Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = N-aryl-propanamides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8376 KiB  
Article
New 6′-Amino-5′-cyano-2-oxo-1,2-dihydro-1′H-spiro[indole-3,4′-pyridine]-3′-carboxamides: Synthesis, Reactions, Molecular Docking Studies and Biological Activity
by Victor V. Dotsenko, Nawras T. Jassim, Azamat Z. Temerdashev, Zainab R. Abdul-Hussein, Nicolai A. Aksenov and Inna V. Aksenova
Molecules 2023, 28(7), 3161; https://doi.org/10.3390/molecules28073161 - 2 Apr 2023
Cited by 5 | Viewed by 2767
Abstract
The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in [...] Read more.
The purpose of this work was to prepare new isatin- and monothiomalondiamide-based indole derivatives, as well as to study the properties of the new compounds. The four-component reaction of 5-R-isatins (R = H, CH3), malononitrile, monothiomalonamide (3-amino-3-thioxo- propanamide) and triethylamine in hot EtOH yields a mixture of isomeric triethylammonium 6′-amino-3′-(aminocarbonyl)-5′-cyano-2-oxo-1,2-dihydro-1′H- and 6′-amino-3′-(aminocarbonyl)- 5′-cyano-2-oxo-1,2-dihydro-3′H-spiro[indole-3,4′-pyridine]-2′-thiolates. The reactivity and structure of the products was studied. We found that oxidation of spiro[indole-3,4′-pyridine]-2′-thiolates with DMSO-HCl system produced only acidification products, diastereomeric 6′-amino-5′-cyano-5-methyl-2-oxo-2′-thioxo-1,2,2′,3′-tetrahydro-1′H-spiro-[indole-3,4′-pyridine]- 3′-carboxamides, instead of the expected isothiazolopyridines. The alkylation of the prepared spiro[indole-3,4′-pyridine]-2′-thiolates upon treatment with N-aryl α-chloroacetamides and α-bromoacetophenones proceeds in a regioselective way at the sulfur atom. In the case of α-bromoacetophenones, ring-chain tautomerism was observed for the S-alkylation products. According to NMR data, the compounds consist of a mixture of stereoisomers of 2′-amino-6′-[(2-aryl-2-oxoethyl)thio]-3′-cyano-2-oxo-1′H-spiro[indoline-3,4′-pyridine]-5′-carboxamides and 5′-amino-3′-aryl-6′-cyano-3′-hydroxy-2-oxo-2′,3′-dihydrospiro[indoline-3,7′-thiazolo[3,2-a]pyridine]-8′-carboxamides in various ratios. The structure of the synthesized compounds was confirmed by IR spectroscopy, HRMS, 1H and 13C DEPTQ NMR studies and the results of 2D NMR experiments (1H-13C HSQC, 1H-13C HMBC). Molecular docking studies were performed to investigate suitable binding modes of some new compounds with respect to the transcriptional regulator protein PqsR of Pseudomonas aeruginosa. The docking studies revealed that the compounds have affinity for the bacterial regulator protein PqsR of Pseudomonas aeruginosa with a binding energy in the range of −5.8 to −8.2 kcal/mol. In addition, one of the new compounds, 2′-amino-3′-cyano-5-methyl-2-oxo-6′-{[2-oxo-2-(p-tolylamino)ethyl]thio}-1′H-spiro-[indoline-3,4′-pyridine]-5′-carboxamide, showed in vitro moderate antibacterial effect against Pseudomonas aeruginosa and good antioxidant properties in a test with 1,1-diphenyl-2-picrylhydrazyl radical. Finally, three of the new compounds were recognized as moderately active herbicide safeners with respect to herbicide 2,4-D in the laboratory experiments on sunflower seedlings. Full article
(This article belongs to the Special Issue Chemistry of Indoles)
Show Figures

Graphical abstract

22 pages, 2359 KiB  
Article
Selene-Ethylenelacticamides and N-Aryl-Propanamides as Broad-Spectrum Leishmanicidal Agents
by Natália Ferreira de Sousa, Helivaldo Diógenes da Silva Souza, Renata Priscila Barros de Menezes, Francinara da Silva Alves, Chonny Alexander Herrera Acevedo, Thaís Amanda de Lima Nunes, Zoe L. Sessions, Luciana Scotti, Eugene N. Muratov, Francisco Jaime Bezerra Mendonça-Junior, Klinger Antônio da Franca Rodrigues, Petrônio Filgueiras de Athayde Filho and Marcus Tullius Scotti
Pathogens 2023, 12(1), 136; https://doi.org/10.3390/pathogens12010136 - 13 Jan 2023
Cited by 6 | Viewed by 3321
Abstract
The World Health Organization classifies Leishmania as one of the 17 “neglected diseases” that burden tropical and sub-tropical climate regions with over half a million diagnosed cases each year. Despite this, currently available anti-leishmania drugs have high toxicity and the potential to be [...] Read more.
The World Health Organization classifies Leishmania as one of the 17 “neglected diseases” that burden tropical and sub-tropical climate regions with over half a million diagnosed cases each year. Despite this, currently available anti-leishmania drugs have high toxicity and the potential to be made obsolete by parasite drug resistance. We chose to analyze organoselenides for leishmanicidal potential given the reduced toxicity inherent to selenium and the displayed biological activity of organoselenides against Leishmania. Thus, the biological activities of 77 selenoesters and their N-aryl-propanamide derivatives were predicted using robust in silico models of Leishmania infantum, Leishmania amazonensis, Leishmania major, and Leishmania (Viannia) braziliensis. The models identified 28 compounds with >60% probability of demonstrating leishmanicidal activity against L. infantum, and likewise, 26 for L. amazonesis, 25 for L. braziliensis, and 23 for L. major. The in silico prediction of ADMET properties suggests high rates of oral absorption and good bioavailability for these compounds. In the in silico toxicity evaluation, only seven compounds showed signs of toxicity in up to one or two parameters. The methodology was corroborated with the ensuing experimental validation, which evaluated the inhibition of the Promastigote form of the Leishmania species under study. The activity of the molecules was determined by the IC50 value (µM); IC50 values < 20 µM indicated better inhibition profiles. Sixteen compounds were synthesized and tested for their activity. Eight molecules presented IC50 values < 20 µM for at least one of the Leishmania species under study, with compound NC34 presenting the strongest parasite inhibition profile. Furthermore, the methodology used was effective, as many of the compounds with the highest probability of activity were confirmed by the in vitro tests performed. Full article
Show Figures

Figure 1

Back to TopTop