Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,839)

Search Parameters:
Keywords = NF-kB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3795 KiB  
Review
The Potential of Matrine in the Treatment of Breast Cancer: A Review
by Yumin Yang, Yufeng Li, Shanshan Liao, Pan Gao, Jie Tian, Cheng Fu, Xuhua Qin and Shenrui Jin
Biomedicines 2025, 13(6), 1355; https://doi.org/10.3390/biomedicines13061355 - 31 May 2025
Viewed by 57
Abstract
Breast cancer ranks as the fifth-most-prevalent malignancy worldwide, characterized by high heterogeneity and multifactorial etiology across molecular subtypes. Despite advancements in conventional therapies, including surgery and chemotherapy, persistent challenges such as treatment-related adverse effects and acquired drug resistance necessitate alternative therapeutic strategies. Matrine, [...] Read more.
Breast cancer ranks as the fifth-most-prevalent malignancy worldwide, characterized by high heterogeneity and multifactorial etiology across molecular subtypes. Despite advancements in conventional therapies, including surgery and chemotherapy, persistent challenges such as treatment-related adverse effects and acquired drug resistance necessitate alternative therapeutic strategies. Matrine, a naturally occurring alkaloid derived from Sophora flavescens, has demonstrated significant anticancer potential through multiple mechanisms. Experimental evidence indicates that matrine exerts inhibitory effects on tumor cell proliferation, promotes apoptosis, and attenuates metastatic progression via modulation of critical signaling pathways, particularly PI3K/Akt, JAK/STAT, NF-κB, MAPK/ERK, and Wnt/β-catenin. This review systematically examines subtype-specific responses to matrine treatment, highlighting its potential utility in precision oncology for distinct breast cancer classifications. Furthermore, we evaluate matrine’s capacity to synergize with standard chemotherapeutic regimens, potentially overcoming drug resistance while reducing required dosages. By integrating current preclinical and clinical findings, this analysis provides new perspectives on matrine’s therapeutic applications and underscores the imperative for translational studies to establish optimized treatment protocols for clinical implementation. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

18 pages, 16421 KiB  
Article
Mechanism of Ginsenosides in the Treatment of Diabetes Mellitus Based on Network Pharmacology and Molecular Docking
by Shengnan Huang, Fangfang Li, Dedi Xue, Xinyuan Shi, Xizhu Fang, Jiawei Li, Yuan Fu, Yuqing Zhao and Dan Jin
Int. J. Mol. Sci. 2025, 26(11), 5300; https://doi.org/10.3390/ijms26115300 - 30 May 2025
Viewed by 122
Abstract
Diabetes mellitus (DM) is a multifactorial metabolic disorder characterized by chronic hyperglycemia and systemic metabolic dysregulation. Although ginsenosides, the primary bioactive components of Panax ginseng Meyer, exhibit regulatory effects on glucose and lipid metabolism, their precise mechanisms and key targets in DM remain [...] Read more.
Diabetes mellitus (DM) is a multifactorial metabolic disorder characterized by chronic hyperglycemia and systemic metabolic dysregulation. Although ginsenosides, the primary bioactive components of Panax ginseng Meyer, exhibit regulatory effects on glucose and lipid metabolism, their precise mechanisms and key targets in DM remain incompletely understood. Unlike previous studies focusing solely on crude extracts or individual ginsenosides, this study integrates network pharmacology, molecular docking, and molecular dynamics (MD) simulations to systematically elucidate the multi-target mechanisms of ginsenosides, with experimental validation using the ginsenoside derivative AD-1. Network pharmacology identified 134 potential targets, with protein–protein interaction (PPI) analysis revealing 25 core targets (such as NFKB1, HDAC1, ESR1, and EP300). Molecular docking and MD simulations showed that ginsenosides have stable binding conformations with these targets and exhibit excellent dynamic stability. Notably, in vivo experiments using AD-1 in streptozotocin-induced type 1 diabetic mice confirmed its therapeutic efficacy, significantly downregulating key diabetic markers (e.g., NFKB1 and HDAC1) in pancreatic tissues—a finding unreported in prior studies. This study not only revealed the multitarget pharmacological mechanism of ginsenosides but also highlighted the therapeutic potential of AD-1. These findings provide a foundation for further mechanistic studies and suggest new strategies for the application of novel ginsenoside derivatives in diabetes therapy. Full article
(This article belongs to the Special Issue Network Pharmacology: An Emerging Field in Drug Discovery)
21 pages, 1684 KiB  
Review
Marine-Derived Astaxanthin: Molecular Mechanisms, Biomedical Applications, and Roles in Stem Cell Biology
by Aretha Rambaldi, Francesca Paris, Pasquale Marrazzo, Roberta Costa, Stefano Ratti and Francesco Alviano
Mar. Drugs 2025, 23(6), 235; https://doi.org/10.3390/md23060235 - 29 May 2025
Viewed by 130
Abstract
Astaxanthin (ASX) is a xanthophyll carotenoid mainly derived from marine microalgae such as Haematococcus pluvialis and Chlorella zofingiensis, as well as the yeast Phaffia rhodozyma. Its chemical nature structure, rich in conjugated double bonds, carbonyl, and hydroxyl groups, confers potent antioxidant [...] Read more.
Astaxanthin (ASX) is a xanthophyll carotenoid mainly derived from marine microalgae such as Haematococcus pluvialis and Chlorella zofingiensis, as well as the yeast Phaffia rhodozyma. Its chemical nature structure, rich in conjugated double bonds, carbonyl, and hydroxyl groups, confers potent antioxidant and anti-inflammatory properties. ASX modulates oxidative stress via the PI3K/Akt-Nrf2 pathway and suppresses NF-κB-mediated inflammatory responses, reducing cytokine levels such as TNF-α, IL-6, and iNOS. ASX exerts dual apoptotic effects, cytoprotective in non-transformed cells and pro-apoptotic in cancer cells through p53 activation. Sustainable extraction techniques, especially supercritical CO2, have improved its industrial applicability. Recent findings highlight ASX’s role in stem cell biology, enhancing proliferation, supporting lineage-specific differentiation, and protecting against oxidative and inflammatory damage, which is a crucial issue for regenerative medicine applications. These multifaceted molecular effects support ASX’s therapeutic potential in chronic diseases, including diabetes, cardiovascular pathologies, and cancer. This review outlines ASX’s natural sources, extraction methods, and biological mechanisms, emphasizing its application in oxidative stress- and inflammation-related conditions. Full article
(This article belongs to the Special Issue Recent Advances in Marine-Derived Pigments)
Show Figures

Figure 1

34 pages, 508 KiB  
Systematic Review
The Whisper of the Follicle: A Systematic Review of Micro Ribonucleic Acids as Predictors of Oocyte Quality and In Vitro Fertilization Outcomes
by Charalampos Voros, Antonia Varthaliti, Diamantis Athanasiou, Despoina Mavrogianni, Anthi-Maria Papahliou, Kyriakos Bananis, Aristotelis-Marios Koulakmanidis, Antonia Athanasiou, Aikaterini Athanasiou, Constantinos G. Zografos, Athanasios Gkirgkinoudis, Maria Anastasia Daskalaki, Dimitris Mazis Kourakos, Dimitrios Vaitsis, Ioannis Papapanagiotou, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradis and Georgios Daskalakis
Cells 2025, 14(11), 787; https://doi.org/10.3390/cells14110787 - 27 May 2025
Viewed by 95
Abstract
Background: MicroRNAs (miRNAs) in follicular fluid (FF) are being recognized as important regulators of ovarian function and biomarkers of reproductive success. This systematic analysis investigates FF-derived miRNAs and their relationship to polycystic ovarian syndrome (PCOS) and in vitro fertilization (IVF) outcomes. Methods: Following [...] Read more.
Background: MicroRNAs (miRNAs) in follicular fluid (FF) are being recognized as important regulators of ovarian function and biomarkers of reproductive success. This systematic analysis investigates FF-derived miRNAs and their relationship to polycystic ovarian syndrome (PCOS) and in vitro fertilization (IVF) outcomes. Methods: Following PRISMA recommendations, 21 original papers were included that looked at miRNA expression in FF or granulosa cells from women undergoing IVF, with or without PCOS. The study design, miRNA profiling methodologies, IVF protocols, and clinical results were gathered and analyzed. Results: Across the investigations, 15 miRNAs were regularly implicated, including miR-132, miR-320, miR-222, miR-224, miR-146a, and miR-93. Downregulation of miR-132 and miR-320 was consistently detected in PCOS and associated with decreased steroidogenesis. Elevated miR-222 and miR-146a were linked to insulin resistance and follicular inflammation. In IVF, miR-202-5p and miR-224 were elevated in high-quality embryos and successful cycles, indicating that they have roles in granulosa cell proliferation and estrogen synthesis. MiRNA dysregulation was linked to critical pathways, such as PI3K/AKT, NF-κB, TGF-β, and WNT. Conclusions: Specific FF miRNAs are consistently linked to PCOS pathogenesis and IVF effectiveness. Their use into noninvasive biomarker panels could improve embryonic selection and personalized reproductive care. Full article
Show Figures

Figure 1

50 pages, 1233 KiB  
Review
From Nature to Nanomedicine: Enhancing the Antitumor Efficacy of Rhein, Curcumin, and Resveratrol
by Ana-Maria Trofin, Dragoș Viorel Scripcariu, Silviu-Iulian Filipiuc, Anca-Narcisa Neagu, Leontina-Elena Filipiuc, Bogdan-Ionel Tamba, Madalina Maria Palaghia and Cristina Mariana Uritu
Medicina 2025, 61(6), 981; https://doi.org/10.3390/medicina61060981 - 26 May 2025
Viewed by 164
Abstract
Natural compounds have garnered increasing interest as potential antitumor agents due to their multifaceted biological activities and relatively low toxicity profiles. This review focuses on three well-studied natural molecules: rhein, curcumin, and resveratrol, analyzing and comparing their antitumor potential across a variety of [...] Read more.
Natural compounds have garnered increasing interest as potential antitumor agents due to their multifaceted biological activities and relatively low toxicity profiles. This review focuses on three well-studied natural molecules: rhein, curcumin, and resveratrol, analyzing and comparing their antitumor potential across a variety of cancer models. For each compound, we present an integrated perspective encompassing natural sources, physicochemical properties, pharmacological and pharmacokinetic characteristics, and the latest in vitro and in vivo evidence of anticancer activity. Special attention is given to the molecular mechanisms underlying their antitumor effects, including the modulation of cell cycle regulators, induction of apoptosis, inhibition of metastasis and angiogenesis, and regulation of key signaling pathways such as NF-κB, PI3K/Akt/mTOR, STAT3, and MAPKs. Although numerous studies highlighted their therapeutic promise, significant barriers remain—particularly related to poor solubility and limited bioavailability—which have hindered clinical translation, especially in the case of rhein. Advances in nanotechnology-based drug delivery systems offer promising solutions to these limitations, enabling improved targeting and enhanced efficacy. This review underscores the need for continued preclinical and clinical investigations to fully elucidate the therapeutic value of these compounds and support their integration into modern oncological treatment strategies. Full article
Show Figures

Graphical abstract

25 pages, 6518 KiB  
Article
Tolypothrix Strains (Cyanobacteria) as a Source of Bioactive Compounds with Anticancer, Antioxidant and Anti-Inflammatory Activity
by Ivanka Teneva, Tsvetelina Batsalova, Dzhemal Moten, Zhana Petkova, Olga Teneva, Maria Angelova-Romova, Ginka Antova and Balik Dzhambazov
Int. J. Mol. Sci. 2025, 26(11), 5086; https://doi.org/10.3390/ijms26115086 - 26 May 2025
Viewed by 128
Abstract
Cyanobacterial extracts offer significant potential for the development of new natural antioxidants and biologically active compounds with applications in various industries. Data on the genus Tolypothrix are limited; therefore, the aim of the present study was to investigate the anticancer, antioxidant and anti-inflammatory [...] Read more.
Cyanobacterial extracts offer significant potential for the development of new natural antioxidants and biologically active compounds with applications in various industries. Data on the genus Tolypothrix are limited; therefore, the aim of the present study was to investigate the anticancer, antioxidant and anti-inflammatory activity of extracts prepared from strains of this genus. Cytotoxicity and anticancer activity were evaluated by in vitro tests with four cell lines using the MTT assay. The assessment of antioxidant activity was performed by the DPPH and ABTS methods in combination with the calculation of the total phenolic content. Anti-inflammatory activity was investigated using the LPS-stimulated macrophage model (RAW264.7) and subsequent measurement of the levels of secreted cytokines IL-6 and TNF-α. The lipid content and fatty acid composition of the non-polar extracts were determined by gas chromatography (GC). To elucidate the mechanism of cytotoxicity/anticancer action of the non-polar extracts, the effects of stearidonic acid, which was detected in four of the studied cyanobacterial strains, were additionally tested on the same cell lines. A molecular docking analysis was performed simulating the interaction between stearidonic acid and its target molecules and receptors (ALOX5, COX-2, NF-kB and PPAR-γ). In all cancer cell lines (but not in the normal one), dose-dependent cytotoxic effects were observed after exposure to different concentrations of non-polar Tolypothrix extracts. The most pronounced inhibitory effect was observed on the HT-29 cell line, with an IC50 value of 106.27 µg/mL. A dose-dependent antioxidant effect was established for all tested extracts, measured by both DPPH and ABTS methods. All non-polar extracts reduced the production of pro-inflammatory cytokines IL-6 and TNF-α in LPS-stimulated macrophages RAW264.7, and the effects were dose-dependent. Analysis of the fatty acid composition revealed 26 different fatty acids. Our conclusion is that the Tolypothrix strains exhibit anticancer, antioxidant, and anti-inflammatory activity and could be a promising source for the production of natural products. Full article
Show Figures

Figure 1

25 pages, 2465 KiB  
Review
Progranulin’s Protective Mechanisms and Therapeutic Potential in Cardiovascular Disease
by Gan Qiao, Yongxiang Lu, Jianping Wu, Chunyang Ren, Roudian Lin and Chunxiang Zhang
Cells 2025, 14(11), 762; https://doi.org/10.3390/cells14110762 - 22 May 2025
Viewed by 332
Abstract
Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality globally, prompting the investigation of novel therapeutic targets. Progranulin (PGRN), a glycoprotein initially associated with neurodegenerative disorders, has emerged as a critical protective agent in cardiovascular health. Recent studies indicate that PGRN [...] Read more.
Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality globally, prompting the investigation of novel therapeutic targets. Progranulin (PGRN), a glycoprotein initially associated with neurodegenerative disorders, has emerged as a critical protective agent in cardiovascular health. Recent studies indicate that PGRN exerts its protective effects through various mechanisms, including the modulation of inflammatory pathways, enhancement of mitochondrial function, and promotion of vascular integrity. By engaging with key signaling pathways, such as PI3K/Akt, NF-κB and Wnt/β-catenin, PGRN mitigates oxidative stress and fosters an environment conducive to cardiac repair following ischemic injury. Furthermore, PGRN’s role in lipid metabolism and vascular smooth muscle cell behavior highlights its complexity in influencing atherogenesis and vascular homeostasis. This review synthesizes current knowledge regarding PGRN’s protective mechanisms in CVD, emphasizing its potential as a therapeutic target and paving the way for innovative approaches to prevent and treat cardiovascular diseases, ultimately improving patient outcomes in this critical area of public health. Full article
(This article belongs to the Special Issue Molecular Pathogenesis of Cardiovascular Diseases)
Show Figures

Graphical abstract

45 pages, 1507 KiB  
Review
BDNF/proBDNF Interplay in the Mediation of Neuronal Apoptotic Mechanisms in Neurodegenerative Diseases
by Marina Mitrovic, Dragica Selakovic, Nemanja Jovicic, Biljana Ljujic and Gvozden Rosic
Int. J. Mol. Sci. 2025, 26(10), 4926; https://doi.org/10.3390/ijms26104926 - 21 May 2025
Viewed by 148
Abstract
The neurotrophic system includes neurotrophins, such as brain-derived neurotrophic factor (BDNF) and its precursor proBDNF, which play conflicting roles in neuronal survival and apoptosis, with their balance having a significant impact on neurodegenerative outcomes. While BDNF is widely acknowledged as a potent neurotrophin [...] Read more.
The neurotrophic system includes neurotrophins, such as brain-derived neurotrophic factor (BDNF) and its precursor proBDNF, which play conflicting roles in neuronal survival and apoptosis, with their balance having a significant impact on neurodegenerative outcomes. While BDNF is widely acknowledged as a potent neurotrophin that promotes neuronal survival and differentiation, its precursor, proBDNF, has the opposite effect, promoting apoptosis and neuronal death. This review highlights the new and unique aspects of BDNF/proBDNF interaction in the modulation of neuronal apoptotic pathways in neurodegenerative disorders. It systematically discusses the cross-talk in apoptotic signaling at the molecular level, whereby BDNF activates survival pathways such as PI3K/Akt and MAPK/ERK, whereas proBDNF activates p75NTR and sortilin to induce neuronal apoptosis via JNK, RhoA, NFkB, and Rac-GTPase pathways such as caspase activation and mitochondrial injury. Moreover, this review emphasizes the factors that affect the balance between proBDNF and BDNF levels within the context of neurodegeneration, including proteolytic processing, the expression of TrkB and p75NTR receptors, and extrinsic gene transcription regulators. Cellular injury, stress, or signaling pathway alterations can disrupt the balance of BDNF/proBDNF, which may be involved in apoptotic-related neurodegenerative diseases like Alzheimer’s, Parkinson’s, and Huntington’s diseases. This review provides a comprehensive framework for targeting neurotrophin signaling in the development of innovative therapies for neuronal survival and managing apoptotic-related neurodegenerative disorders, addressing the mechanistic complexity and clinical feasibility of BDNF/proBDNF interaction. Full article
(This article belongs to the Special Issue Unraveling Apoptosis: Deciphering Molecular Mechanisms)
Show Figures

Figure 1

12 pages, 802 KiB  
Article
Effect of Thyroxine Replacement Therapy on Serum Maresin 1 and NF-kB Levels in Patients with Hashimoto Thyroiditis
by Meltem Yardim, Levent Deniz, Mehmet Akif Saltabas and Nilufer Celik
Diagnostics 2025, 15(10), 1248; https://doi.org/10.3390/diagnostics15101248 - 14 May 2025
Viewed by 322
Abstract
Background/Objectives: This study aimed to investigate the effects of thyroxine replacement therapy (TRT) on serum Maresin 1 and nuclear factor kappa beta (NF-kB) levels in patients with Hashimoto’s thyroiditis (HT). Methods: A total of 90 patients were included in this study, 60 with [...] Read more.
Background/Objectives: This study aimed to investigate the effects of thyroxine replacement therapy (TRT) on serum Maresin 1 and nuclear factor kappa beta (NF-kB) levels in patients with Hashimoto’s thyroiditis (HT). Methods: A total of 90 patients were included in this study, 60 with HT and 30 without. Patients in the HT group were divided into two groups according to whether they received TRT. Group 1 included 30 patients who underwent TRT, and Group 2 comprised 30 patients who were newly diagnosed with HT, either euthyroid or hypothyroid. The analysis included serum levels of thyroid-stimulating hormone (TSH), free thyroxine (FT4), free triiodothyronine (FT3), thyroid peroxidase antibody (TPOAb), Maresin 1, and NF-kB. Results: The serum NF-kB level in the TRT group was significantly higher than that in the control and non-TRT groups. In the subgroup analysis of patients who did not receive TRT, the serum NF-kB level in euthyroid patients was significantly lower than that in hypothyroid patients. Maresin 1 levels in the control group were significantly higher than those in patients who did and did not receive TRT. The serum Maresin 1 level in the TRT group was significantly lower than that in the untreated group. Maresin 1 levels were higher in the euthyroid group than in the hypothyroid group. TPOAb levels were positively correlated with NF-kB and negatively correlated with Maresin 1. Conclusions: TRT maintains the euthyroid state in patients with HT, but may not contribute positively to the pro-anti-inflammatory balance in these patients. Full article
(This article belongs to the Section Clinical Laboratory Medicine)
Show Figures

Figure 1

40 pages, 1547 KiB  
Review
P-Glycoprotein as a Therapeutic Target in Hematological Malignancies: A Challenge to Overcome
by Pablo Álvarez-Carrasco, Fernanda Morales-Villamil and Carmen Maldonado-Bernal
Int. J. Mol. Sci. 2025, 26(10), 4701; https://doi.org/10.3390/ijms26104701 - 14 May 2025
Viewed by 259
Abstract
P-glycoprotein (P-gp), a transmembrane efflux pump encoded by the ABCB1/MDR1 gene, is a major contributor to multidrug resistance in hematological malignancies. These malignancies, arising from hematopoietic precursors at various differentiation stages, can manifest in the bone marrow, circulate in the bloodstream, or infiltrate [...] Read more.
P-glycoprotein (P-gp), a transmembrane efflux pump encoded by the ABCB1/MDR1 gene, is a major contributor to multidrug resistance in hematological malignancies. These malignancies, arising from hematopoietic precursors at various differentiation stages, can manifest in the bone marrow, circulate in the bloodstream, or infiltrate tissues. P-gp overexpression in malignant cells reduces the efficacy of chemotherapeutic agents by actively expelling them, decreasing intracellular drug concentrations, and promoting multidrug resistance, a significant obstacle to successful treatment. This review examines recent advances in combating P-gp-mediated resistance, including the development of novel P-gp inhibitors, innovative drug delivery systems (e.g., nanoparticle-based delivery), and strategies to modulate P-gp expression or activity. These modulation strategies encompass targeting relevant signaling pathways (e.g., NF-κB, PI3K/Akt) and exploring drug repurposing. While progress has been made, overcoming P-gp-mediated resistance remains crucial for improving patient outcomes. Future research directions should prioritize the development of potent, selective, and safe P-gp inhibitors with minimal off-target effects, alongside exploring synergistic combination therapies with existing chemotherapeutics or novel agents to effectively circumvent multidrug resistance in hematological malignancies. Full article
(This article belongs to the Special Issue Advances in Cellular Immunotherapy for Hematological Malignancies)
Show Figures

Figure 1

25 pages, 2327 KiB  
Review
Phytochemicals Targeting Inflammatory Pathways in Alcohol-Induced Liver Disease: A Mechanistic Review
by Swati Tirunal Achary, Prerna Gupta, Apoorva Rajput, Wanphidabet Sohkhia, Srinivasa Reddy Bonam and Bidya Dhar Sahu
Pharmaceuticals 2025, 18(5), 710; https://doi.org/10.3390/ph18050710 - 11 May 2025
Viewed by 329
Abstract
Alcoholic beverages play a significant role in social engagement worldwide. Excessive alcohol causes a variety of health complications. Alcohol-induced liver disease (ALD) is responsible for the bulk of linked fatalities. The activation of immune mechanisms has a crucial role in developing ALD. No [...] Read more.
Alcoholic beverages play a significant role in social engagement worldwide. Excessive alcohol causes a variety of health complications. Alcohol-induced liver disease (ALD) is responsible for the bulk of linked fatalities. The activation of immune mechanisms has a crucial role in developing ALD. No effective medication promotes liver function, shields the liver from harm, or aids in hepatic cell regeneration. Alcohol withdrawal is one of the most beneficial therapies for ALD patients, which improves the patient’s chances of survival. There is a crucial demand for safe and reasonably priced approaches to treating it. Exploring naturally derived phytochemicals has been a fascinating path, and it has drawn attention in recent years to modulators of inflammatory pathways for the prevention and management of ALD. In this review, we have discussed the roles of various immune mechanisms in ALD, highlighting the importance of intestinal barrier integrity and gut microbiota, as well as the roles of immune cells and hepatic inflammation, and other pathways, including cGAS-STING, NLRP3, MAPK, JAK-STAT, and NF-kB. Further, this review also outlines the possible role of phytochemicals in targeting these inflammatory pathways to safeguard the liver from alcohol-induced injury. We highlighted that targeting immunological mechanisms using phytochemicals or herbal medicine may find a place to counteract ALD. Preclinical in vitro and in vivo investigations have shown promising results; nonetheless, more extensive work is required to properly understand these compounds’ mechanisms of action. Clinical investigations are very crucial in transferring laboratory knowledge into effective patient therapy. Full article
(This article belongs to the Special Issue Natural Products in Health Promotion and Disease Prevention 2025)
Show Figures

Figure 1

17 pages, 623 KiB  
Review
Epithelial Dysfunction in Congenital Diaphragmatic Hernia: Mechanisms, Models and Emerging Therapies
by Ophelia Aubert, Olivia M. Dinwoodie, Richard Wagner and Xingbin Ai
Cells 2025, 14(10), 687; https://doi.org/10.3390/cells14100687 - 9 May 2025
Viewed by 376
Abstract
Congenital diaphragmatic hernia (CDH) is a complex disorder whereby improper formation of the diaphragm allows herniation of the internal organs into the thoracic cavity, resulting in pulmonary hypoplasia among other complications. Although epithelial dysfunction is central to CDH pathology, relatively little attention has [...] Read more.
Congenital diaphragmatic hernia (CDH) is a complex disorder whereby improper formation of the diaphragm allows herniation of the internal organs into the thoracic cavity, resulting in pulmonary hypoplasia among other complications. Although epithelial dysfunction is central to CDH pathology, relatively little attention has been paid to the underlying mechanisms orchestrating epithelial malfunction. Proinflammatory signaling downstream of impaired mechanotransduction due to in utero lung compression has been elucidated to drive epithelial cell phenotypes. This has been illustrated by a reduction in nuclear YAP and the upregulation of NF-kB in CDH models. In this review, we draw from recent findings using emerging technologies to examine epithelial cell mechanisms in CDH and discuss the role of compression as a central and, crucially, sufficient driver of CDH phenotypes. In recognition of the limitations of using genetic knockout models to recapitulate such a heterogenic and etiologically complicated disease, we discuss alternative models such as the established nitrofen rat model, air–liquid interface (ALI) cultures, organoids and ex vivo lung explants. Throughout, we acknowledge the importance of involving mechanical compression in the modeling of CDH in order to faithfully recapitulate the disease. Finally, we explore novel therapeutic strategies from stem cell and regenerative therapies to precision medicine and the importance of defining CDH endotypes in order to guide treatments. Full article
Show Figures

Figure 1

23 pages, 8023 KiB  
Article
Efficient Production Strategy of a Novel Postbiotic Produced by Bacillus subtilis and Its Antioxidant and Anti-Inflammatory Effects
by Jing Zhang, Rijun Zhang, Junyong Wang, Zaheer Abbas, Yucui Tong, Yong Fang, Yichen Zhou, Haosen Zhang, Zhenzhen Li, Dayong Si and Xubiao Wei
Molecules 2025, 30(10), 2089; https://doi.org/10.3390/molecules30102089 - 8 May 2025
Viewed by 349
Abstract
Microbially synthesized postbiotics have unique properties and advantages; however, systematic studies on the efficient production and biological functions of postbiotics from Bacillus subtilis are limited, which greatly restricts their applications. In this study, we obtained a novel crude exopolysaccharide (EPS) postbiotic from Bacillus subtilis [...] Read more.
Microbially synthesized postbiotics have unique properties and advantages; however, systematic studies on the efficient production and biological functions of postbiotics from Bacillus subtilis are limited, which greatly restricts their applications. In this study, we obtained a novel crude exopolysaccharide (EPS) postbiotic from Bacillus subtilis H4. We systematically optimized the EPS production strategy using single-factor analysis, Plackett–Burman design, the path of steepest ascent method, and response surface methodology. The optimized EPS yield was significantly improved, with a maximum yield of 15.01 g/L under the addition of 4.12% soy peptone, 8.99% sucrose, and 0.06% MnSO4. We found that EPS is a neutral, heterogeneous polysaccharide with a pyranose ring, with a molecular weight of 44,304.913 kDa and a melting point of 218 °C. It consists of glucose, galactose, arabinose, glucosamine, and mannose at a molar ratio of 58.85:19.81:14.75:10.89:6.58. EPS exhibits strong antioxidant capacities, scavenging ABTS and DPPH radicals with IC50 values of 1 and 6 mg/mL, respectively. Moreover, it shows notable anti-inflammatory properties, dramatically inhibiting the lipopolysaccharide (LPS)-induced elevation of nitric oxide (NO) levels and over-activation of the TLR4-NF-κB signaling pathway. These findings highlight the potential of EPS as a multifunctional bioactive compound, offering great promise for its application in the food, clinical, and feed industries. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 4550 KiB  
Article
PI3K/mTOR Signaling Pathway Dual Inhibition for the Management of Neuroinflammation: Novel Insights from In Vitro Models
by Alessio Ardizzone, Sarah Adriana Scuderi, Giovanna Casili, Rossella Basilotta, Emanuela Esposito and Marika Lanza
Biomolecules 2025, 15(5), 677; https://doi.org/10.3390/biom15050677 - 7 May 2025
Viewed by 239
Abstract
Neuroinflammatory responses are central to the pathogenesis of neurodegenerative diseases, affecting cells of both neuronal and glial origin that respond to immune-driven inflammatory stimuli. The PI3K/mTOR signaling pathway is essential for the regulation of these neuroinflammatory processes and is therefore a promising target [...] Read more.
Neuroinflammatory responses are central to the pathogenesis of neurodegenerative diseases, affecting cells of both neuronal and glial origin that respond to immune-driven inflammatory stimuli. The PI3K/mTOR signaling pathway is essential for the regulation of these neuroinflammatory processes and is therefore a promising target for therapeutic intervention. Here, we investigated the consequences of PI3K/mTOR pathway inhibition on neuroinflammation employing PF-04691502, an agent with combined PI3K and mTOR inhibitory activity. We treated SH-SY5Y, C6, BV-2, and Mo3.13 cell lines with PF-04691502 at concentrations of 0.1, 0.5, and 1 µM to assess the modulation of neuroinflammatory responses. To induce inflammation, cells were stimulated with lipopolysaccharide (LPS, 1 μg/mL) and interferon-gamma (IFN-γ, 100 U/mL). The results from the MTT assays demonstrated that PI3K/mTOR inhibition preserved cell viability at 0.5 and 1 µM across all of the cell lines, indicating its potential to mitigate inflammation-driven cytotoxicity. Subsequent ELISA assays revealed a marked decrease in the NF-κB and pro-inflammatory cytokine levels, confirming the effective suppression of inflammation through PI3K/mTOR inhibition. In addition, the SH-SY5Y cell line was exposed to MPP+ to simulate Parkinson’s disease (PD)-like toxicity; then, cell viability, PD-associated markers, and apoptotic indicators were assessed. Our results indicate that inhibition of the PI3K/mTOR signaling axis may alleviate neurodegenerative processes by modulating both neuroinflammatory responses and apoptotic pathways. These findings highlight the therapeutic promise of targeting PI3K/mTOR in the context of neurodegenerative disorders and support the need for further validation through in vivo and clinical investigations. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

45 pages, 15819 KiB  
Review
The Molecular Basis of Pediatric Brain Tumors: A Review with Clinical Implications
by Elias Antoniades, Nikolaos Keffes, Stamatia Vorri, Vassilios Tsitouras, Nikolaos Gkantsinikoudis, Parmenion Tsitsopoulos and John Magras
Cancers 2025, 17(9), 1566; https://doi.org/10.3390/cancers17091566 - 4 May 2025
Viewed by 610
Abstract
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved [...] Read more.
Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. These lesions are the result of the aberrant cell signaling step proteins, which normally regulate cell proliferation. Mitogen-activated protein kinase (MAPK) pathways and tyrosine kinase receptors are involved in tumorigenesis of low-grade gliomas. High-grade gliomas may carry similar mutations, but loss of epigenetic control is the dominant molecular event; it can occur either due to histone mutations or inappropriate binding or unbinding of DNA on histones. Therefore, despite the absence of genetic alteration in the classic oncogenes or tumor suppressor genes, uncontrolled transcription results in tumorigenesis. Isocitric dehydrogenase (IDH) mutations do not predominate compared to their adult counterpart. Embryonic tumors include medulloblastomas, which bear mutations of transcription-regulating pathways, such as wingless-related integration sites or sonic hedgehog pathways. They may also relate to high expression of Myc family genes. Atypical teratoid rhabdoid tumors harbor alterations of molecules that contribute to ATP hydrolysis of chromatin. Embryonic tumors with multilayered rosettes are associated with microRNA mutations and impaired translation. Ependymomas exhibit great variability. As far as supratentorial lesions are concerned, the major events are mutations either of NFkB or Hippo pathways. Posterior fossa tumors are further divided into two types with different prognoses. Type A group is associated with mutations of DNA damage repair molecules. Lastly, germ cell tumors are a heterogeneous group. Among them, germinomas manifest KIT receptor mutations, a subgroup of the tyrosine kinase receptor family. Full article
(This article belongs to the Special Issue New Advances in the Treatment of Pediatric Solid Tumors)
Show Figures

Figure 1

Back to TopTop