Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Mongolian Plateau grassland fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7704 KB  
Article
A Generalized Spatiotemporally Weighted Boosted Regression to Predict the Occurrence of Grassland Fires in the Mongolian Plateau
by Ritu Wu, Zhimin Hong, Wala Du, Yu Shan, Hong Ying, Rihan Wu and Byambakhuu Gantumur
Remote Sens. 2025, 17(9), 1485; https://doi.org/10.3390/rs17091485 - 22 Apr 2025
Cited by 1 | Viewed by 517
Abstract
Grassland fires are one of the main disasters in the temperate grasslands of the Mongolian Plateau, posing a serious threat to the lives and property of residents. The occurrence of grassland fires is affected by a variety of factors, including the biomass and [...] Read more.
Grassland fires are one of the main disasters in the temperate grasslands of the Mongolian Plateau, posing a serious threat to the lives and property of residents. The occurrence of grassland fires is affected by a variety of factors, including the biomass and humidity of fuels, the air temperature and humidity, the precipitation and evaporation, snow cover, wind, the elevation and topographic relief, and human activities. In this paper, MCD12Q1, MCD64A1, ERA5, and ETOPO 2022 remote sensing data products and other products were used to obtain the relevant data of these factors to predict the occurrence of grassland fires. In order to achieve a better prediction, this paper proposes a generalized geographically weighted boosted regression (GGWBR) method that combines spatial heterogeneity and complex nonlinear relationships, and further attempts the generalized spatiotemporally weighted boosting regression (GSTWBR) method that reflects spatiotemporal heterogeneity. The models were trained with the data of grassland fires from 2019 to 2022 in the Mongolian Plateau to predict the occurrence of grassland fires in 2023. The results showed that the accuracy of GGWBR was 0.8320, which was higher than generalized boosted regression models’ (GBM) 0.7690. Its sensitivity was 0.7754, which is higher than random forests’ (RF) 0.5662 and GBM’s 0.6927. The accuracy of GSTWBR was 0.8854, which was higher than that of RF, GBM and GGWBR. Its sensitivity was 0.7459, which is higher than that of RF and GBM. This study provides a new technical approach and theoretical support for the disaster prevention and mitigation of grassland fires in the Mongolian Plateau. Full article
(This article belongs to the Special Issue Machine Learning for Spatiotemporal Remote Sensing Data (2nd Edition))
Show Figures

Graphical abstract

14 pages, 3761 KB  
Article
Different Influences of Soil and Climatic Factors on Shrubs and Herbaceous Plants in the Shrub-Encroached Grasslands of the Mongolian Plateau
by Yue Liu, Lei Dong, Jinrong Li, Shuaizhi Lu, Liqing Yi, Huimin Li, Shaoqi Chai and Jian Wang
Forests 2025, 16(4), 696; https://doi.org/10.3390/f16040696 - 17 Apr 2025
Viewed by 494
Abstract
Factors such as climate change, fire, and overgrazing have been commonly considered the main causes of the global expansion of shrub invasion in grasslands over the past 160 years. Nevertheless, the influence of soil substrates on the progression of shrub encroachment has been [...] Read more.
Factors such as climate change, fire, and overgrazing have been commonly considered the main causes of the global expansion of shrub invasion in grasslands over the past 160 years. Nevertheless, the influence of soil substrates on the progression of shrub encroachment has been insufficiently examined. This study examines the fundamental characteristics of the shrub-encroached desert steppe communities of Caragana tibetica in the Mongolian Plateau. Combining field surveys (field surveys and drone aerial photography) and laboratory experiments, using Spearman’s rank correlation analysis and structural equation modeling (SEM), this research systematically explores the impact of varying degrees of soil sandification on the survival of shrubs and herbaceous plants within these grassland communities. The findings indicate the following: (1) In the eight shrub-encroached grassland plots, the soil exhibited a significantly higher sand content compared to silt and clay, with the sand content generally exceeding 64%. (2) The coverage of shrub species is predominantly influenced by soil factors, particularly the soil sand content. (The path coefficient is 0.56, with p < 0.01). In contrast, herbaceous plants are more strongly influenced by climatic factors. (The path coefficient is 0.83, with p < 0.001). This study examines the response patterns of Caragana tibetica communities to edaphic and climatic factors, highlighting the pivotal role of soil sandification in the initiation and succession of shrub encroachment. The findings furnish a theoretical framework for forecasting future trends in grassland shrub encroachment and provide empirical evidence for the conservation and sustainable management of shrub-encroached grasslands. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

Back to TopTop