek & Anagnostidis Reveal the Complexity and Plasticity of Microcystis Genomes
by Jina Kim, Hyaekang Kim, Jaeduk Goh, Seung Won Nam, Eu Jin Chung, Miyoung Shin, Donghyeok Seol, Ki Hwan Kim and Woori Kwak
Microorganisms 2025, 13(7), 1693; https://doi.org/10.3390/microorganisms13071693 - 18 Jul 2025
Viewed by 608
Abstract
Microcystis is a genus of cyanobacteria responsible for harmful algal blooms (HABs) in freshwater ecosystems, posing significant ecological and public health risks. Despite its importance, current genomic resources are heavily biased toward Microcystis aeruginosa, limiting comprehensive understanding of genomic diversity within the [...] Read more.
Microcystis is a genus of cyanobacteria responsible for harmful algal blooms (HABs) in freshwater ecosystems, posing significant ecological and public health risks. Despite its importance, current genomic resources are heavily biased toward Microcystis aeruginosa, limiting comprehensive understanding of genomic diversity within the genus. In this study, we present the first complete genome sequences of two morphospecies, M. ichthyoblabe FBCC-A1114 and M. protocystis FBCC-A270. Using long-read sequencing, both genomes were assembled into single circular chromosomes of 5.84 Mb and 5.76 Mb, respectively. Phylogenetic analyses placed both strains within genospecies G, alongside M. aeruginosa and M. viridis. Comparative analysis of biosynthetic gene clusters revealed that, while most genospecies G members harbor aeruginosin, cyanobactin, and microviridin gene clusters, the two newly sequenced strains lack cyanobactin and microcystin clusters but retain the microginin cluster. Synteny analysis demonstrated high structural conservation between the two genomes, while notable structural variations were observed when compared with M. aeruginosa NIES-298. These findings reveal both functional and structural plasticity within the genospecies, suggesting ecotype diversification driven by environmental adaptation. The newly assembled genomes provide critical resources to refine classification frameworks and advance our understanding of Microcystis genomic diversity. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

24 pages, 3329 KB  
Article
Isolation of a Novel Streptomyces sp. TH05 with Potent Cyanocidal Effects on Microcystis aeruginosa
by Xuhan Wang, Siqi Zhu, Shenchen Tao, Shaoyong Zhang, Ruijun Wang and Liqin Zhang
Toxins 2025, 17(7), 354; https://doi.org/10.3390/toxins17070354 - 17 Jul 2025
Viewed by 693
Abstract
In this paper, cultivable actinobacteria were isolated, cultured, and identified from the heavily algal-bloomed waters of Taihu Lake using 16S rRNA gene sequencing. Among the isolates, a single strain exhibiting vigorous cyanocidal activity against Microcystis aeruginosa FACHB-905 was selected for further investigation. The [...] Read more.
In this paper, cultivable actinobacteria were isolated, cultured, and identified from the heavily algal-bloomed waters of Taihu Lake using 16S rRNA gene sequencing. Among the isolates, a single strain exhibiting vigorous cyanocidal activity against Microcystis aeruginosa FACHB-905 was selected for further investigation. The cyanocidal efficacy and underlying mechanisms of this strain, designated TH05, were assessed through using chlorophyll content, cyanobacterial inhibition rate, and cyanobacterial cell morphology measurements. In addition, oxidative stress responses, expression of key functional genes in FACHB-905, and variations in microcystin concentrations were comprehensively evaluated. Cyanobacterial blooms caused by Microcystis aeruginosa pose serious ecological and public health threats due to the release of microcystins (MCs). In this study, we evaluated the cyanocidal activity and mechanism of a novel actinomycete strain, Streptomyces sp. TH05. Optimization experiments revealed that a light–dark cycle of 12 h/12 h, temperature of 25 °C, and pH 7 significantly enhanced cyanocidal efficacy. Under these conditions, TH05 achieved an 84.31% inhibition rate after seven days of co-cultivation with M. aeruginosa. Scanning electron microscopy revealed two distinct cyanocidal modes: direct physical attachment of TH05 mycelia to cyanobacterial cells, causing cell wall disruption, and indirect membrane damage via extracellular bioactive compounds. Biochemical analyses showed increased levels of malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) during the first five days, peaking at 2.47-, 2.12-, and 1.91-fold higher than control levels, respectively, indicating elevated oxidative stress. Gene expression analysis using elf-p as a reference showed that TH05 modulated key genes associated with photosynthesis (PsaB, PstD1, PstD2, RbcL), DNA repair and stress response (RecA, FtsH), and microcystin biosynthesis (McyA, McyD). All genes were upregulated except for RbcL, which was downregulated. In parallel, microcystin content peaked at 32.25 ng/L on day 1 and decreased to 16.16 ng/L by day 9, which was significantly lower than that of the control group on day 9 (29.03 ng/L). These findings suggest that strain TH05 exhibits potent and multifaceted cyanocidal activity, underscoring its potential for application in the biological control of cyanobacterial blooms. Full article
Show Figures

Figure 1

16 pages, 2685 KB  
Article
Spatial–Seasonal Shifts in Phytoplankton and Zooplankton Community Structure Within a Subtropical Plateau Lake: Interplay with Environmental Drivers During Rainy and Dry Seasons
by Chengjie Yin, Li Gong, Jiaojiao Yang, Yalan Yang and Longgen Guo
Fishes 2025, 10(7), 343; https://doi.org/10.3390/fishes10070343 - 11 Jul 2025
Viewed by 337
Abstract
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the [...] Read more.
Subtropical plateau lakes, which are distinguished by their elevated altitudes and subtropical climates, display distinct ecological dynamics. Nevertheless, the spatial and seasonal variations in the plankton community structure, as well as their interactions with environmental factors, remain inadequately understood. This study investigated the alterations in the phytoplankton and zooplankton community structure across different geographical regions (southern, central, and northern) and seasonal periods (rainy and dry) in Erhai lake, located in a subtropical plateau in China. The results indicated that the average values of total nitrogen (TN), total phosphorus (TP), chlorophyll-a (Chla), pH, and conductivity are significantly higher during the rainy season in comparison to the dry season. Furthermore, during the rainy season, there were significant differences in the concentrations of TN, TP, and Chla among the three designated water areas. Notable differences were also observed in the distribution of Microcystis, the density of Cladocera and copepods, and the biomass of copepods across the three regions during this season. Conversely, in the dry season, only the biomass of Cladocera exhibited significant variation among the three water areas. The redundancy analysis (RDA) and variance partitioning analysis demonstrated that the distribution of plankton groups (Cyanophyta, Cryptophyta, and Cladocera) is significantly associated with TN, Secchi depth (SD), and Chla during the rainy season, whereas it is significantly correlated with TP and SD during the dry season. These findings underscore the critical influence of environmental factors, shaped by rainfall patterns, in driving these ecological changes. In the context of the early stages of eutrophication in Lake Erhai, it is essential to ascertain the spatial distribution of water quality parameters, as well as phytoplankton and zooplankton density and biomass, during both the rainy and dry seasons. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

11 pages, 1969 KB  
Article
Two New Strains of Microcystis Cyanobacteria from Lake Baikal, Russia: Ecology and Toxigenic Potential
by Ekaterina Sorokovikova, Irina Tikhonova, Galina Fedorova, Nadezhda Chebunina, Anton Kuzmin, Maria Suslova, Yanzhima Naidanova, Sergey Potapov, Andrey Krasnopeev, Anna Gladkikh and Olga Belykh
Limnol. Rev. 2025, 25(3), 31; https://doi.org/10.3390/limnolrev25030031 - 10 Jul 2025
Viewed by 325
Abstract
Microcystis, a potentially toxigenic cyanobacterium known to form extensive blooms in eutrophic lakes globally, was investigated in the cold oligotrophic Lake Baikal. We report the isolation of two Microcystis strains, Microcystis aeruginosa and M. novacekii, and document the presence of the [...] Read more.
Microcystis, a potentially toxigenic cyanobacterium known to form extensive blooms in eutrophic lakes globally, was investigated in the cold oligotrophic Lake Baikal. We report the isolation of two Microcystis strains, Microcystis aeruginosa and M. novacekii, and document the presence of the latter species in Lake Baikal for the first time. In M. aeruginosa strain BN23, we detected the microcystin synthetase gene mcyE. Liquid chromatography-mass spectrometry revealed the presence of two microcystin variants in BN23, with microcystin-LR, a highly potent toxin, being the dominant form. The concentration of MC-LR reached 540 µg/g dry weight. In contrast, M. novacekii strain BT23 lacked both microcystin synthesis genes and detectable toxins. The habitat waters were characterized as oligotrophic with minor elements of mesotrophy, exhibiting low phytoplankton biomass dominated by the chrysophyte Dinobryon cylindricum (76–77% of biomass), with cyanobacteria contributing 8–10%. The contribution of Microcystis spp. to the total phytoplankton biomass could not be quantified as they were exclusively found in net samples. The water temperature at both sampling stations was ~19 °C, which is considerably lower than optimal for Microcystis spp. and potentially conducive to enhanced microcystin production in toxigenic genotypes. Full article
(This article belongs to the Special Issue Trends in the Trophic State of Freshwater Ecosystems)
Show Figures

Figure 1

17 pages, 4387 KB  
Article
Algal Community Dynamics in Three Water Intakes of Poyang Lake: Implications for Drinking Water Safety and Management Strategies
by Bo Li, Jing Li, Yuehang Hu, Shaozhe Cheng, Shouchun Li and Xuezhi Zhang
Water 2025, 17(13), 2034; https://doi.org/10.3390/w17132034 - 7 Jul 2025
Viewed by 481
Abstract
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were [...] Read more.
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were identified in nine phyla, and there were significant spatial and temporal differences in the abundance of phytoplankton at the three waterworks intakes, with a spatial trend of annual mean values of Duchang > Xingzi > Hukou and a seasonal trend of summer and autumn > spring and winter. The dominant species of phytoplankton in the waterworks intakes of the three waterworks also showed obvious spatial and temporal differences. Cyanobacteria (particularly Pseudanabaena sp. and Microcystis sp.) dominated the phytoplankton communities during summer and autumn, demonstrating significant water degradation potential. In contrast, Cyclotella sp. prevailed in winter and spring assemblages. Based on water quality assessments at the three intake sites, the Duchang County intake exhibited year-round mild eutrophication with persistent mild cyanobacterial blooms (June–October), while the other two sites maintained no obvious bloom conditions. Further analyzing the toxic/odor-producing algal strains, the numbers of dominant species of Pseudanabaena sp. and Microcystis sp. in June–October in Duchang County both exceeded 1.0 × 107 cells·L−1. It is necessary to focus on their release of ATX-a (ichthyotoxin-a), 2MIB (2-Methylisoborneol), MCs (microcystins), etc., to ensure the safety of the water supply at the intake. Building upon these findings, we propose a generalized algal monitoring framework, encompassing three operational pillars: (1) key monitoring area identification, (2) high-risk period determination, and (3) harmful algal warnings. Each of these is substantiated by our empirical observations in Poyang Lake. Full article
(This article belongs to the Special Issue Freshwater Species: Status, Monitoring and Assessment)
Show Figures

Graphical abstract

11 pages, 485 KB  
Review
Aquatic Resistome in Freshwater and Marine Environments: Interactions Between Commensal and Pathogenic in the Context of Aquaculture and One Health
by Ana V. Mourão, Diana Fernandes, Telma de Sousa, Rita Calouro, Sónia Saraiva, Gilberto Igrejas and Patrícia Poeta
Microorganisms 2025, 13(7), 1591; https://doi.org/10.3390/microorganisms13071591 - 6 Jul 2025
Viewed by 584
Abstract
Aquatic resistomes are important reservoirs of antibiotic resistance genes (ARGs) and their precursors, which can proliferate and dissipate in pathogenic microorganisms that affect humans and animals, especially due to anthropogenic pressures such as the intensive use of antibiotics in aquaculture, often without effective [...] Read more.
Aquatic resistomes are important reservoirs of antibiotic resistance genes (ARGs) and their precursors, which can proliferate and dissipate in pathogenic microorganisms that affect humans and animals, especially due to anthropogenic pressures such as the intensive use of antibiotics in aquaculture, often without effective regulation. This review addresses the mechanisms of horizontal gene transfer (HGT) in the dissemination of ARGs through mobile genetic elements (MGEs). In freshwater, genera such as Aeromonas, Pseudomonas and Microcystis stand out as vectors of ARGs. In the context of One Health, it is essential to implement sound public policies and strict regulations on the use of antibiotics in aquaculture, and the use of monitoring tools such as environmental DNA (eDNA) and metagenomics allows for the early detection of ARGs, contributing to the protection of human, animal and environmental health. Full article
(This article belongs to the Special Issue New Insights into the Antibiotic Resistance of Aquatic Microorganisms)
Show Figures

Figure 1

19 pages, 1475 KB  
Article
Chemical and Morphological Constitutive Defensive Traits of Cyanobacteria Have Different Effects on the Grazing of a Small Tropical Cladoceran
by Luciana Machado Rangel, Marcella Coelho Berjante Mesquita, Shara Rosa de Barros, Vinicius Neres-Lima, Michael Ribas Celano, Mauro Cesar Palmeira Vilar, Sandra Maria Feliciano de Oliveira e Azevedo and Marcelo Manzi Marinho
Toxins 2025, 17(7), 343; https://doi.org/10.3390/toxins17070343 - 5 Jul 2025
Viewed by 805
Abstract
Antipredator defenses of bloom-forming cyanobacteria species maximize their fitness but can reduce carbon and energy transfer efficiency to higher trophic levels, making them a key regulator of plankton communities in eutrophic waters. We investigated the grazing responses of the tropical cladoceran Moina micrura [...] Read more.
Antipredator defenses of bloom-forming cyanobacteria species maximize their fitness but can reduce carbon and energy transfer efficiency to higher trophic levels, making them a key regulator of plankton communities in eutrophic waters. We investigated the grazing responses of the tropical cladoceran Moina micrura to different strains of the cyanobacteria Microcystis aeruginosa and Planktothrix isothrix, using a good food source (green algae Mono-raphidium capricornutum) as a control. Both Microcystis strains grow as unicellular and are microcystins producers; however, this cyanotoxin was not detected on the filamentous Planktothrix strains. M. micrura ingested all cyanobacteria at reduced rates compared to single diets with Monoraphidium. In mixed diets, food type had a significant effect on grazing responses, which differed interspecifically. Planktothrix was more grazed than Microcystis strains. Feeding selectivity on Monoraphidium was negatively affected by the increase of cyanobacteria in the diet. We observed varied responses across treatments, ranging from feeding inhibition to different degrees of tolerance toward cyanobacteria, particularly in non-microcystin-producing species. We also highlight the selectivity of small tropical cladocerans, a pattern that is not yet well documented. These findings emphasize that studies incorporating phyto- and zooplankton with a history of coexistence can provide more meaningful insights into natural ecosystem dynamics. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

16 pages, 2787 KB  
Article
Interactive Effects of Ionophore Antibiotic Monensin and Polystyrene Microplastics on the Growth and Physiology of Microcystis aeruginosa
by Behen Manawadu, Mudalige Don Hiranya Jayasanka Senavirathna and Takeshi Fujino
Stresses 2025, 5(3), 43; https://doi.org/10.3390/stresses5030043 - 1 Jul 2025
Viewed by 413
Abstract
This study was conducted to examine the combined effects of monensin (MS) and 3 µm polystyrene microplastics (PEMPs) on the growth and stress-associated physiological responses of Microcystis aeruginosa under controlled laboratory conditions [temperature: 20 ± 1 °C, lighting: (30 ± 4) µmol m [...] Read more.
This study was conducted to examine the combined effects of monensin (MS) and 3 µm polystyrene microplastics (PEMPs) on the growth and stress-associated physiological responses of Microcystis aeruginosa under controlled laboratory conditions [temperature: 20 ± 1 °C, lighting: (30 ± 4) µmol m−2 s−1 (12 h:12 h light–dark photoperiod), growth medium: BG-11]. The experiments included MS concentrations of 0, 50, 250, and 500 µg/L and PEMPs concentrations of 0.25, 1.25, and 6 mg/L. Measurements included optical density (OD730), chlorophyll ‘a’, cellular protein content, oxidative stress, and the activities of catalase (CAT) and guaiacol peroxidase (GPX). M. aeruginosa exhibited a significant increase in growth on day 7 at elevated MS concentrations across all PEMP levels. Similarly, MS and PEMP treatments had a significant interactive effect on cellular protein content on day 7. However, their combined effect on chlorophyll ‘a’ production was not significant. Oxidative stress measurements showed a dose-dependent decrease with increasing MS concentrations under PEMP administrations. Enzyme activity assays indicated that CAT activity increased while GPX activity decreased with higher MS concentrations. The results imply that co-contamination of PEMPs and MS has a significant impact on the growth and stress physiology of M. aeruginosa in aquatic ecosystems. Full article
(This article belongs to the Section Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

16 pages, 1392 KB  
Review
Chemodiversity and Biotechnological Potential of Microginins
by Joaquim da Silva Pinto Neto, Gustavo Marques Serra, Luciana Pereira Xavier and Agenor Valadares Santos
Int. J. Mol. Sci. 2025, 26(13), 6117; https://doi.org/10.3390/ijms26136117 - 25 Jun 2025
Viewed by 430
Abstract
Biotechnology has increasingly focused on cyanobacteria as these microorganisms are a rich source of secondary metabolites with significant potential for various industries. Cyanobacterial metabolites have been described to have a wide range of biological activities, including cytotoxicity in cancer cells, inhibition of pathogenic [...] Read more.
Biotechnology has increasingly focused on cyanobacteria as these microorganisms are a rich source of secondary metabolites with significant potential for various industries. Cyanobacterial metabolites have been described to have a wide range of biological activities, including cytotoxicity in cancer cells, inhibition of pathogenic bacteria and fungi, and inhibition of various enzymes, demonstrating a great diversity of bioactive compounds. The cyanobacterium Microcystis aeruginosa is well known for its toxicity and production of the cyanotoxin microcystin. However, another peptide produced by this cyanobacterium, microginins, has significant biotechnological potential. These linear pentapeptides were initially discovered for their angiotensin-converting enzyme (ACE) inhibitory activity. Subsequent studies have explored the full potential of this peptide, revealing its ability to inhibit other enzymes as well. This review aims to compile and systematize the microginins with biotechnological potential described in the literature, as well as outline their main structural characteristics and the predominant methodologies for their isolation and identification. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

22 pages, 2551 KB  
Article
Unraveling the Toxicity of a Non-Microcystin-Producing Strain (CCIBt3106) of Microcystis aeruginosa: Ecotoxicological Effects on Aquatic Invertebrates
by Éryka Costa Almeida, Fernanda Rios Jacinavicius, Rhuana Valdetário Médice, Rafaella Bizo Menezes, Larissa Souza Passos, Dominique Anderson, Jaewon Yoon, Elaine Dias Faria, Camila Manoel Crnkovic, Ana Lúcia Fonseca, Theodore Henry and Ernani Pinto
Toxins 2025, 17(7), 321; https://doi.org/10.3390/toxins17070321 - 24 Jun 2025
Viewed by 696
Abstract
Cyanobacterial blooms are becoming increasingly frequent and intense worldwide, often dominated by Microcystis aeruginosa, a species capable of producing a wide array of bioactive metabolites beyond microcystins. This study evaluates the ecotoxicological potential of a non-microcystin-producing strain, M. aeruginosa CCIBt3106, using acute [...] Read more.
Cyanobacterial blooms are becoming increasingly frequent and intense worldwide, often dominated by Microcystis aeruginosa, a species capable of producing a wide array of bioactive metabolites beyond microcystins. This study evaluates the ecotoxicological potential of a non-microcystin-producing strain, M. aeruginosa CCIBt3106, using acute immobilization assays with three microcrustacean species: Daphnia similis, Artemia salina, and Parhyale hawaiensis. Biomass was extracted using solvents of varying polarity, and selected extracts (aqueous and 50% methanol) were further fractionated and analyzed via high-resolution liquid chromatography–tandem mass spectrometry (HR-LC-MS/MS). Significant toxicity was observed in D. similis and P. hawaiensis, with EC50 values ranging from 660 to 940 µg mL−1. Metabolomic profiling revealed the presence of chemically diverse metabolite classes, including peptides, polyketides, and fatty acyls, with putative annotations linked to known bioactivities. These findings demonstrate that cyanobacterial strains lacking microcystins can still produce complex metabolite mixtures capable of inducing species-specific toxic effects under environmentally relevant exposure levels. Overall, the results highlight the need to expand ecotoxicological assessments and monitoring frameworks to include non-microcystin cyanobacterial metabolites and strains in water quality management. Full article
Show Figures

Figure 1

13 pages, 1321 KB  
Article
Nonlinear Responses and Population-Level Coupling of Growth and MC-LR Production in Microcystis aeruginosa Under Multifactorial Conditions
by Melina Celeste Crettaz-Minaglia, Sandro Goñi and Leda Giannuzzi
Phycology 2025, 5(2), 26; https://doi.org/10.3390/phycology5020026 - 18 Jun 2025
Viewed by 454
Abstract
Microcystis aeruginosa is a cyanobacterium frequently associated with toxic blooms in eutrophic freshwater systems. Certain strains produce microcystins (MCs), a group of hepatotoxins with significant ecological and public health implications. In this study, we examined the quantitative response of a temperate native M. [...] Read more.
Microcystis aeruginosa is a cyanobacterium frequently associated with toxic blooms in eutrophic freshwater systems. Certain strains produce microcystins (MCs), a group of hepatotoxins with significant ecological and public health implications. In this study, we examined the quantitative response of a temperate native M. aeruginosa strain to combinations of temperature (26, 30, and 36 °C), light intensity (30, 50, and 70 µmol photons·m−2·s−1), and N:P ratio (10, 100, 150), using a full-factorial experimental design. Growth parameters (µ, lag phase duration, and maximum cell density), chlorophyll-a production, and MC-LR synthesis were modeled using Gompertz, linear, and dynamic approaches. High temperature and irradiance increased the specific growth rate but decreased final biomass, while elevated N:P ratios shortened the lag phase. MC-LR production peaked under low temperature, low irradiance, and low N:P ratio. Although MC-LR synthesis did not correlate positively with growth rate, and the environmental conditions maximizing growth differed from those enhancing toxin production, a population-level coupling between both processes was observed using the Long model. These findings suggest that MC-LR synthesis in M. aeruginosa is not merely a metabolic by-product of growth, but a context-dependent trait with potential adaptive significance. Full article
Show Figures

Figure 1

16 pages, 2935 KB  
Article
Cladoceran Chydorus sphaericus and Colonial Cyanobacteria: Potentially a Toxic Relationship?
by Helen Agasild, Ilmar Tõnno, Margarita E. Gonzales Ferraz, Peeter Nõges, Priit Zingel, Lea Tuvikene, René Freiberg, Tiina Nõges and Kristel Panksep
Toxins 2025, 17(6), 298; https://doi.org/10.3390/toxins17060298 - 12 Jun 2025
Viewed by 594
Abstract
Chydorus sphaericus is often a dominant cladoceran zooplankton species in water bodies experiencing harmful cyanobacterial blooms. However, its relationship with toxin-producing algae remains largely unexplored. In this study, the feeding behavior of C. sphaericus on colonial cyanobacteria and potentially toxic Microcystis was investigated [...] Read more.
Chydorus sphaericus is often a dominant cladoceran zooplankton species in water bodies experiencing harmful cyanobacterial blooms. However, its relationship with toxin-producing algae remains largely unexplored. In this study, the feeding behavior of C. sphaericus on colonial cyanobacteria and potentially toxic Microcystis was investigated in a temperate, shallow, eutrophic lake. Liquid chromatographic analyses of phytoplankton marker pigments in C. sphaericus gut content revealed that pigments characteristic of cyanobacteria (identified a zeaxanthin, echinenone, and canthaxanthin) comprised the majority of its diet. Among them, colonial cyanobacteria (marked by the pigment canthaxanthin) were the highly preferred food source despite their minor contribution to phytoplankton biomass. qPCR targeting Microcystis genus-specific mcyE synthase genes, which are involved in microcystin biosynthesis, indicated that potentially toxic strains of Microcystis were present in C. sphaericus gut content throughout its temporal and spatial presence in the lake. The results suggest that the common small cladoceran in eutrophic waters, C. sphaericus, has a close trophic interaction with colonial cyanobacteria (including Microcystis) and may represent an important vector for transferring toxigenic Microcystis to the food web, even under conditions of low Microcystis biomass in the lake water. Full article
(This article belongs to the Section Marine and Freshwater Toxins)
Show Figures

Figure 1

Back to TopTop