Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = NOTCH 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3175 KB  
Article
Enhancement of Inner Race Fault Features in Servo Motor Bearings via Servo Motor Encoder Signals
by Yubo Lyu, Yu Guo, Jiangbo Li and Haipeng Wang
Vibration 2025, 8(4), 59; https://doi.org/10.3390/vibration8040059 - 1 Oct 2025
Abstract
This study proposes a novel framework to enhance inner race fault features in servo motor bearings by acquiring rotary encoder-derived instantaneous angular speed (IAS) signals, which are obtained from a servo motor encoder without requiring additional external sensors. However, such signals are often [...] Read more.
This study proposes a novel framework to enhance inner race fault features in servo motor bearings by acquiring rotary encoder-derived instantaneous angular speed (IAS) signals, which are obtained from a servo motor encoder without requiring additional external sensors. However, such signals are often obscured by strong periodic interferences from motor pole-pair and shaft rotation order components. To address this issue, three key improvements are introduced within the cyclic blind deconvolution (CYCBD) framework: (1) a comb-notch filtering strategy based on rotation domain synchronous averaging (RDA) to suppress dominant periodic interferences; (2) an adaptive fault order estimation method using the autocorrelation of the squared envelope spectrum (SES) for robust localization of the true fault modulation order; and (3) an improved envelope harmonic product (IEHP), based on the geometric mean of harmonics, which optimizes the deconvolution filter length. These combined enhancements enable the proposed improved CYCBD (ICYCBD) method to accurately extract weak fault-induced cyclic impulses under complex interference conditions. Experimental validation on a test rig demonstrates the effectiveness of the approach in enhancing and extracting the fault-related features associated with the inner race defect. Full article
(This article belongs to the Special Issue Vibration in 2025)
Show Figures

Figure 1

20 pages, 7870 KB  
Article
A New Species of Boulenophrys (Megophridae) from Mt. Hengshan, Hunan Province, China, with Re-Description on B. hengshanensis
by Dai-Yong Kuang, Yi-Fu Wei, Yi-Sha Luo, Kang-Wen Pei, Ying-Yue Cao, Meng-Fei Zhang, Tai-Fu Huang, Ling Pu and Sheng-Chao Shi
Animals 2025, 15(18), 2745; https://doi.org/10.3390/ani15182745 - 19 Sep 2025
Viewed by 762
Abstract
Boulenophrys gutu sp. nov. was described from Mt. Hengshan, and B. hengshanensis was re-described based on the holotype and newly collected specimens using phylogenetic and morphological evidence. The new species forms an independent clade, and it is diagnosed by a combination of [...] Read more.
Boulenophrys gutu sp. nov. was described from Mt. Hengshan, and B. hengshanensis was re-described based on the holotype and newly collected specimens using phylogenetic and morphological evidence. The new species forms an independent clade, and it is diagnosed by a combination of following characters: (1) male SVL 34.4–44.7 mm (n = 7), female SVL 36.2–52.8 mm (n = 8); (2) dorsal surface of head, body, and limbs relatively smooth; (3) vomerine ridge weak, vomerine teeth absent; (4) narrow lateral fringes on toes; (5) heels moderate long, meeting when thighs are positioned at right angles to body; (6) supratympanic fold behind tympanum thick, distinctly enlarged with thickness near diameter of tympanum; (7) inner metatarsal tubercle small (IMT/SVL 4.4–5.2%); (8) several large dark brown patches along both ventrolateral sides of abdomen; (9) coloration of inner and outer metacarpal tubercle, inner metatarsal tubercle, and tip of digits ivory. Phylogenetic analyses based on 16S rRNA and COI genes revealed that B. hengshanensis is sister to B. wugongensis. Morphological comparisons showed that B. hengshanensis is diagnosed by a combination of following characters: (1) moderate body size, male SVL 34.4–38.0 mm (n = 9), female SVL 48.4 mm (n = 1); (2) weak vomerine ridge, absence of vomerine teeth; (3) tongue not notched behind; (4) a small horn-like tubercle on upper eyelid; (5) rudimentary webbing between toes; (6) narrow lateral fringes on toes; (7) heels relatively short, not meeting when thighs are positioned at right angles to body; (8) supratympanic fold behind tympanum narrow, not distinctly enlarged; (9) a pair of dark brown broad stripes along ventrolateral sides of abdomen; (10) dense creamy white dots present on lower abdomen, merge with deep brown patches without clear boundary. Full article
Show Figures

Figure 1

12 pages, 229 KB  
Article
Congenital Diaphragmatic Hernia and Joint Laxity: A Putative Link with Heritable Connective Tissue Disorders
by Alessandra Di Pede, Monia Magliozzi, Laura Valfré, Maria Lisa Dentici, Flaminia Pugnaloni, Viola Alesi, Andrea Conforti, Irma Capolupo, Annabella Braguglia, Andrea Dotta, Pietro Bagolan, Antonio Novelli and Maria Cristina Digilio
Genes 2025, 16(9), 1066; https://doi.org/10.3390/genes16091066 - 10 Sep 2025
Viewed by 306
Abstract
Background/Objectives: The etiology of congenital diaphragmatic hernia (CDH) remains unknown in over 50% of cases, although multiple heterogeneous causative defects have been identified. Emerging evidence suggests that specific genes and molecular pathways involved in connective tissue biology may contribute to CDH development. Associations [...] Read more.
Background/Objectives: The etiology of congenital diaphragmatic hernia (CDH) remains unknown in over 50% of cases, although multiple heterogeneous causative defects have been identified. Emerging evidence suggests that specific genes and molecular pathways involved in connective tissue biology may contribute to CDH development. Associations between CDH and connective tissue disorders have been reported, including cases in Marfan syndrome and a prevalence of CDH in 34% of patients with arterial tortuosity syndrome. Noticing joint laxity in several CDH patients, we aimed to investigate the presence of genetic variants linked to connective tissue disorders in this subgroup, focusing on patients enrolled in the follow-up program at Bambino Gesù Children’s Hospital. Methods: We selected patients diagnosed with CDH who also exhibited joint laxity based on a positive Beighton scale. These individuals underwent molecular analysis targeting genes known to be associated with heritable connective tissue disorders. Results: Genetic testing revealed variants in several genes across our patient series. These included mutations in FBN1, FBN2, ZNF469, VEGFA, NOTCH1, ELN, MCTP2, and SMAD6. In some cases, the variants were inherited paternally, while others appeared de novo. Most of these variants were classified as of unknown significance according to ACMG guidelines. Conclusions: (1) Several “variants of unknown significance” in different genes causative for connective tissue disorders have been detected in half of the present series of patients with CDH and joint laxity; (2) although the majority of the variants are classified accordingly to the ACMG as “variants of unknown significance”, a role of predisposition or susceptibility to CDH cannot be excluded; (3) a precise clinical evaluation for features of connective disorders should be recommended in the diagnostic workflow of patients with CDH. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
18 pages, 2054 KB  
Article
An Experimental Study on the Expansion Rate of Blasting Cracks in Prefabricated Grooved Concrete Under Vertical Stresses
by Mengxiang Wang and Qian Dong
Appl. Sci. 2025, 15(17), 9747; https://doi.org/10.3390/app15179747 - 4 Sep 2025
Viewed by 503
Abstract
With the advancement of deep engineering (e.g., deep resource development, tunnel excavation), the deep rock mass is in a high in situ stress environment, leading to a critical engineering challenge: traditional blasting often causes disordered blast-induced crack propagation (severe deviation from the target [...] Read more.
With the advancement of deep engineering (e.g., deep resource development, tunnel excavation), the deep rock mass is in a high in situ stress environment, leading to a critical engineering challenge: traditional blasting often causes disordered blast-induced crack propagation (severe deviation from the target direction) and unstable expansion rates, which reduce the directional blasting efficiency, trigger over-excavation/under-excavation, and threaten construction safety. Water jet notching is a promising directional control technique, but its coupling effect with vertical stress (a dominant component of in situ stress) on blasting crack characteristics remains unclear—hindering its application in deep engineering. To address this problem, reveal the law of blasting crack expansion in deep rock, explore the mechanism of controlled blasting for deep rock fractures, and clarify the effect of deep environmental water jet notching on the blasting effect, this study carried out experimental research on the crack extension velocity of the directional blasting of prefabricated grooved concrete under vertical stress (based on the crack extension strain gauge test system and perimeter pressure loading system) and verified the results by numerical simulations. The main conclusions are as follows: (1) Within the experimental test range, with the increase in vertical stress, the deviation of cracks from the prefabricated groove center in the vertical direction gradually decreases, indicating that vertical stress can further guide the direction of the crack extension on the basis of prefabricated grooves. (2) The experimentally measured crack expansion velocity shows a decreasing trend with the increase in the crack expansion length; the average crack expansion velocity is enhanced with the increase in vertical stress, while the change in the crack tip velocity is suppressed as a whole and gradually tends to be flat at approximately 555.6 m/s. (3) Numerical simulation results (using a model replicating the experimental concrete specimens) further verify the accuracy of the experimental results: the increase in vertical stress further guides the vertical crack expansion, enhances the average crack expansion velocity, and slows down the decay of the crack extension velocity. The core value of this research lies in “converting theoretical experimental data into engineering control capabilities.” Its findings can be directly applied to key areas such as deep resource development, tunnel engineering, and water conservancy projects. While ensuring engineering safety, improving efficiency, and reducing costs, it also provides scientific support for engineering construction in complex geological conditions. Full article
Show Figures

Figure 1

14 pages, 1200 KB  
Article
Mutational Characterization of Astrocytoma, IDH-Mutant, CNS WHO Grade III in the AACR GENIE Database
by Elijah Torbenson, Beau Hsia, Nigel Lang and Peter Silberstein
DNA 2025, 5(3), 43; https://doi.org/10.3390/dna5030043 - 4 Sep 2025
Viewed by 536
Abstract
Background/Objectives: Astrocytoma, IDH-mutant, CNS WHO grade 3, is a diffuse glioma with poor prognosis, molecularly defined by IDH mutations and frequently co-occurring TP53 and ATRX alterations. This study aimed to delineate the genomic landscape and identify clinically relevant molecular features of astrocytoma, IDH-mutant, [...] Read more.
Background/Objectives: Astrocytoma, IDH-mutant, CNS WHO grade 3, is a diffuse glioma with poor prognosis, molecularly defined by IDH mutations and frequently co-occurring TP53 and ATRX alterations. This study aimed to delineate the genomic landscape and identify clinically relevant molecular features of astrocytoma, IDH-mutant, CNS WHO grade 3 using this resource. Methods: Patients in the American Association for Cancer Research Project Genomics Evidence Neoplasia Information Exchange (AACR Project GENIE) database were selected based on histological diagnosis of “anaplastic astrocytoma”, confirmed IDH1/2 mutation, and exclusion of CDKN2A/B homozygous deletions. We analyzed frequencies of somatic mutations, copy number alterations (CNAs), structural variants (SVs), assessed co-occurrence/exclusivity patterns, and explored associations with available demographic and limited survival data. Results: The most common somatic mutations were in IDH1 (98.0%), TP53 (94.8%), and ATRX (55.2%). The observed ATRX mutation frequency was lower than some historical reports (e.g., ~86%). Other recurrent alterations included phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) (6.9%), Notch receptor 1 (NOTCH1) (6.9%), and platelet-derived growth factor receptor alpha (PDGFRA) (mutations 4.3%; CNAs also observed). Conclusions: This study provides a comprehensive genomic characterization of astrocytoma, IDH-mutant, CNS WHO grade 3 using the AACR GENIE database, confirming core mutational signatures while also highlighting potential variations in alteration frequencies, such as for ATRX. The findings establish a valuable real-world genomic benchmark for this tumor type, while promoting the need for continued data integration with robust clinical outcomes to identify actionable prognostic and therapeutic targets. Full article
Show Figures

Figure 1

14 pages, 3281 KB  
Article
Research on the Johnson–Cook Constitutive Model and Failure Behavior of TC4 Alloy
by Jiaxuan Zhu, Huidong Zhi, Tong Huang, Ning Ding and Zhaoming Yan
Metals 2025, 15(9), 951; https://doi.org/10.3390/met15090951 - 27 Aug 2025
Viewed by 547
Abstract
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile [...] Read more.
This study investigates the mechanical response characteristics and damage evolution behavior of TC4 alloy through quasi-static/dynamic coupled experimental methods. Quasi-static tensile tests at varying temperatures (293 K, 423 K, and 623 K) were conducted using a universal testing machine, while room-temperature dynamic tensile tests (strain rate 1000–3000 s−1) were performed with a Split Hopkinson Tensile Bar (SHTB). Key findings include the following: (1) Significant temperature-softening effect was observed, with flow stress decreasing markedly as temperature increased; (2) Notch size effect influenced mechanical properties, showing 50% enhancement in post-fracture elongation when notch radius increased from 3 mm to 6 mm; and (3) Strain-hardening effect exhibited rate dependence under dynamic loading, with reduced hardening index within the tested strain rate range. The Johnson–Cook constitutive model and failure criterion were modified and parameterized based on experimental data. A 3D tensile simulation model developed in ABAQUS demonstrated strong agreement with experimental results, achieving a 0.97 correlation coefficient for load–displacement curves, thereby validating the modified models. Scanning electron microscopy (SEM) analysis of fracture surfaces revealed temperature- and strain rate-dependent microstructural characteristics, dominated by ductile fracture mechanisms involving microvoid nucleation, growth, and coalescence. This research provides theoretical foundations for analyzing Ti alloy structures under impact loading through established temperature–rate-coupled constitutive models. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

27 pages, 5653 KB  
Article
An Investigation into the Optical Identification of Flaws in Excavated Ceramic Artifacts via Limited-Data Simulation
by Haotian Yuan, Xiaohan Dou, Gengpei Zhang and Yuanyuan Zhang
Sensors 2025, 25(16), 5172; https://doi.org/10.3390/s25165172 - 20 Aug 2025
Viewed by 707
Abstract
The Terracotta Army, an integral part of China’s cultural heritage, has suffered physical erosion like cracks and notches over time. Manual inspection methods are inefficient and subjective. This study proposes an automated defect detection system based on computer vision to enhance the efficiency [...] Read more.
The Terracotta Army, an integral part of China’s cultural heritage, has suffered physical erosion like cracks and notches over time. Manual inspection methods are inefficient and subjective. This study proposes an automated defect detection system based on computer vision to enhance the efficiency and precision of detecting these defects. The system includes the following core modules: (1) high-resolution image acquisition, which ensures comprehensive and detailed data capture; (2) sophisticated image illumination processing, which compensates for varying lighting conditions and improves image quality; (3) advanced image data augmentation techniques, which enrich the dataset and improve the generalization ability of the detection model; and (4) accurate defect detection, which leverages state-of-the-art algorithms. In the experimental phase, the efficacy of the proposed approach was evaluated. Illumination-enhanced low-light images were used for data augmentation, and the generated images showed high similarity to the original images, as measured by PSNR and SSIM. The YOLOv10 algorithm was employed for defect detection and achieved average detection rates of 91.71% for cracks and 93.04% for abrasions. This research provides a scientific and efficient solution for cultural relic protection and offers a valuable reference for future research in heritage conservation. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

27 pages, 3015 KB  
Article
Effects of Asprosin and Role of TLR4 as a Biomarker in Endometrial Cancer
by Rebecca Karkia, Cristina Sisu, Sayeh Saravi, Ioannis Kyrou, Harpal S. Randeva, Jayanta Chatterjee and Emmanouil Karteris
Molecules 2025, 30(16), 3410; https://doi.org/10.3390/molecules30163410 - 18 Aug 2025
Viewed by 794
Abstract
(1) Background: Following the discovery of the adipokine/hormone asprosin, a substantial amount of research has provided evidence for its role in the regulation of glucose homeostasis, as well as appetite, and insulin sensitivity. Its levels are dysregulated in certain disease states, including breast [...] Read more.
(1) Background: Following the discovery of the adipokine/hormone asprosin, a substantial amount of research has provided evidence for its role in the regulation of glucose homeostasis, as well as appetite, and insulin sensitivity. Its levels are dysregulated in certain disease states, including breast cancer. To date, little is known about its role in endometrial cancer (EC). The present study investigated the effects of asprosin on the transcriptome of the Ishikawa and NOU-1 EC cell lines, and assessed the expression of asprosin’s candidate receptors (TLR4, PTPRD, and OR4M1) in health and disease. (2) Methods: tissue culture, RNA extraction, RNA sequencing, reverse transcription-quantitative PCR, gene enrichment and in silico analyses were used for this study. (3) Results: TLR4 and PTPRD were significantly downregulated in EC when compared to healthy controls. TLR4 appeared to have a prognostic role in terms of overall survival (OS) in EC patients (i.e., higher expression, better OS). RNA sequencing revealed that asprosin affected 289 differentially expressed genes (DEGs) in Ishikawa cells and 307 DEGs in NOU-1 cells. Pathway enrichment included apoptosis, glycolysis, hypoxia, and PI3K/AKT/ mTOR/NOTCH signalling for Ishikawa-treated cells. In NOU-1, enriched processes included inflammatory response, epithelial-mesenchymal transition, reactive oxygen species pathways, and interferon gamma responses. Other signalling pathways included mTORC1, DNA repair, and p53, amongst others. (4) Conclusions: These findings underscore the importance of understanding receptor dynamics and signalling pathways in the context of asprosin’s role in EC, and provide evidence for a potential role of TLR4 as a diagnostic biomarker. Full article
(This article belongs to the Special Issue Novel Metabolism-Related Biomarkers in Cancer)
Show Figures

Figure 1

12 pages, 2034 KB  
Article
Non-Destructive Eddy Current Testing System Based on Discrete Wavelet Transform
by Zhengtao Xia and Jia Jia
Electronics 2025, 14(16), 3239; https://doi.org/10.3390/electronics14163239 - 15 Aug 2025
Viewed by 460
Abstract
As a form of non-destructive testing, eddy current testing is widely used for detecting surface micro-damage on metal components in sectors such as aerospace. Conventional frequency-domain analysis techniques often fail to effectively extract defect-related features from non-stationary eddy current signals. This paper proposes [...] Read more.
As a form of non-destructive testing, eddy current testing is widely used for detecting surface micro-damage on metal components in sectors such as aerospace. Conventional frequency-domain analysis techniques often fail to effectively extract defect-related features from non-stationary eddy current signals. This paper proposes an ECT system based on the Discrete Wavelet Transform to address this limitation. In hardware design, the system employs a DDS to generate a 1 MHz excitation signal for the probe. High-precision acquisition of defect response signals is achieved using an IQ demodulator and a 24-bit ADC. For signal processing, the Haar wavelet is applied for single-level decomposition. This method successfully isolates the defect response signal within the high-frequency detail coefficients. Experimental results demonstrate that for a metal surface notch with a depth of 1 mm, the system significantly improves the SNR, resulting in a ΔSNR improvement of 3.64 dB, which is 0.36 dB higher than that achieved using time-domain processing. Full article
Show Figures

Figure 1

20 pages, 4630 KB  
Article
A Novel Flow Characteristic Regulation Method for Two-Stage Proportional Valves Based on Variable-Gain Feedback Grooves
by Xingyu Zhao, Huaide Geng, Long Quan, Chengdu Xu, Bo Wang and Lei Ge
Machines 2025, 13(8), 648; https://doi.org/10.3390/machines13080648 - 24 Jul 2025
Viewed by 486
Abstract
The two-stage proportional valve is a key control component in heavy-duty equipment, where its signal-flow characteristics critically influence operational performance. This study proposes an innovative flow characteristic regulation method using variable-gain feedback grooves. Unlike conventional throttling notch optimization, the core mechanism actively adjusts [...] Read more.
The two-stage proportional valve is a key control component in heavy-duty equipment, where its signal-flow characteristics critically influence operational performance. This study proposes an innovative flow characteristic regulation method using variable-gain feedback grooves. Unlike conventional throttling notch optimization, the core mechanism actively adjusts pilot–main valve mapping through feedback groove shape and area gain adjustments to achieve the desired flow curves. This approach avoids complex throttling notch issues while retaining the valve’s high dynamics and flow capacity. Mathematical modeling elucidated the underlying mechanism. Subsequently, trapezoidal and composite feedback grooves are designed and investigated via simulation. Finally, composite feedback groove spools tailored to construction machinery operating conditions are developed. Comparative experiments demonstrate the following: (1) Pilot–main mapping inversely correlates with area gain; increasing gain enhances micro-motion control, while decreasing gain boosts flow gain for rapid actuation. (2) This method does not significantly increase pressure loss or energy consumption (measured loss: 0.88 MPa). (3) The composite groove provides segmented characteristics; its micro-motion flow gain (2.04 L/min/0.1 V) is 61.9% lower than conventional valves, significantly improving fine control. (4) Adjusting groove area gain and transition point flexibly modifies flow gain and micro-motion zone length. This method offers a new approach for high-performance valve flow regulation. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

17 pages, 3279 KB  
Article
Rapid Assessment of Ti-6Al-4V Fatigue Limit via Infrared Thermography
by Chiara Colombo, Antonio Salerno, Arthur Teyssiéras and Carlo Alberto Biffi
Metals 2025, 15(8), 825; https://doi.org/10.3390/met15080825 - 23 Jul 2025
Cited by 1 | Viewed by 488
Abstract
The experimental tests needed for the estimation of the fatigue limit generally require extensive time and many specimens. A valid but not standardized alternative is the thermographic analysis of the self-heating phenomenon. The present work is aimed at using Infrared thermography to determine [...] Read more.
The experimental tests needed for the estimation of the fatigue limit generally require extensive time and many specimens. A valid but not standardized alternative is the thermographic analysis of the self-heating phenomenon. The present work is aimed at using Infrared thermography to determine the fatigue limit in two kinds of Ti-6Al-4V samples obtained by hot rolling: (1) with the standard dog-bone shape (unnotched specimen) and (2) with two opposed semicircular notches at the sides (notched specimen). Uniaxial tensile experiments are performed on unnotched samples, and the surface temperature variation during loading is monitored. The stress corresponding to the end of the thermoelastic stage gives a rough indication of the fatigue limit. Then, fatigue tests at different sinusoidal loads are performed, and the thermographic signal is monitored and processed. The results obtained using lock-in thermography in dissipative mode, e.g., analyzing the second harmonic, showed a sudden change in slope when the applied stress exceeded a certain limit. This slope change is related to the fatigue limit. In addition, the ratio between the fatigue limits obtained for notched and unnotched specimens, e.g., the fatigue strength reduction factor, is consistent with literature values based on the selected geometry. Full article
(This article belongs to the Special Issue Fracture Mechanics of Metals (2nd Edition))
Show Figures

Figure 1

16 pages, 2433 KB  
Article
A Single-Cell Assessment of Intramuscular and Subcutaneous Adipose Tissue in Beef Cattle
by Mollie M. Green, Hunter R. Ford, Alexandra P. Tegeler, Oscar J. Benitez, Bradley J. Johnson and Clarissa Strieder-Barboza
Agriculture 2025, 15(14), 1545; https://doi.org/10.3390/agriculture15141545 - 18 Jul 2025
Viewed by 2609
Abstract
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of [...] Read more.
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of strategies for marbling enhancement while limiting the accumulation of excessive subcutaneous adipose tissue (SAT). The objective of this exploratory study was to define the IM and SAT transcriptional heterogeneity at the whole tissue and single-nuclei levels in beef steers. Longissimus dorsi muscle samples (9–11th rib) were collected from two finished beef steers at harvest to dissect matched IM and adjacent SAT (backfat). Total RNA from IM and SAT was isolated and sequenced in an Illumina NovaSeq 6000. Nuclei from the same samples were isolated by dounce homogenization, libraries generated with 10× Genomics, and sequenced in an Illumina NovaSeq 6000, followed by analysis via Cell Ranger pipeline and Seurat in RStudio (v4.3.2) By the expression of signature marker genes, single-nuclei RNA sequencing (snRNAseq) analysis identified mature adipocytes (AD; ADIPOQ, LEP), adipose stromal and progenitor cells (ASPC; PDGFRA), endothelial cells (EC; VWF, PECAM1), smooth muscle cells (SMC; NOTCH3, MYL9) and immune cells (IMC; CD163, MRC1). We detected six cell clusters in SAT and nine in IM. Across IM and SAT, AD was the most abundant cell type, followed by ASPC, SMC, and IMC. In SAT, AD made up 50% of the cellular population, followed by ASPC (31%), EC (14%), IMC (1%), and SMC (4%). In IM depot, AD made up 23% of the cellular population, followed by ASPC at 19% of the population, EC at 28%, IMC at 7% and SMC at 12%. The abundance of ASPC and AD was lower in IM vs. SAT, while IMC was increased, suggesting a potential involvement of immune cells on IM deposition. Accordingly, both bulk RNAseq and snRNAseq analyses identified activated pathways of inflammation and metabolic function in IM. These results demonstrate distinct transcriptional cellular heterogeneity between SAT and IM depots in beef steers, which may underly the mechanisms by which fat deposits in each depot. The identification of depot-specific cell populations in IM and SAT via snRNAseq analysis has the potential to reveal target genes for the modulation of fat deposition in beef cattle. Full article
Show Figures

Figure 1

20 pages, 2236 KB  
Article
Designing Quadcolor Cameras with Conventional RGB Channels to Improve the Accuracy of Spectral Reflectance and Chromaticity Estimation
by Senfar Wen and Yu-Che Wen
Optics 2025, 6(3), 32; https://doi.org/10.3390/opt6030032 - 15 Jul 2025
Viewed by 423
Abstract
Quadcolor cameras with conventional RGB channels were studied. The fourth channel was designed to improve the estimation of the spectral reflectance and chromaticity from the camera signals. The RGB channels of the quadcolor cameras considered were assumed to be the same as those [...] Read more.
Quadcolor cameras with conventional RGB channels were studied. The fourth channel was designed to improve the estimation of the spectral reflectance and chromaticity from the camera signals. The RGB channels of the quadcolor cameras considered were assumed to be the same as those of the Nikon D5100 camera. The fourth channel was assumed to be a silicon sensor with an optical filter (band-pass filter or notch filter). The optical filter was optimized to minimize a cost function consisting of the spectral reflectance error and the weighted chromaticity error, where the weighting factor controls the contribution of the chromaticity error. The study found that using a notch filter is more effective than a band-pass filter in reducing both the mean reflectance error and the chromaticity error. The reason is that the notch filter (1) improves the fit of the quadcolor camera sensitivities to the color matching functions and (2) provides sensitivity in the wavelength region where the sensitivities of RGB channels are small. Munsell color chips under illuminant D65 were used as samples. Compared with the case without the filter, the mean spectral reflectance rms error and the mean color difference (ΔE00) using the quadcolor camera with the optimized notch filter reduced from 0.00928 and 0.3062 to 0.0078 and 0.2085, respectively; compared with the case of using the D5100 camera, these two mean metrics reduced by 56.3%. Full article
Show Figures

Figure 1

19 pages, 8205 KB  
Article
The Unilateral Jumping Structures of the Spotted Lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae): A Highly Functional and Integrated Unit
by Xu Chen and Aiping Liang
Biomimetics 2025, 10(7), 444; https://doi.org/10.3390/biomimetics10070444 - 6 Jul 2025
Viewed by 2907
Abstract
Previous research on the jumping structures of insects with strong leaping abilities mainly focused on overall jumping mechanisms. Our study reveals that the unilateral jumping structures (UJSs) of L. delicatula has relative functional autonomy. The UJSs consist of three distinct but interconnected parts: [...] Read more.
Previous research on the jumping structures of insects with strong leaping abilities mainly focused on overall jumping mechanisms. Our study reveals that the unilateral jumping structures (UJSs) of L. delicatula has relative functional autonomy. The UJSs consist of three distinct but interconnected parts: (1) energy storage component: it comprises the pleural arch and trochanteral depressor muscles, with the deformation zone extending about two-thirds of the pleural arch from the V-notch to the U-notch; (2) coupling component: made up of the coxa and trochanter, it serves as a bridge between the energy and lever components, connecting them via protuberances and pivots; and (3) lever component: it encompasses the femur, tibia, and tarsus. A complete jumping action lasts from 2.4 ms to 4.6 ms. During a jump, the deformation length of the pleural arch is 0.96 ± 0.06 mm. The angles ∠ct (angle between coxa and trochanter), ∠fp (angle between femur and pleural arch), and ∠ft (angle between femur and tibia) change by 57.42 ± 1.60, 101.40 ± 1.59, and 36.06 ± 2.41 degrees, respectively. In this study, we abstracted the jumping structures of L. delicatula and identified its critical components. The insights obtained from this study are anticipated to provide valuable inspiration for the design and fabrication of biomimetic jumping mechanisms. Full article
(This article belongs to the Special Issue Biomechanics and Biomimetics for Insect-Inspired MAVs)
Show Figures

Figure 1

12 pages, 1830 KB  
Article
Identification of the Pathogen Dorcadia ioffi Smit and Evaluation of the Effect of Different Drugs
by Xin Li, Zihang Qin, Haiyan Wang, Jiangtao Xia, Yukang Zhao, Xuelian Ma, Na Li and Gang Yao
Vet. Sci. 2025, 12(7), 641; https://doi.org/10.3390/vetsci12070641 - 4 Jul 2025
Viewed by 533
Abstract
Vermipsyllid parasitize the body surface of sheep, feeding on blood and transmitting diseases, causing severe economic losses to the livestock industry. An outbreak of sheep Vermipsyllid fleas in the mountain pastures of Xinjiang’s Altai region showed that several commonly used commercial anthelmintic drugs [...] Read more.
Vermipsyllid parasitize the body surface of sheep, feeding on blood and transmitting diseases, causing severe economic losses to the livestock industry. An outbreak of sheep Vermipsyllid fleas in the mountain pastures of Xinjiang’s Altai region showed that several commonly used commercial anthelmintic drugs had poor therapeutic effects on the prevalent flea species. This study first conducted species identification of Vermipsyllid through morphological analysis of 200 female and 40 male specimens collected from the Altai region, followed by molecular biological identification of 6 randomly selected fleas (3 females and 3 males). Finally, pharmacodynamic experiments were performed to screen for highly effective anthelmintic drugs. Ninety Altai multiparous ewes infected with Vermipsyllid were divided into six groups (fifteen sheep per group): an untreated control group (Ctr), avermectin injection group (Group I), ivermectin injection group (Group II), moxidectin pour-on group (Group III), cypermethrin pour-on group (Group IV), and dichlorvos pour-on group (Group V), with a 14-day trial period. On Day 0, each group received a single treatment according to drug instructions and specified dosages. The number of fleas, flea population reduction rates, and cure rates were measured on Day 0, Day 3, Day 7, and Day 14 to screen for effective anthelmintic drugs. Results showed that unfed female and male fleas were grayish-brown. Engorged females reached 14.15 mm in size, appearing pale white or yellow, with their sterna maintaining the original size and shape despite abdominal distension. Female fleas had 20–21 segments on the labium, while males had 16–19 segments. The hind tibiae featured four notches, and each side of the tergite had 13 ± 1 cup-like indentations. Molecular biological identification indicated that the identified fleas belonged to D. ioffi (Vermipsyllidae, Dorcadia Ioff), showing 99.13% sequence similarity with D. ioffi from Xinjiang, China. In pharmacodynamic experiments, the number of D. ioffi in Groups IV and V decreased to zero on both Day 7 and Day 14, which was extremely significantly lower than other groups (p < 0.01). The flea population reduction rates in Groups IV and V reached 100% on both days. By Day 14, the cure rates of Groups I, II, and III were 0%, while those of Groups IV and V were 100%. Avermectin injection, ivermectin injection, and moxidectin pour-on showed poor anthelmintic effects, whereas cypermethrin and dichlorvos pour-on exhibited high anthelmintic activity against this flea species. Full article
Show Figures

Figure 1

Back to TopTop