Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,103)

Search Parameters:
Keywords = NEAT1_2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1190 KB  
Article
Tropical Weathering Effects on Neat Gasoline: An Analytical Study of Volatile Organic Profiles
by Khairul Osman, Naadiah Ahmad Mazlani, Gina Francesca Gabriel, Noor Hazfalinda Hamzah, Rogayah Abu Hassan, Dzulkiflee Ismail and Wan Nur Syuhaila Mat Desa
Chemosensors 2025, 13(10), 363; https://doi.org/10.3390/chemosensors13100363 - 3 Oct 2025
Abstract
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most [...] Read more.
Gasoline is the most common ignitable liquid used to initiate fires, making its detection and identification in fire debris crucial for determining incendiary origins. Fire debris is typically collected after extinguishment and safety clearance, often resulting in gasoline weathering, especially when delayed. Most research on gasoline weathering has been conducted in controlled laboratory settings in temperate climates. However, the effects of tropical conditions on the rate of gasoline weathering and the resulting chemical composition of volatiles remain largely unexplored. Understanding how tropical environmental factors alter gasoline weathering is essential for accurate fire debris interpretation in such regions. This study investigates how tropical climates impact gasoline weathering indoors and outdoors. Weathered samples were prepared by volume reduction method, gradually evaporating gasoline from 10% to 95%. Indoor samples were exposed to room temperature, while outdoor samples were left in open space under natural tropical conditions. Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed chromatographic shifts in heavier compounds (C3–C4 alkylbenzenes) compared to lighter ones like toluene as weathering progressed. Correlation between indoor and outdoor samples was high (>0.970) at 10–50% weathering but declined (<0.600) at 90–95%, indicating differing patterns. All target compounds remained detectable across all samples. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
Show Figures

Graphical abstract

28 pages, 1515 KB  
Article
Engineering PVA-CNF-MOF Composite Films for Active Packaging: Enhancing Mechanical Strength, Barrier Performance, and Stability for Fresh Produce Preservation
by Sergio Carrasco, Juan Amaro-Gahete, Eduardo Espinosa, Almudena Benítez, Francisco J. Romero-Salguero and Alejandro Rodríguez
Molecules 2025, 30(19), 3971; https://doi.org/10.3390/molecules30193971 - 3 Oct 2025
Abstract
Food waste is a global challenge, with nearly 40% of food discarded annually, leading to economic losses, food insecurity, and environmental harm. Major factors driving spoilage include microbial contamination, enzymatic activity, oxidation, and excessive ethylene production. Active packaging offers a promising solution by [...] Read more.
Food waste is a global challenge, with nearly 40% of food discarded annually, leading to economic losses, food insecurity, and environmental harm. Major factors driving spoilage include microbial contamination, enzymatic activity, oxidation, and excessive ethylene production. Active packaging offers a promising solution by extending shelf life through the selective absorption or release of specific substances. In this study, polyvinyl alcohol (PVA) films incorporating metal-organic frameworks (MOFs) were prepared via solvent casting to enhance their mechanical and barrier properties. Five MOFs (HKUST-1, MIL-88A, BASF-A520, UiO-66, and MOF-801) were embedded in the PVA matrix and analyzed for their physical, mechanical, and optical characteristics. The incorporation of TEMPO-oxidized cellulose nanofibers (CNF) improved MOF dispersion, significantly strengthening film performance. Among the formulations, PVA-CNF-MOF-801 exhibited the best performance, with a 130% increase in tensile strength, a 50% reduction in water vapor permeability, and a 168% improvement in UV protection compared with neat PVA films. Ethylene adsorption tests with climacteric fruits confirmed that CNF-containing films retained ethylene more effectively than those without CNFs, although the differences among the MOFs were minimal. These results highlight the potential of PVA-CNF-MOF composite films as sustainable active packaging materials, providing an effective strategy to reduce food waste and its environmental impact. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass III)
20 pages, 4133 KB  
Article
Dynamic Mechanical Behavior of Nanosilica-Based Epoxy Composites Under LEO-like UV-C Exposure
by Emanuela Proietti Mancini, Flavia Palmeri and Susanna Laurenzi
J. Compos. Sci. 2025, 9(10), 529; https://doi.org/10.3390/jcs9100529 - 1 Oct 2025
Abstract
The harsh conditions of the space environment necessitate advanced materials capable of withstanding extreme temperature fluctuations and ultraviolet (UV) radiation. While epoxy-based composites are widely utilized in aerospace due to their favorable strength-to-weight ratio, they are prone to degradation, especially under prolonged high-energy [...] Read more.
The harsh conditions of the space environment necessitate advanced materials capable of withstanding extreme temperature fluctuations and ultraviolet (UV) radiation. While epoxy-based composites are widely utilized in aerospace due to their favorable strength-to-weight ratio, they are prone to degradation, especially under prolonged high-energy UV-C exposure. This study investigated the mechanical and chemical stability of epoxy composites reinforced with nanosilica at 0, 2, 5, and 10 wt% before and after UV-C irradiation. Dynamic mechanical analysis (DMA) revealed that increased nanosilica content enhanced the storage modulus below the glass transition temperature (Tg) but reduced both Tg and the damping factor. Following UV-C exposure, all samples showed a decrease in storage modulus and Tg; however, composites with higher nanosilica content maintained better property retention. Frequency sweeps corroborated these findings, indicating improved instantaneous modulus but accelerated relaxation with increased nanosilica. Fourier-transform infrared (FTIR) spectroscopy of UV-C-exposed samples demonstrated significant oxidation and carboxylic group formation in neat epoxy, contrasting with minimal spectral changes in nanosilica-modified composites, signifying improved chemical resistance. Overall, nanosilica incorporation substantially enhances the thermomechanical and oxidative stability of epoxy composites under simulated space conditions, highlighting their potential for more durable performance in low Earth orbit applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

27 pages, 2775 KB  
Article
Performance, Combustion, and Emission Characteristics of a Diesel Engine Fueled with Preheated Coffee Husk Oil Methyl Ester (CHOME) Biodiesel Blends
by Kumlachew Yeneneh, Gadisa Sufe and Zbigniew J. Sroka
Sustainability 2025, 17(19), 8678; https://doi.org/10.3390/su17198678 - 26 Sep 2025
Abstract
The growing dependence on fossil fuels has raised concerns over energy security, resource depletion, and environmental impacts, driving the need for renewable alternatives. Coffee husk, a widely available agro-industrial residue, represents an underutilized feedstock for biodiesel production. In this study, biodiesel was synthesized [...] Read more.
The growing dependence on fossil fuels has raised concerns over energy security, resource depletion, and environmental impacts, driving the need for renewable alternatives. Coffee husk, a widely available agro-industrial residue, represents an underutilized feedstock for biodiesel production. In this study, biodiesel was synthesized from coffee husk oil using a two-step transesterification process to address its high free fatty acid content (21%). Physicochemical analysis showed that Coffee Husk Oil Methyl Ester (CHOME) possessed a density of 863 kg m−3, viscosity of 4.85 cSt, and calorific value of 33.51 MJ kg−1, compared to diesel with 812 kg m−3, 2.3 cSt, and 42.4 MJ kg−1. FTIR analysis confirmed the presence of ester carbonyl and C–O functional groups characteristic of CHOME, influencing its combustion behavior. Engine tests were then conducted using B0, B10, B30, B50, and B100 blends under different loads, both with and without fuel preheating. Results showed that neat CHOME (B100) exhibited 11.8% lower brake thermal efficiency (BTE) than diesel, but preheating at 95 °C improved BTE by 5%, with preheated B10 slightly surpassing diesel by 0.5%. Preheating also reduced brake-specific fuel consumption by up to 7.75%. Emission analysis revealed that B100 achieved reductions of 6.4% CO, 8.3% HC, and 7.0% smoke opacity, while NOx increased only marginally (2.86%). Overall, fuel preheating effectively mitigated viscosity-related drawbacks, enabling coffee husk biodiesel to deliver competitive performance with lower emissions, highlighting its potential as a sustainable waste-to-energy fuel. Full article
Show Figures

Figure 1

31 pages, 4404 KB  
Article
Integrative Transcriptomic and Network-Based Analysis of Neuromuscular Diseases
by Federico García-Criado, Lucia Hurtado-García, Elena Rojano, Álvaro Esteban-Martos, Jesús Pérez-García, Pedro Seoane and Juan A. G. Ranea
Int. J. Mol. Sci. 2025, 26(19), 9376; https://doi.org/10.3390/ijms26199376 - 25 Sep 2025
Abstract
Neuromuscular diseases (NMDs) like Duchenne muscular dystrophy (DMD), limb–girdle muscular dystrophy (LGMD), and amyotrophic lateral sclerosis (ALS) are rare, progressive disorders with complex molecular mechanisms. Traditional transcriptomic analyses often struggle to capture systems-level dysregulation, especially given the small sample sizes typical of rare [...] Read more.
Neuromuscular diseases (NMDs) like Duchenne muscular dystrophy (DMD), limb–girdle muscular dystrophy (LGMD), and amyotrophic lateral sclerosis (ALS) are rare, progressive disorders with complex molecular mechanisms. Traditional transcriptomic analyses often struggle to capture systems-level dysregulation, especially given the small sample sizes typical of rare disease studies. Our differential expression analysis of eight public RNA-seq datasets from various cell types in DMD, LGMD, and ALS revealed not only disease-relevant pathways but also unexpected enrichments, such as renal development, suggesting systemic impacts beyond muscle tissue. To address limitations in capturing broader molecular mechanisms, we applied an integrative systems biology approach combining differential expression data, protein–protein interaction (PPI) networks, and network embedding techniques. Comparative functional enrichment revealed shared pathways, including glycosaminoglycan binding in both DMD and FUS-related ALS, implicating extracellular matrix–protein interactions in FUS mutation effects. Mapping DEGs onto the human PPI network and assessing their proximity to causal genes uncovered dysregulated non-coding RNAs, such as PAX8-AS1, SBF2-AS1, and NEAT1, potentially indicating common regulatory roles. We also found candidate genes within disease-proximal clusters, like HS3ST3A1, which may contribute to pathogenesis. Overall, this integrative approach reveals shared transcriptional programs and novel targets, advancing our understanding and potential treatment strategies for NMDs. Full article
Show Figures

Figure 1

16 pages, 2383 KB  
Article
Recycling Disassembled Automotive Plastic Components for New Vehicle Components: Enabling the Automotive Circular Economy
by Neeki Meshkat, Matthew Korey, Amber M. Hubbard, Kathryn Slavny, Ashish L. S. Anilal, Arit Das, Logan Kearney, Soydan Ozcan and Uday Vaidya
Recycling 2025, 10(5), 180; https://doi.org/10.3390/recycling10050180 - 25 Sep 2025
Abstract
As the automotive industry increasingly relies on plastic components to meet fuel efficiency and emissions targets, the challenge of managing end-of-life vehicle (ELV) plastics continues to grow. Currently, more than 80% of ELV plastics in the U.S. are landfilled due to limited economic [...] Read more.
As the automotive industry increasingly relies on plastic components to meet fuel efficiency and emissions targets, the challenge of managing end-of-life vehicle (ELV) plastics continues to grow. Currently, more than 80% of ELV plastics in the U.S. are landfilled due to limited economic incentives and technical barriers to recycling. This study examines a mechanical recycling pathway for thermoplastic components disassembled from ELVs and assesses their usability for reintegration into new vehicle parts. Four representative materials were chosen based on material labels embedded in recovered parts and aligned with their virgin industrial equivalents: polypropylene (PP), 10% talc-filled PP (PP-T10), 20% talc-filled PP (PP-T20), and a 20% glass-/mineral-filled polyamide (PA6 + GF7 + MF13). The materials underwent shredding, drying, and injection molding before being characterized by particle size analysis, density measurement, thermal analysis (TGA, DSC), mechanical testing, and heat deflection temperature (HDT) evaluation. The results in this work indicated that minor differences in crystallinity were observed and small differences between model materials and ELV materials could have contributed to these changes. Mechanical testing revealed that neat polypropylene suffered a 15–20% reduction in stiffness and tensile strength, but talc-filled polypropylene and glass/mineral-filled nylon retained >90% of their modulus, strength, and heat deflection temperature values relative to virgin controls. Differences between virgin and ELV materials could have been attributed to use life degradation, contamination during use life, or even chemical/processing differences in model materials and ELV materials. However, these findings suggest that mechanically recycled, disassembled ELV plastics can retain sufficient structural performance to support circularity efforts in the automotive sector. Full article
(This article belongs to the Special Issue Challenges and Opportunities in Plastic Waste Management)
Show Figures

Figure 1

26 pages, 2437 KB  
Article
Interphase-Resolved Performance in PA6/TiO2 Nanocomposite Fibers: Four-Phase Geometry Linking Structure to Mechanical and UV Protection
by Hailong Yu, Ping Liu, Xiaohuan Ji, Xiaoze Jiang and Bin Sun
Polymers 2025, 17(18), 2551; https://doi.org/10.3390/polym17182551 - 21 Sep 2025
Viewed by 173
Abstract
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics–structure–property link. This [...] Read more.
Melt-spun PA6/TiO2 fibers with TiO2 modified by silane coupling agents KH550 and KH570 at 0, 1.6, and 4 wt% provide a practical testbed to address three fiber-centric gaps: transferable interphase quantification, interphase-resolved indications of compatibility, and a reproducible kinetics–structure–property link. This work proposes, for the first time at fiber scale, a four-phase partition into crystal (c), crystal-adjacent rigid amorphous fraction (RAF-c), interfacial rigid amorphous fraction (RAF-i), and mobile amorphous fraction (MAF), and extracts an interfacial triad consisting of the specific interfacial area (Sv), polymer-only RAF-i fraction expressed per composite volume (Γi), and interphase thickness (ti) from SAXS invariants to establish a quantitative interphase-structure–property framework. A documented SAXS/DSC/WAXS workflow partitions the polymer into the above four components on a polymer-only basis. Upon filling, Γi increases while RAF-c decreases, leaving the total RAF approximately conserved. Under identical cooling, DSC shows the crystallization peak temperature is higher by 1.6–4.3 °C and has longer half-times, indicating enhanced heterogeneous nucleation together with growth are increasingly limited by interphase confinement. At 4 wt% loading, KH570-modified fibers versus KH550-modified fibers exhibit higher α-phase orientation (Hermans factor f(α): 0.697 vs. 0.414) but an ~89.4% lower α/γ ratio. At the macroscale, compared to pure (neat) PA6, 4 wt% KH550- and KH570-modified fibers show tenacity enhancements of ~9.5% and ~33.3%, with elongation decreased by ~31–68%. These trends reflect orientation-driven stiffening accompanied by a reduction in the mobile amorphous fraction and stronger interphase constraints on chain mobility. Knitted fabrics achieve a UV protection factor (UPF) of at least 50, whereas pure PA6 fabrics show only ~5.0, corresponding to ≥16-fold improvement. Taken together, the SAXS-derived descriptors (Sv, Γi, ti) provide transferable interphase quantification and, together with WAXS and DSC, yield a reproducible link from interfacial geometry to kinetics, structure, and properties, revealing two limiting regimes—orientation-dominated and phase-fraction-dominated. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

19 pages, 2333 KB  
Article
Quantifying Moisture Susceptibility in Asphalt Mixtures Using Dynamic Mechanical Analysis
by Yanzhu Wang, Wanguo Zhang, Jincheng Wei, Yuanshun Xiong, Yuanhui Qiao and Xudong Wang
Coatings 2025, 15(9), 1109; https://doi.org/10.3390/coatings15091109 - 21 Sep 2025
Viewed by 224
Abstract
Moisture damage remains a primary distress mechanism in asphalt pavements, leading to reduced service life and viscoelastic property loss due to weakened asphalt–aggregate adhesion. This study evaluated moisture susceptibility in eight asphalt mixtures combining two aggregates (limestone/granite) and four binders (two neat, two [...] Read more.
Moisture damage remains a primary distress mechanism in asphalt pavements, leading to reduced service life and viscoelastic property loss due to weakened asphalt–aggregate adhesion. This study evaluated moisture susceptibility in eight asphalt mixtures combining two aggregates (limestone/granite) and four binders (two neat, two SBS-modified) using dynamic mechanical analysis (DMA). Thin-section specimens underwent DMA temperature sweeps under dry and water-immersed conditions to characterize shifts in viscoelastic properties. Results demonstrated that moisture exposure significantly reduced complex modulus values and shifted characteristic temperatures (T0, T1, T2, Tg) toward lower ranges, indicating compromised performance. Specifically, granite mixtures showed average reductions in T0, T1, and Tg of 2.9 °C, 1.8 °C, and 3.7 °C, respectively, compared to 2.1 °C, 1.5 °C, and 1.7 °C for limestone mixtures. The magnitude of these changes—quantified by residual modulus (RM) ratios and characteristic temperature differentials—effectively ranked mixture susceptibility, with granite mixtures and specific binders (A1, B1) showing higher sensitivity. Notably, minimum residual modulus (RMmin) values ranged from 28.2% to 65.8%, and its critical temperature (TRM) identified the most severe moisture damage conditions (approximately 40 °C for neat asphalt; 60 °C for modified asphalt). The DMA-derived indices correlated with surface free energy-based adhesion work, confirming the method’s reliability for rapid moisture sensitivity assessment. This approach provides an efficient basis for selecting moisture-resistant materials tailored to operational temperature environments. Full article
Show Figures

Figure 1

30 pages, 11101 KB  
Article
Influence of Processing and Stabilizer Selection on Microstructure, Stability and Rheology of Emulsion-Based Semisolid Formulations
by Ruochen Yang, Xin Yi Tee, Sendhil Kumar Poornachary, Elena Simone and Pui Shan Chow
Pharmaceutics 2025, 17(9), 1221; https://doi.org/10.3390/pharmaceutics17091221 - 20 Sep 2025
Viewed by 197
Abstract
Background/Objectives: Emulsion-based semisolid formulations are important delivery systems for many applications, including pharmaceuticals, cosmetics and food. The manufacturing process for such formulations typically involves a series of heating, cooling, mixing and emulsification steps. Stabilizing agents are usually included in such formulations, as [...] Read more.
Background/Objectives: Emulsion-based semisolid formulations are important delivery systems for many applications, including pharmaceuticals, cosmetics and food. The manufacturing process for such formulations typically involves a series of heating, cooling, mixing and emulsification steps. Stabilizing agents are usually included in such formulations, as emulsions are intrinsically unstable and are prone to various destabilization mechanisms. Precise control of each processing parameter and the selection of an appropriate stabilizing agent are essential for delivering products with long-term stability and the desired properties. In this study, the effects of emulsification temperature and the selection of the stabilizing agent on key product attributes were investigated to enable improved design and optimization of both the formulation and manufacturing process. Methods: Model emulsion systems containing propylene glycol (PG) as the dispersed phase and mineral oil as the continuous phase were prepared at different emulsification temperatures to cover both pre-crystallization and post-crystallization regimes. Three stabilizing agents, namely mono-and-diglyceride (MDG), neat monoglyceride (MG) and neat diglyceride (DG), were studied. Their crystallization behavior was first examined to determine crystallization temperatures and crystal morphologies. The resulting emulsion samples were then characterized in terms of their microstructure, physical stability and rheological properties. Results: The emulsions prepared under post-crystallization conditions exhibited better physical stability, higher rheological parameters (crossover stress and viscosity) and a more rigid microstructure compared to those formed under pre-crystallization conditions, regardless of the stabilizer used. Rheological properties were found to corelate well with physical stability. In the pre-crystallization regime, poor stability could partially be mitigated by lowering the emulsification temperature. MG was generally more effective than DG in stabilizing the emulsions and led to higher rheological properties, despite both crystallizing into the same polymorph within the system. This difference in performance was attributed to variations in the crystal morphology and spatial distribution within the emulsion. Notably, the MG-stabilized emulsions also displayed a self-hardening effect during storage. Conclusions: The selection of the appropriate stabilizing agents and processing conditions tailored to the specific system is critical for the successful manufacture of emulsion-based semisolid products with an optimized performance. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

16 pages, 961 KB  
Review
Long Non-Coding RNAs in Psoriasis: A Comprehensive Review of Expression Profiles, Mechanistic Insights, Genetic Associations, and Their Clinical Implications
by Judit Danis and Márta Széll
Non-Coding RNA 2025, 11(5), 69; https://doi.org/10.3390/ncrna11050069 - 19 Sep 2025
Viewed by 235
Abstract
Psoriasis is a chronic inflammatory skin disorder affecting approximately 2% of the global population, characterized by abnormal keratinocyte proliferation and dysregulated immune responses. This review examines the emerging role of long non-coding RNAs (lncRNAs) in psoriasis pathogenesis, highlighting their significance as regulatory molecules [...] Read more.
Psoriasis is a chronic inflammatory skin disorder affecting approximately 2% of the global population, characterized by abnormal keratinocyte proliferation and dysregulated immune responses. This review examines the emerging role of long non-coding RNAs (lncRNAs) in psoriasis pathogenesis, highlighting their significance as regulatory molecules in disease initiation, progression, and chronicity. LncRNAs demonstrate distinct expression patterns in psoriatic lesions, with upregulated transcripts such as MALAT1, XIST, MIR31HG, and HOTAIR promoting keratinocyte hyperproliferation, inhibiting apoptosis, and amplifying inflammatory cascades through mechanisms including microRNA sponging and transcription factor modulation. These molecules primarily target key signaling pathways including NF-κB, STAT3, and PI3K/AKT. Conversely, downregulated lncRNAs like NEAT1, MEG3, and PRINS normally function as tumor suppressor molecules that maintain epidermal homeostasis through pro-apoptotic and anti-inflammatory mechanisms. Their reduced expression contributes to the pathological hyperproliferative phenotype characteristic of psoriatic skin. Importantly, genetic variants within lncRNA loci have been identified as significant contributors to psoriasis susceptibility and treatment responses across different populations. Single- nucleotide polymorphisms in genes such as TRAF3IP2-AS1, HOTAIR, and CDKN2B-AS1 demonstrate population-specific associations with disease risk and therapeutic outcomes, suggesting their potential utility as pharmacogenomic markers. The complex regulatory networks involving lncRNAs provide new insights into psoriasis pathogenesis and offer promising avenues for personalized treatment strategies. Integration of lncRNA profiling into clinical practice may enhance our understanding of disease heterogeneity and improve therapeutic outcomes for psoriatic patients. Full article
Show Figures

Figure 1

23 pages, 1808 KB  
Article
Bridging the Gap: The Role of Parent–Teacher Perception in Child Developmental Outcomes
by McKayla Jensen, Mikaela J. Dufur, Jonathan A. Jarvis and Shana L. Pribesh
Children 2025, 12(9), 1260; https://doi.org/10.3390/children12091260 - 19 Sep 2025
Viewed by 278
Abstract
Background/Objectives: Time spent with parents and educators encompasses a large portion of a child’s waking hours, with the home and early childhood education and care serving as two of the first settings in which children develop social and cognitive abilities. While previous studies [...] Read more.
Background/Objectives: Time spent with parents and educators encompasses a large portion of a child’s waking hours, with the home and early childhood education and care serving as two of the first settings in which children develop social and cognitive abilities. While previous studies have used social and cognitive tests to examine antecedents of child behavior, we extend such studies to take into account the congruence and incongruence of parents’ and teachers’ views on those antecedents. We examine the importance of parent-teacher alignment on the perceptions of a child’s personality and abilities in early development. Methods: Parents and teachers of 2968 German Kindergarten-aged (4–5 years old) children were surveyed using the National Educational Panel Study (NEPS). Parents and teachers independently rated 10 child behavioral traits, with higher scores indicating more prosocial behavior. Educators also rated children on five developmental abilities (social abilities, ability to concentrate, language abilities, general knowledgeability, and mathematical reasoning) compared to the student’s peers. While previous work has often examined how parental investments in children or teachers’ views of children might be related to development, we provide a new take by examining parents and teachers in conjunction with each other. Research that has looked at both parents and teachers has tended to examine alignment, or lack thereof, on child behaviors and personality traits. We analyzed child developmental abilities using OLS regression models, measures of parent–teacher divergences in ratings of child behavior, and demographic controls. Results: Greater differences in parent and teacher perceptions of desire for knowledge were negatively associated with all five developmental abilities. Differences in parent and teacher perceptions on talkativeness, confidence, good-naturedness, and understanding were negatively associated with at least one developmental outcome. By contrast, differences in perceptions of children’s neatness were positively associated with all five developmental abilities. Conclusions: Using both parent and teacher perceptions of child behaviors and abilities is a unique approach to understanding the relevance of parent and educator perceptions to a child’s development. Our findings indicate the need for collaboration across young children’s home and school or care settings. Establishing congruence in perceptions and the kinds of relationships that can lead to such congruence can help children with behavioral issues receive support in both home and educational settings and encourage mutual respect and partnership between parents and educators. Full article
(This article belongs to the Section Pediatric Mental Health)
Show Figures

Figure 1

21 pages, 7512 KB  
Article
Effect of Nano Ferrochrome Slag-Infused Polymer Matrix on Mechanical Properties of Bidirectional Carbon Fiber-Reinforced Polymer Composite
by Sultan Saif Al mamari, Sabariah Julai, Mohd Faizul Mohd Sabri, Lenin Anselm Wilson Annamal and S. M. Shahabaz
Polymers 2025, 17(18), 2527; https://doi.org/10.3390/polym17182527 - 18 Sep 2025
Viewed by 348
Abstract
Polymeric nanocomposites have been extensively investigated due to their potential for enhancing the mechanical and tribological properties of polymer composites. In this study, the mechanical performance of carbon fiber-reinforced epoxy composites modified with nano-sized ferrochrome slag particles, an industrial by-product from stainless steel [...] Read more.
Polymeric nanocomposites have been extensively investigated due to their potential for enhancing the mechanical and tribological properties of polymer composites. In this study, the mechanical performance of carbon fiber-reinforced epoxy composites modified with nano-sized ferrochrome slag particles, an industrial by-product from stainless steel manufacturing, was evaluated. Composite laminates were fabricated using a vacuum-assisted hand lay-up process, with consistent carbon fiber reinforcement and uniformly dispersed nanofillers in the epoxy matrix. Mechanical properties such as tensile, flexural, impact, and Shore D hardness were evaluated as per ASTM and ISO standards. At 2 wt.% nanofiller loading, enhanced tensile strength and hardness by 33.02% and 8.92%, respectively, were achieved, while flexural strength and impact strength increased by 3.70% and 3.62% at 1 wt.% compared to the neat composite. Higher filler contents (>3 wt.%) resulted in reduced performance due to particle agglomeration and microstructural inhomogeneity. A scanning electron microscope was used to determine the uniform dispersion and agglomeration of nanofillers. The results demonstrated the potential of ferrochrome slag as a sustainable and cost-effective nanofiller for advanced composite applications. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

14 pages, 2391 KB  
Article
Microscopic Characterization of Radiation Resistance of Epoxy Resin Enhanced with Graphene Quantum Dots and Molecular Simulation
by Liang Zou, Xinya Luo, Zhiyun Han, Zhen Li, Xiaofeng Ding, Kejie Huang and Hanwen Ren
Materials 2025, 18(18), 4303; https://doi.org/10.3390/ma18184303 - 14 Sep 2025
Viewed by 310
Abstract
With the development of the new energy industry in high-altitude regions, epoxy resin insulating materials in electrical equipment face severe challenges from prolonged exposure to strong radiation environments. Strong ultraviolet irradiation induces the generation of free radicals such as alkyl (CH2), [...] Read more.
With the development of the new energy industry in high-altitude regions, epoxy resin insulating materials in electrical equipment face severe challenges from prolonged exposure to strong radiation environments. Strong ultraviolet irradiation induces the generation of free radicals such as alkyl (CH2), alkoxy (CH2O), and peroxyl (CH2OO), which continuously attack the cross-linking structure of epoxy resin, leading to its degradation. This study employs molecular dynamics simulations to evaluate the enhancing effect of graphene quantum dots (GQDs) on the radiation resistance of epoxy resin (EP), proposing cross-linking structural integrity as an evaluation criterion. It compares and analyses pure EP (EP/neat), hydrogen-terminated GQDs (EP/GQD_C54H18), and carboxyl-terminated GQDs (EP/GQD_COOH) under three types of free radicals. The results indicate that the unique sp2 hybrid structure and hydrogen-donating ability of GQDs can effectively inhibit the activity of free radicals, and improve the integrity of the cross-linked structure by 8% to 16% compared to EP/neat. While both types of GQDs demonstrate comparable behavior in response to alkyl free radicals, EP/GQD_COOH exhibits superior performance under the influence of oxygen-containing free radicals. This enhanced performance can be attributed to its augmented hydrogen-donating capacity and an increased number of active sites. This study investigates the extent to which GQDs with different structures enhance the radiation resistance of epoxy resins, providing an important theoretical basis for the modification of epoxy resins for applications in high-radiation environments. Full article
Show Figures

Figure 1

25 pages, 3843 KB  
Article
Air-Assisted Sprayed Flexible Cellulose Acetate/Chitosan Materials for Food Packaging
by Nasrin Moshfeghi Far, Ana Kramar and Javier González-Benito
Polymers 2025, 17(18), 2479; https://doi.org/10.3390/polym17182479 - 13 Sep 2025
Viewed by 507
Abstract
Cellulose and chitin are the most abundant natural polymers, and their exploitation paves the way for sustainable materials and products. This work investigates the preparation of composites based on acetylated cellulose and partially deacetylated chitin, i.e., chitosan, using versatile and robust air-assisted solution [...] Read more.
Cellulose and chitin are the most abundant natural polymers, and their exploitation paves the way for sustainable materials and products. This work investigates the preparation of composites based on acetylated cellulose and partially deacetylated chitin, i.e., chitosan, using versatile and robust air-assisted solution spraying (AASS), a potential method for preparing materials both in situ and ex situ. These materials, in the form of films, despite being prepared from high-molecular-weight and rigid biopolymers, show high flexibility (Young’s moduli below 1 GPa), outstanding mechanical properties (tensile strengths above 19 MPa and strain at failure higher than 2%), and bioactivity towards E. coli. The unprecedented flexibility, obtained without the use of any plasticizer or by casting with humidity control, is a direct consequence of the specific film morphology, whereby films are constituted from merging droplets. Depending on the solution properties (viscosity, surface tension), various droplet sizes are obtained, thus influencing the roughness and indirectly the wettability. Wettability analysis towards water and oil revealed higher contact angles towards both fluids as the content of chitosan increases in the composite what directly impacts packaging applications by better protecting the food. Besides this, higher chitosan content in the composite (7.5% w/w) enabled bioactivity against E. coli, where colony development was inhibited on the film surface compared with the neat cellulose acetate. This study shows a very high potential for AASS for obtaining uniform thin flexible films for food packaging applications, allowing faster drying and lower energy consumption than other film-forming techniques. Full article
Show Figures

Graphical abstract

19 pages, 13501 KB  
Article
The Monomer Containing Cyano-Oxazine-Trifluoromethyl Groups for Enhancing Epoxy Resin: Thermal Stability, Flame Resistance and Mechanical Behaviors
by Cong Peng, Yuhang Liu, Duo Chen and Zhanjun Wu
Materials 2025, 18(18), 4279; https://doi.org/10.3390/ma18184279 - 12 Sep 2025
Viewed by 264
Abstract
To impart high flame resistance, enhanced thermal stability, and low dielectric properties to epoxy resin while maintaining good mechanical behaviors for high-end applications, a monomer (BZPN) containing the characteristic structure of benzoxazine, phthalonitrile, and trifluoromethyl was prepared and added into the Bisphenol A-type [...] Read more.
To impart high flame resistance, enhanced thermal stability, and low dielectric properties to epoxy resin while maintaining good mechanical behaviors for high-end applications, a monomer (BZPN) containing the characteristic structure of benzoxazine, phthalonitrile, and trifluoromethyl was prepared and added into the Bisphenol A-type epoxy resin (DGEBA)/Dapsone (DDS) combination. The glass transition temperature (Tg) and carbon yield under a nitrogen atmosphere at 800 °C were found to significantly increase from 155 °C, 17.2% to 236 °C, 50.3%, respectively, for the neat EP/DDS and the BZPN-containing material. The UL-94 flammability rating achieved V-0 level when the BZPN content was 19.2 wt.% (EP-BZ-1). The thermal decomposition and flame retardancy mechanism were explored by TGA-FTIR, Raman, and XPS analysis. The fluorine-containing products were found in both the gas phase and the char residue, implying that the •CF3 radicals played an important role in promoting the flame-retardant behaviors through a radical trapping mechanism. The dielectric constant and dielectric loss of the materials decreased as anticipated. In addition, mechanical testing of carbon fiber-reinforced composites showed that the BZPN-containing resin presented equivalent mechanical behaviors to the neat EP/DDS resin. The synthesized BZPN was proved to be an effective and promising additive for the epoxy-based composite. Full article
Show Figures

Figure 1

Back to TopTop