Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (139)

Search Parameters:
Keywords = NPF

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3543 KB  
Article
Synthesis, Electrochemistry, and Optoelectronic Properties of Biphenyl-EDOT-Based Electrochromic Polymers
by Shuanglai Shen, Yaoteng Deng, Daize Mo, Mengze Xu and Kuirong Deng
Nanomaterials 2025, 15(21), 1643; https://doi.org/10.3390/nano15211643 - 28 Oct 2025
Viewed by 299
Abstract
In this study, two novel hybrid monomers (4BD-EDOT and 3BD-EDOT) containing a biphenyl group and a 3,4-ethylenedioxythiophene (EDOT) unit were synthesized and polymerized electrochemically in a CH2Cl2-Bu4NPF6 electrolyte solution. Characterizations of the resulting P4BD-EDOT [...] Read more.
In this study, two novel hybrid monomers (4BD-EDOT and 3BD-EDOT) containing a biphenyl group and a 3,4-ethylenedioxythiophene (EDOT) unit were synthesized and polymerized electrochemically in a CH2Cl2-Bu4NPF6 electrolyte solution. Characterizations of the resulting P4BD-EDOT and P3BD-EDOT were studied by CV, scanning electron microscopy (SEM), and spectroelectrochemistry in order to examine the effect of different substitution positions of biphenyl on the electrochromic performance of the resultant hybrid polymers. Both polymers have favorable redox activity (a distinct redox peak) and good redox stability (55–49% electroactivity was retained after 1000 cycles). The spectro-electrochemistry study found that both show a distinct color change from reddish brown to blue/purple for P4BD-EDOT with a lower band gap (1.54 eV) and from transparent color to light blue for P3BD-EDOT with a larger band gap (1.73 eV). These electrochromic polymer films also have fast switching speed (0.5–0.2 s), with the favorable optical contrast (22.6% at 1100 nm for P4BD-EDOT) and decent coloration efficiency (250.4 cm2 C−1 at 780 nm for P3BD-EDOT). All these results show that both monomers have important values related to the electrochromic field. This work also shows that the different substitution positions of the biphenyl unit affect the spectroelectrochemistry and electrochromic characteristics of the resultant hybrid polymers. Full article
(This article belongs to the Special Issue Advanced Nanoscale Materials and (Flexible) Devices: 2nd Edition)
Show Figures

Figure 1

18 pages, 8993 KB  
Article
Identification, Classification, and Evolutionary Profile of the NPF Gene Family in Sorghum bicolor
by Zicong Liang, Zhiyang Jiang, Dongyang Li, Silu Zhang, Sitong Liu, Yue Liu, Shuai Shi and Chang Liu
Agronomy 2025, 15(10), 2402; https://doi.org/10.3390/agronomy15102402 - 16 Oct 2025
Viewed by 310
Abstract
Nitrate transporter 1/peptide transporter family (NPF) proteins play pivotal roles in nitrogen uptake, translocation, and stress adaptation in plants. To comprehensively investigate this gene family in sorghum (Sorghum bicolor), we conducted the genome-wide identification and characterization of SbNPF genes. A total [...] Read more.
Nitrate transporter 1/peptide transporter family (NPF) proteins play pivotal roles in nitrogen uptake, translocation, and stress adaptation in plants. To comprehensively investigate this gene family in sorghum (Sorghum bicolor), we conducted the genome-wide identification and characterization of SbNPF genes. A total of 88 SbNPF members were identified and classified into eight subfamilies based on phylogenetic analysis, displaying diverse gene structures, conserved motifs, and evolutionary relationships. Gene duplication analysis revealed that tandem duplication was the primary driver of SbNPF family expansion, with most duplicated pairs undergoing purifying selection. Synteny analysis showed extensive collinearity between sorghum and rice, but limited conservation with Arabidopsis, highlighting the evolutionary divergence between monocots and dicots. Cis-regulatory element prediction suggested that SbNPF genes are widely involved in abiotic stress responses, hormone signaling, and light responsiveness. Expression profiling using RNA-seq data revealed distinct tissue-specific expression patterns, indicating functional specialization across roots, stems, leaves, and reproductive tissues. Furthermore, RT-qPCR analysis under low-nitrogen (LN) conditions demonstrated that several SbNPF genes, including SbNPF1.1, SbNPF2.6, SbNPF2.7, and SbNPF4.5, were significantly upregulated in shoots, whereas SbNPF1.2, SbNPF2.7, and SbNPF3.1 were downregulated in roots, suggesting differential regulatory roles in nitrogen acquisition and utilization under nutrient-limiting environments. Collectively, these findings provide novel insights into the evolutionary dynamics and potential functions of the SbNPF gene family and establish a foundation for future functional studies and molecular breeding aimed at improving nitrogen use efficiency in sorghum. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

13 pages, 1265 KB  
Article
In Vitro Larvicidal Efficacy of a Fipronil-Based Nanoixodicide Against Rhipicephalus microplus
by José Pablo Villarreal-Villarreal, José Noel García-Pérez, Jesús Jaime Hernández Escareño, Sergio Arturo Galindo Rodríguez, Michel Stéphane Heya, Gustavo Hernández Vidal and Romario García-Ponce
Trop. Med. Infect. Dis. 2025, 10(10), 284; https://doi.org/10.3390/tropicalmed10100284 - 6 Oct 2025
Viewed by 504
Abstract
Controlling Rhipicephalus microplus is currently one of the main challenges in livestock farming due to the significant economic losses it causes. Traditionally, managing this parasite has been based on the use of synthetic ixodicides, among which fipronil has proven to be highly effective. [...] Read more.
Controlling Rhipicephalus microplus is currently one of the main challenges in livestock farming due to the significant economic losses it causes. Traditionally, managing this parasite has been based on the use of synthetic ixodicides, among which fipronil has proven to be highly effective. However, its low water solubility and the limitations of commercially available formulations can affect the bioavailability of this compound, favoring the emergence of resistance in tick populations. In this context, fipronil-loaded nanoparticles were developed using the Eudragit® E PO polymer (NP_F) (Helm, Naucalpan, Mexico, Mexico), which were physicochemically characterized and evaluated against fipronil-susceptible R. microplus larvae. NP_F had an average size of 143.43 ± 1.88 nm, a polydispersity index (PDI) of 0.162 ± 0.01, a ζ (P ζ) of 21.16 ± 0.54, an encapsulation percentage (%E) of 7.36 ± 0.30, and an encapsulation efficiency percentage (%EE) of 66.28 ± 3.5%. Free fipronil showed an LC50 of 0.582 µg/mL and an LC90 of 2.503 µg/mL against R. microplus. The NP_F formulation showed an LC50 of 0.427 µg/mL and an LC90 of 2.092 µg/mL. These results suggest that incorporating fipronil into nanoparticles improves its ixodicide efficacy, positioning it as an innovative and promising alternative for the development of effective tick control formulations. Full article
(This article belongs to the Special Issue Insecticide Resistance and Vector Control)
Show Figures

Figure 1

23 pages, 2421 KB  
Article
Identification of Novel Quantitative Trait Loci and Candidate Genes Associated with Grain Yield and Related Traits Under Low-Light Stress Conditions in Rice
by Soumya Mohanty, Swagatika Das, Darshan Panda, Nalini Kanta Choudhury, Baneeta Mishra, Ranjan Kumar Jena, Rameswar Prasad Sah, Anil Kumar Chandrappa, Devanna Basavantraya Navadagi, Reshmi Raj K.R., Awadhesh Kumar, Sharat Kumar Pradhan, Sanghamitra Samantaray, Mirza Jaynul Baig and Lambodar Behera
Biomolecules 2025, 15(10), 1388; https://doi.org/10.3390/biom15101388 - 29 Sep 2025
Viewed by 563
Abstract
Low light intensity is a major abiotic stress that severely affects rice yields, particularly in India and Southeast Asia, causing yield reductions of 35–40% during the wet season compared to the dry season. Tolerant rice genotypes exhibit adaptive changes at anatomical, physiological, biochemical, [...] Read more.
Low light intensity is a major abiotic stress that severely affects rice yields, particularly in India and Southeast Asia, causing yield reductions of 35–40% during the wet season compared to the dry season. Tolerant rice genotypes exhibit adaptive changes at anatomical, physiological, biochemical, and molecular levels under low-light stress, enabling higher yields compared to susceptible varieties. Our study identified 20 novel QTLs associated with grain yields and nine related traits under low-light and control (normal)-light conditions, using a recombinant inbred line (RIL) population derived from the cross between the low-light-tolerant variety Swarnaprabha and the low-light-susceptible variety IR8. Across the Kharif seasons of 2019 and 2021, 33 stable QTLs were identified, with 11, 13, and 9 QTLs specific to low-light, normal-light, and both conditions, respectively. Of these, Swarnaprabha contributed 28 QTLs, while five were contributed by IR8. Notably, the study identified 11 and 9 novel QTLs under low-light and both conditions, respectively. Three hotspot regions on chromosomes 1, 4, and 8 were identified. These regions harbored 10 novel QTLs and revealed twenty candidate genes, out of which three key hub genes, OsAUX1, OsSBDCP1, and OsNPF5.16, were identified. These hub genes are involved in hormone signaling, starch metabolism, and nitrogen metabolism, respectively. A comprehensive expression analysis of these genes indicated that they are linked to low-light tolerance, offering deeper insights into the genetic and molecular mechanisms underlying low-light resilience. These findings provide valuable genomic resources and potential markers for breeding programs for improving rice productivity under low-light conditions. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

25 pages, 3394 KB  
Article
The Fate of Secondary Electrons in Water upon High-Energy Electron Impact: Changes in the Presence of Nanobubbles
by Yulia V. Novakovskaya, Nikolai F. Bunkin, Sergey A. Tarasov, Natalia N. Rodionova, Anastasia O. Petrova and German O. Stepanov
Int. J. Mol. Sci. 2025, 26(18), 8909; https://doi.org/10.3390/ijms26188909 - 12 Sep 2025
Viewed by 512
Abstract
Electrons localized by water molecules are known as hydrated electrons. The composition of the aqueous environment determines their state and behavior. In this experimental and theoretical work, hydrated electrons were formed in aqueous solutions upon high-energy electron impact, and the dependence of their [...] Read more.
Electrons localized by water molecules are known as hydrated electrons. The composition of the aqueous environment determines their state and behavior. In this experimental and theoretical work, hydrated electrons were formed in aqueous solutions upon high-energy electron impact, and the dependence of their characteristics on the presence of nanobubbles generated during vibrational treatment was investigated. To explain the results, quantum chemical simulations were carried out, and diverse possible kinetic schemes were considered. Absorbance of deionized water and NaCl aqueous solution was measured at a wavelength of 600 nm, which falls in the range typical of hydrated electrons. The principal differences in the spectral responses of the samples were discovered depending on whether they were preliminarily subjected to repeated vigorous shaking or not. Vigorous shaking caused a noticeable increase in both the integral and maximum absorbance, and the absorbance decay was significantly slower. The effects observed in the vibrationally treated aqueous samples were found to be explained only in the framework of a kinetic scheme that assumes the repeated solvation of electrons, which are transferred from a localized to a delocalized (free) state upon the energy absorption. This repeated solvation is possible only when the secondary electrons are localized on the inner surfaces of the boundary hydration shells of nanobubbles, which are formed in the process of shaking. Thus, nanobubbles substantially change the apparent gross lifetime and properties of hydrated electrons, and these changes, in turn, can indicate the presence of nanobubbles in water and aqueous solutions. Full article
Show Figures

Figure 1

17 pages, 11584 KB  
Article
Molecular and Functional Characterization of Neuropeptide F Receptor in Pomacea canaliculata: Roles in Feeding and Digestion and Communication with the Insulin Pathway
by Haotian Gu, Haiyuan Teng, Tianshu Zhang and Yongda Yuan
Biology 2025, 14(9), 1241; https://doi.org/10.3390/biology14091241 - 10 Sep 2025
Viewed by 570
Abstract
The invertebrate neuropeptide F (NPF) signaling plays versatile roles in diverse biological activities and processes. Still, whether and how it mediates feeding and digestion in Pomacea canaliculate remain gaps in our knowledge. Herein, we first identified and characterized PcNPFR via bioinformatics analysis in [...] Read more.
The invertebrate neuropeptide F (NPF) signaling plays versatile roles in diverse biological activities and processes. Still, whether and how it mediates feeding and digestion in Pomacea canaliculate remain gaps in our knowledge. Herein, we first identified and characterized PcNPFR via bioinformatics analysis in P. canaliculate, which is a polyphagous herbivore with a voracious appetite that causes devastating damages to ecosystem functioning and services in colonized ranges. Double stranded RNA (dsRNA)-based RNA interference (RNAi) and exogenous rescue were utilized to decipher and substantiate underlying mechanisms whereby NPFR executed its modulatory functions. Multiple sequence alignment and phylogeny indicated that PcNPFR harbored typical seven transmembrane domains (7 TMD) and belonged to rhodopsin-like GPCRs, with amino acid sequence sharing 27.61–63.75% homology to orthologues. Spatio-temporal expression profiles revealed the lowest abundance of PcNPFR occurred in pleopod tissues and the egg stage, while it peaked in male snails and testes. Quantitative real-time PCR (qRT-PCR) analysis showed that 4 µg dsNPFR and 10−6 M trNPF (NPFR agonist) were optimal doses to exert silencing and rescue effects, accordingly with sampling time at 3 days post treatments. Moreover, the dsNPFR injection (4 µg) at 1/3/5/7 day/s delivered silencing efficiency of 32.20–74.01%. After 3 days upon dsNPFR knockdown (4 µg), mRNA levels of ILP7/InR/Akt/PI3Kc/PI3KR were significantly downregulated compared to dsGFP controls, except FOXO substantially upregulated at both transcript and translation levels. In addition, the activities of alpha-amylase, protease and lipase were significantly suppressed, accompanied by decreased leaf area consumption, attenuated feeding behavior and diminished feeding rate. Moreover, expression trends were opposite and proxies were partially or fully restored to baseline levels post exogenous compensation of trNPF, suggesting phenotypes specifically attributable to PcNPFR RNAi but not off-target effects. PcNPFR is implicated in both feeding and digestion by modulating the ISP pathway and digestive enzyme activities. It may serve as a promising molecular target for RNAi-based antifeedants to manage P. canaliculate invasion. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

24 pages, 8846 KB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of NRT Gene Family in Suaeda glauca
by Zitong Ou, Jin Sun, Xueli Li, Haoran Feng, Xingguang Chen, Sisi Liang, Zhonghua Guo, Lulu Wang, Xiaoping Niu, Jinbiao Ma, Sheng Wang, Yuan Qin and Yan Cheng
Biology 2025, 14(8), 1097; https://doi.org/10.3390/biology14081097 - 21 Aug 2025
Viewed by 686
Abstract
Nitrogen (N) is crucial for plant growth and stress resistance and is primarily absorbed and transported by nitrate transporters (NRT). Suaeda glauca, known for its strong salt-alkali stress resistance, and SgNRT genes have rarely been reported. This study aims to identify and [...] Read more.
Nitrogen (N) is crucial for plant growth and stress resistance and is primarily absorbed and transported by nitrate transporters (NRT). Suaeda glauca, known for its strong salt-alkali stress resistance, and SgNRT genes have rarely been reported. This study aims to identify and analyze the SgNRT gene family to understand its composition, evolutionary patterns, and roles in salt stress responses. We identified 212 SgNRTs, which were categorized into three branches, with SgNRT1/SgNPF and SgNRT2 as the major families. Structural analysis, conserved domains, chromosomal localization, and collinearity were also examined. Spatiotemporal expression characteristics of SgNRT genes were analyzed, revealing specific expression across 13 organs or tissues and dynamic responses to salt treatment over 48 h. Notably, SgNRT1.185, SgNRT2.25, and SgNRT2.2 exhibited rapid salt induction in leaves (activated within 0.5 h, peaking at 2 h), with SgNRT1.185 showing relatively high upregulation. SgNRT1.185 and SgNRT2.35 were induced by high salt concentrations (200 mM) in both roots and leaves. SgNRT2.35 exhibited higher basal and stress-induced levels than the other genes. Bioinformatics analysis suggests spatially specific expression of SgNRT genes, potentially involved in nitrogen absorption and transport across various developmental stages and organs/tissues of Suaeda glauca. These findings offer a theoretical basis for understanding the adaptive strategies of Suaeda glauca under saline-alkali stress and provide insights into the functional evolution of plant NRT genes, aiding in the development of stress-resistant crops. Full article
(This article belongs to the Special Issue Research Progress on Salt Stress in Plants)
Show Figures

Figure 1

51 pages, 29464 KB  
Review
Impact of Aerosols on Cloud Microphysical Processes: A Theoretical Review
by Kécia Maria Roberto da Silva, Dirceu Luís Herdies, Paulo Yoshio Kubota, Caroline Bresciani and Silvio Nilo Figueroa
Geosciences 2025, 15(8), 312; https://doi.org/10.3390/geosciences15080312 - 11 Aug 2025
Viewed by 1520
Abstract
The direct relationship between aerosols and clouds strongly influences the effects of clouds on the global climate. Aerosol particles act as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting cloud formation, microphysics, and precipitation, as well as increasing the reflection of solar [...] Read more.
The direct relationship between aerosols and clouds strongly influences the effects of clouds on the global climate. Aerosol particles act as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting cloud formation, microphysics, and precipitation, as well as increasing the reflection of solar radiation at the cloud tops. Processes such as gas-to-particle conversion and new particle formation (NPF) control aerosol properties that, together with meteorological conditions, regulate cloud droplet nucleation through Köhler theory and related effects. The indirect aerosol effects described by Twomey and Albrecht demonstrate how changes in aerosols impact droplet number, cloud lifetime, and precipitation efficiency. Cloud microphysical processes, including droplet growth, collision-coalescence, and solid-phase mechanisms such as riming, vapor diffusion, and aggregation, shape precipitation development in warm, cold, and mixed-phase clouds. Ice nucleation remains a significant uncertainty due to the diversity of aerosol types and nucleation modes. This work synthesizes these physical interactions to better understand how the chemical and physical properties of aerosols influence cloud and precipitation processes, supporting improvements in weather and climate prediction models despite numerical challenges arising from the complexity of aerosol–cloud interactions. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

26 pages, 2868 KB  
Article
Resonant Oscillations of Ion-Stabilized Nanobubbles in Water as a Possible Source of Electromagnetic Radiation in the Gigahertz Range
by Nikolai F. Bunkin, Yulia V. Novakovskaya, Rostislav Y. Gerasimov, Barry W. Ninham, Sergey A. Tarasov, Natalia N. Rodionova and German O. Stepanov
Int. J. Mol. Sci. 2025, 26(14), 6811; https://doi.org/10.3390/ijms26146811 - 16 Jul 2025
Cited by 2 | Viewed by 764
Abstract
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is [...] Read more.
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is considered. We develop a theoretical model based on the concept of gas bubbles stabilized by ions, or “bubstons”. The role of bicarbonate and hydronium ions in the formation and stabilization of bubstons is explained through the use of quantum chemical simulations. A new model of oscillating bubstons, which takes into account the double electric layer formed around their gas core, is proposed. Theoretical estimates of the frequencies and intensities of oscillations of such compound species are obtained. It was determined that oscillations of negatively charged bubstons can occur in the GHz frequency range, and should be accompanied by the emission of electromagnetic waves. To validate the theoretical assumptions, we used dynamic light scattering (DLS) and showed that, after subjecting aqueous solutions to vigorous shaking with a force of 4 or 8 N (kg·m/s2) and a frequency of 4–5 Hz, the volume number density of bubstons increased by about two orders of magnitude. Radiometric measurements in the frequency range of 50 MHz to 3.5 GHz revealed an increase in the intensity of radiation emitted by water samples upon the vibrational treatment. It is argued that, according to our new theoretical model, this radiation can be caused by oscillating bubstons. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

20 pages, 859 KB  
Article
Theoretical Description of Changes in Conformation and Symmetry of Supramolecular Systems During the Reception of a Molecular Signal
by Yuriy Gorovoy, Natalia Rodionova, German Stepanov, Anastasia Petrova, Nadezda Penkova and Nikita Penkov
Int. J. Mol. Sci. 2025, 26(13), 6411; https://doi.org/10.3390/ijms26136411 - 3 Jul 2025
Viewed by 534
Abstract
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular [...] Read more.
Aqueous solutions are not homogeneous and could be considered supramolecular systems. They can emit electromagnetic waves. Electromagnetic emission from one supramolecular system (“source”) can be received by another supramolecular system (“receiver”) without direct contact (distantly). This process represents a transfer of a “molecular signal” and causes changes in conformation and symmetry of the “receiver”. The aim of the current work is to theoretically describe such changes primarily using a solution of the chiral protein interferon-gamma (IFNγ) as an example. We provide theoretical evidence that supramolecular systems of highly diluted (HD) aqueous solutions formed by self-assembly after mechanical activation generate a stronger molecular signal compared to non-activated solutions, due to their higher energy-saturated state. Additionally, molecular signals cause supramolecular systems with complex (including chiral) structures to undergo easier changes in conformation and symmetry compared to simpler systems, enhancing their biological activity. Using statistical physics, we obtained the parameter Ic, characterizing the magnitude of conformational and symmetry changes in supramolecular (including chiral) systems caused by molecular signals. In quantum information science, there is an analogue of the parameter Ic, which characterizes the entanglement depth of quantum systems. This study contributes to the understanding of the physico-chemical basis of distant molecular interactions and opens up new possibilities for controlling the properties of complex biological and chemical systems. Full article
(This article belongs to the Special Issue Supramolecular Chiral Self-Assembly and Applications)
Show Figures

Figure 1

17 pages, 1663 KB  
Article
Salt Tolerance Diversity in Citrus Rootstocks Agrees with Genotypic Diversity at the LCl-6 Quantitative Trait Locus
by Maria J. Asins, M. Verónica Raga, Maria R. Romero-Aranda, Emilio Jaime-Fernández, Emilio A. Carbonell and Andres Belver
Genes 2025, 16(6), 683; https://doi.org/10.3390/genes16060683 - 30 May 2025
Cited by 1 | Viewed by 1036
Abstract
Background/Objective: Salinity is a growing problem affecting a large portion of global agricultural land, particularly in areas where water resources are scarce. The objective of this study was to provide physiological and molecular information on salt-tolerant citrus rootstocks to mitigate the detrimental effects [...] Read more.
Background/Objective: Salinity is a growing problem affecting a large portion of global agricultural land, particularly in areas where water resources are scarce. The objective of this study was to provide physiological and molecular information on salt-tolerant citrus rootstocks to mitigate the detrimental effects of salinity on citriculture. Methods: Ten accessions belonging to eight Citrus species and four to Poncirus trifoliata Raf. were tested for salinity tolerance (0 and 15 mM NaCl for 1 year) in terms of vegetative and Cl tissue distribution traits. In addition, most accessions were evaluated for leaf Na+ and other cations. Results: All salt tolerant accessions tended to restrict the leaf Cl content, although in a lower degree than the Cleopatra mandarin. However, differences in their ability to restrict leaf [Na+] were evident, contributing to a classification of trifoliate and sour orange accessions that matched their genotypic grouping based on allele sharing at a marker targeting candidate gene coding for the NPF5.9 transporter within LCL-6 quantitative trait locus. Conclusions: Our markers targeting LCl-6 candidate genes coding for NPF5.9, PIP2.1, and CHX20 (citrus GmSALT3 ortholog) could be efficient tools for managing the detected salt tolerance diversity in terms of both Cl and Na+ homeostasis in rootstock breeding programs derived from these species, in addition to Citrus reshni. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 7883 KB  
Article
Transcriptomic Analysis to Understand the Nitrogen Stress Response Mechanism in BNI-Enabled Wheat
by Chandra Nath Mishra, Sushma Kumari Pawar, Swati Sharma, Arun Thakur, Sabhyata Sabhyata, Shubham Mishra, Satish Kumar, Om Prakash Gupta, Arun Kumar Joshi and Ratan Tiwari
Int. J. Mol. Sci. 2025, 26(10), 4610; https://doi.org/10.3390/ijms26104610 - 12 May 2025
Cited by 2 | Viewed by 965
Abstract
A comparative transcriptomic analysis was conducted for the nitrogen-efficient (BNI-Munal) and derivative parent Munal wheat genotypes to unravel the gene expression patterns across four nitrogen levels (0%, 50%, 75%, and 100%). Analyzing the genes of BNI-enabled wheat helps us understand how they are [...] Read more.
A comparative transcriptomic analysis was conducted for the nitrogen-efficient (BNI-Munal) and derivative parent Munal wheat genotypes to unravel the gene expression patterns across four nitrogen levels (0%, 50%, 75%, and 100%). Analyzing the genes of BNI-enabled wheat helps us understand how they are expressed differently, which heavily influences BNI activity. Grain yield and 1000-grain weight were higher in BNI Munal than in Munal. All the other traits were similar in performance. Varying nitrogen dosages led to significant differences in gene expression patterns between the two genotypes. Genes related to binding and catalytic activity were prevalent among molecular functions, while genes corresponding to cellular anatomical entities dominated the cellular component category. Differential expression was observed in 371 genes at 0%N, 261 genes at 50%N, 303 genes at 75%N, and 736 genes at 100%N. Five unigenes (three upregulated and two downregulated) were consistently expressed across all nitrogen levels. Further analysis of upregulated unigenes identified links to the NrpA gene (involved in nitrogen regulation), tetratricopeptide repeat-containing protein (PPR), and cytokinin dehydrogenase 2. Analysis of downregulated genes pointed to associations with the Triticum aestivum 3BS-specific BAC library, which encodes the NPF (Nitrate and Peptide Transporter Family) and the TaVRN gene family (closely related to the TaNUE1 gene). The five unigenes and one unigene highlighted in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were validated in Munal and BNI Munal. The results obtained will enhance our understanding about gene expression patterns across different nitrogen levels in BNI wheat and help us breed wheat varieties with the BNI trait for improved NUE. Full article
(This article belongs to the Special Issue Plant Nitrogen Metabolism: Current Status and Future Directions)
Show Figures

Figure 1

10 pages, 468 KB  
Article
Comparison of Optic Nerve Sheath Diameter Measurements in Coronary Artery Bypass Grafting Surgery with Pulsatile and Non-Pulsatile Flow
by Leyla Kazancıoğlu and Şule Batçık
Medicina 2025, 61(5), 870; https://doi.org/10.3390/medicina61050870 - 9 May 2025
Cited by 1 | Viewed by 572
Abstract
Background and Objectives: In coronary artery bypass grafting (CABG) surgeries, monitoring intracranial pressure (ICP) is crucial due to neurological risks. Although pulsatile flow (PF) during cardiopulmonary bypass (CPB) is considered more physiological than non-pulsatile flow (NPF), its impact on ICP remains unclear. This [...] Read more.
Background and Objectives: In coronary artery bypass grafting (CABG) surgeries, monitoring intracranial pressure (ICP) is crucial due to neurological risks. Although pulsatile flow (PF) during cardiopulmonary bypass (CPB) is considered more physiological than non-pulsatile flow (NPF), its impact on ICP remains unclear. This study aimed to compare preoperative and postoperative optic nerve sheath diameter (ONSD) measurements between PF and NPF techniques to evaluate their effect on ICP changes. Materials and Methods: Sixty patients undergoing elective CABG (aged 45–75 years, ASA II-III-IV) were enrolled and divided into two groups depending on the cardiopulmonary bypass technique determined by the surgeon: PF (Group P, n = 30) and NPF (Group NP, n = 30). ONSD measurements were performed with ultrasound before surgery (Tpreop) and after surgery (Tpostop). Hemodynamic parameters and jugular and carotid vessel diameters were also recorded. Statistical analysis included t-tests, Mann–Whitney U-tests, chi-square tests, and Pearson correlation. Results: Both groups demonstrated significant increases in ONSD postoperatively compared to preoperative values (p < 0.001). However, no statistically significant difference in the magnitude of ONSD change was observed between the PF and NPF groups (p > 0.05). Group P showed lower ejection fractions and higher total inotrope requirements compared to Group NP (p < 0.01), but these factors did not translate into differences in postoperative ICP dynamics. Conclusions: ONSD measurements increased significantly after CABG surgery, regardless of perfusion type. PF and NPF strategies were comparable in terms of their effects on ICP as reflected by ONSD changes. ONSD ultrasonography appears to be a simple, rapid, and non-invasive tool for perioperative ICP monitoring in cardiac surgery. Further studies are needed to confirm these findings with dynamic intraoperative monitoring and neurocognitive assessments. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
Show Figures

Figure 1

11 pages, 1278 KB  
Article
Vibration Technology Makes It Possible to Obtain Standardized Biological Preparations: Vibrational Iterations Based on Cultured Cells
by Elena Don, Sabina Yaroshenko, Svetlana Zakharova, Evgenia Nechaeva, Alexander Kovalchuk, Anastasia Petrova, Sergey Tarasov and Oleg Epstein
Biophysica 2025, 5(2), 14; https://doi.org/10.3390/biophysica5020014 - 18 Apr 2025
Cited by 4 | Viewed by 796
Abstract
Cell-based therapy is a promising direction for the treatment of various diseases. However, it is associated with several problems, primarily related to reproducibility and standardization. In this context, the development of new methods for the production of cell-based preparations is of particular relevance. [...] Read more.
Cell-based therapy is a promising direction for the treatment of various diseases. However, it is associated with several problems, primarily related to reproducibility and standardization. In this context, the development of new methods for the production of cell-based preparations is of particular relevance. Recently, a novel technology named ‘crossing’ has been developed. It comprises the multi-stage vibrational processing of two closely spaced test tubes containing the initial substance and a neutral carrier (water or lactose). As a result, the neutral carrier acquires some properties of the initial substance, and artificial products, vibrational iterations, are obtained. Some vibrational iterations are also capable of exerting a modifying effect on the initial substance (or its target in the body), changing its physico-chemical/biological properties. Earlier, we demonstrated the possibility of obtaining vibrational iterations from biological molecules (antibodies). In this study, we evaluated the biological effects of vibrational iterations obtained by the crossing technology using cells grown in culture. This work shows that vibrational iterations obtained from CHO-S cell culture affect the ability of CHO-S cells to utilize glucose in the presence of insulin. The data demonstrate the prospect of developing fundamentally new biological drugs based on vibrational iterations, including for the treatment of diabetes mellitus. Full article
Show Figures

Graphical abstract

20 pages, 9778 KB  
Article
Genome-Wide Identification and Expression Analysis of the TGA Gene Family in Banana (Musa nana Lour.) Under Various Nitrogen Conditions
by Bencheng Zhang, Wei Wang, Can Wang, Bingyu Cai, Junting Feng, Dengbo Zhou, Yufeng Chen, Miaoyi Zhang, Dengfeng Qi, Zhuo Wang, Yongzan Wei and Jianghui Xie
Int. J. Mol. Sci. 2025, 26(5), 2168; https://doi.org/10.3390/ijms26052168 - 28 Feb 2025
Cited by 3 | Viewed by 1310
Abstract
The TGA (TGACG motif-binding factor) transcription factors are integral to root growth and development, and are pivotal in mediating plant responses to abiotic stresses. Nonetheless, their role in the nutrient absorption processes of banana plants has not been extensively investigated. This research conducted [...] Read more.
The TGA (TGACG motif-binding factor) transcription factors are integral to root growth and development, and are pivotal in mediating plant responses to abiotic stresses. Nonetheless, their role in the nutrient absorption processes of banana plants has not been extensively investigated. This research conducted a comprehensive analysis of the MaTGA gene family, emphasizing their physicochemical characteristics, phylogenetic relationships, gene duplication events, promoter cis-regulatory elements and protein interaction networks. Furthermore, this study investigated the expression patterns of MaTGA family members under varying nitrogen conditions. A total of 18 MaTGA members were identified within the banana genome, each encoding proteins characterized by the presence of bZIP and DOG domains. These genes exhibited an uneven distribution across eight chromosomes. Phylogenetic analysis further classified the MaTGA family into four distinct subgroups (I–IV), consisting of three, seven, three, and five members, respectively. An analysis of promoter cis-elements indicated that over 50% of the MaTGA gene family members contain hormone-responsive elements associated with abscisic acid (ABRE), ethylene (ERE), and salicylic acid (SARE), in addition to stress-responsive elements related to drought (MBS) and low temperature (LTR). Regarding gene expression, MaTGA7, MaTGA8, and MaTGA15 exhibited significantly elevated expression levels in the leaves and roots relative to other tissues. Under varying nitrogen conditions, 13 members, including MaTGA7 and MaTGA8, demonstrated the highest expression levels under reduced nitrogen (70%) treatment, followed by low nitrogen (20%) conditions, and the lowest expression levels were observed under nitrogen-deficient conditions. These findings imply that MaTGA genes may play crucial roles in enhancing nitrogen use efficiency. Protein interaction predictions suggest that MaTGA7, MaTGA8, and MaTGA15 may interact with nitrogen-related proteins, including Nitrate Transporter 2 (NRT2.1 and NRT2.2), NIN-Like Protein 7 (NLP7), and Nitrate Transporter 1.1 (NPF6.3). In summary, MaTGA7, MaTGA8, and MaTGA15 are likely involved in the processes of nitrogen absorption and utilization in bananas. The present findings establish a basis for subsequent investigations into the functional roles of MaTGA genes in augmenting nutrient use efficiency and mediating responses to abiotic stresses in banana plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

Back to TopTop