Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (454)

Search Parameters:
Keywords = NaK-ATPase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2979 KB  
Review
Connecting the Dots: AMOG/β2 and Its Elusive Adhesion Partner in CNS
by Liora Shoshani, Christian Sosa Huerta, María Luisa Roldán, Arturo Ponce and Marlet Martínez-Archundia
Int. J. Mol. Sci. 2025, 26(17), 8744; https://doi.org/10.3390/ijms26178744 (registering DOI) - 8 Sep 2025
Abstract
AMOG/β2, the β2 isoform of the sodium pump (Na+/K+-ATPase), functions as an adhesion molecule on glial cells, mediating critical neuron–astrocyte interactions during central nervous system (CNS) development. Despite its established role in glial adhesion, the neuronal [...] Read more.
AMOG/β2, the β2 isoform of the sodium pump (Na+/K+-ATPase), functions as an adhesion molecule on glial cells, mediating critical neuron–astrocyte interactions during central nervous system (CNS) development. Despite its established role in glial adhesion, the neuronal receptor that partners with AMOG/β2 remains unknown. This review examines the structural and functional properties of AMOG/β2, including its capacity to form trans-dimers, both homophilic and potentially heterophilic—drawing comparisons with the β1 subunit, a well-characterized adhesion molecule. By integrating computational modeling, in vitro data, and structural predictions, we explore how factors such as N-glycosylation and cis-membrane interactions influence β2-mediated adhesion. We further consider candidate neuronal partners, including TSPAN31 and RTN4, and speculate on their potential roles in mediating heterophilic AMOG/β2 interactions. Finally, we discuss the broader implications of AMOG/β2 in neuron–glia communication, synaptic organization, neurodevelopment, and CNS disorders such as glioblastoma. Identifying the binding partner of AMOG/β2 holds promise not only for understanding the molecular basis of CNS adhesion but also for uncovering novel mechanisms of neuroglial regulation in health and disease. Full article
(This article belongs to the Special Issue The Na, K-ATPase in Health and Disease)
Show Figures

Figure 1

15 pages, 4033 KB  
Review
Illuminating High-Affinity ATP Binding to the Sodium-Potassium Pump Using Solid-State NMR Spectroscopy
by David A. Middleton
Molecules 2025, 30(17), 3609; https://doi.org/10.3390/molecules30173609 - 3 Sep 2025
Viewed by 384
Abstract
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules [...] Read more.
Proteins that span cellular membranes represent around 30% of the proteome and over 50% of drug targets. A variety of synthetic and naturally-occurring small organic molecules interact with membrane proteins and up- and down-regulate protein function. The atomic details of these regulatory molecules offer important information about protein function and aid the discovery, refinement and optimization of new drugs. X-ray crystallography and cryo-electron microscopy (cryo-EM) are not always able to resolve the structures of small molecules in their physiological sites on membrane proteins, particularly if the molecules are unstable or are reactive enzyme substrates. Solid-state nuclear magnetic resonance (SSNMR) is a valuable technique for filling in missing details on the conformations, dynamics and binding environments of small molecules regulators of membrane proteins. SSNMR does not require diffracting crystals possessing long-range order and can be performed on proteins within their native membranes and with freeze-trapping to maintain sample stability. Here, work over the last two decades is described, in which SSNMR methods have been developed to report on interactions of the ATP substrate with the Na,K-ATPase (NKA), an ion-transporting enzyme that maintains cellular potential in all animals. It is shown how a combination of SSNMR measurements on membranous NKA preparations in the frozen and fluid states have provided unique information about the molecular conformation and local environment of ATP in the high-affinity nucleotide site. A combination of chemical shift analysis using density functional theory (DFT) calculations, dipolar coupling measurements using REDOR and measurements of the rates of proton spin diffusion is appraised collectively. The work described herein highlights the methods developed and challenges encountered, which have led to a detailed and unrivalled picture of ATP in its high-affinity binding site. Full article
Show Figures

Graphical abstract

16 pages, 3920 KB  
Article
17βH-Neriifolin Improves Cardiac Remodeling Through Modulation of Calcium Handling Proteins in the Heart Failure Rat Model
by Rajasegar Anamalley, Yusof Kamisah, Nurhanan Murni Yunos and Satirah Zainalabidin
Biomedicines 2025, 13(9), 2115; https://doi.org/10.3390/biomedicines13092115 - 29 Aug 2025
Viewed by 380
Abstract
Background: Cardiac glycosides such as digoxin have been commonly used for patients with heart failure; however, their toxicity remains a main concern. 17βH-neriifolin (SNA209), a cardiac glycoside compound, has been recently isolated from Ceberra odollum Gaertn and was shown to improve the [...] Read more.
Background: Cardiac glycosides such as digoxin have been commonly used for patients with heart failure; however, their toxicity remains a main concern. 17βH-neriifolin (SNA209), a cardiac glycoside compound, has been recently isolated from Ceberra odollum Gaertn and was shown to improve the heart’s pumping ability in failing hearts ex vivo. Thus, this study aimed to investigate the potential use of SNA209 as a treatment for isoprenaline (ISO)-induced heart failure in rats. Methods: Forty male Wistar rats were randomly divided into five groups. Heart failure was induced by isoprenaline (ISO, 10 mg/kg/s.c) for 14 days daily, followed by SNA209 treatment (5 mg/kg; p.o) for another 14 days daily. Control rats were given saline as a vehicle for ISO and DMSO as a vehicle for SNA209. Results: Systolic and diastolic blood pressure (SBP and DBP) in all ISO-treated groups were significantly increased compared to the control group (p < 0.05), and SNA209 treatment managed to reduce the SBP and DBP. Additionally, SNA209 treatment significantly increased the heart rate and normalized the ECG parameters in ISO-treated rats. Pro-B-type natriuretic peptide and troponin T level, a cardiac injury markers, was remarkably reduced by SNA209 in the ISO-treated group. Cardiac hypertrophy was evident in increased cardiomyocyte size in ISO groups; however, SNA reduced the cardiomyocyte size. The left ventricular developed pressure (LVDP) in ISO treated with SNA209 was significantly raised, indicating a chronotropic effect. Cardiac Na+/K+-ATPase expression of the α1 subunit, sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), and sodium–calcium exchanger subunit were significantly increased in the SNA treatment groups. Conclusions: The SNA 209 treatment improved cardiac function and structure, likely via modulating intracellular calcium management, so underscoring its potential as an adjuvant therapy for heart failure. Full article
Show Figures

Figure 1

13 pages, 1498 KB  
Article
Regulatory Ouabain Action on Excitatory Transmission in Rat Hippocampus: Facilitation of Synaptic Responses and Weakening of LTP
by Yulia D. Stepanenko, Dmitry A. Sibarov and Sergei M. Antonov
Biomolecules 2025, 15(9), 1236; https://doi.org/10.3390/biom15091236 - 27 Aug 2025
Viewed by 317
Abstract
Cardiotonic steroids (CTS), including the endogenous compound ouabain, modulate neuronal Na/K-ATPase (NKA) activity in a concentration-dependent manner, affecting neuronal survival and function. While high concentrations of ouabain are neurotoxic, endogenous levels of 0.1–1 nM exert neuroprotective effects and influence intracellular signaling. However, the [...] Read more.
Cardiotonic steroids (CTS), including the endogenous compound ouabain, modulate neuronal Na/K-ATPase (NKA) activity in a concentration-dependent manner, affecting neuronal survival and function. While high concentrations of ouabain are neurotoxic, endogenous levels of 0.1–1 nM exert neuroprotective effects and influence intracellular signaling. However, the effects of physiologically relevant ouabain concentrations on excitatory synaptic transmission remain unclear. In this study, we examined how 1 nM ouabain affects synaptic responses in rat hippocampal CA1 neurons. Using whole-cell patch-clamp recordings of evoked excitatory postsynaptic currents (EPSCs) and extracellular recordings of field excitatory postsynaptic potentials (fEPSPs), we found that ouabain enhances excitatory synaptic transmission, increasing EPSC amplitude and fEPSP slope by 35–50%. This effect was independent of NMDA receptor (NMDAR) activity. Ouabain reduced the magnitude of NMDAR-dependent long-term potentiation (LTP), but still augmented fEPSPs when applied after LTP induction. This implies separate additive mechanisms. These observations exhibit that ouabain, at concentrations corresponding to endogenous levels, facilitates basal excitatory synaptic transmission while partially suppressing LTP. We propose that ouabain exerts dual modulatory effects in hippocampal networks via distinct synaptic mechanisms. Full article
(This article belongs to the Special Issue Regulation of Synapses in the Brain)
Show Figures

Figure 1

19 pages, 3332 KB  
Article
Taurine Supplementation Enhances the Resistance of Litopenaeus vannamei Postlarvae to Low-Salinity Stress
by Huaichi Wang, Xinyue Du, Jiahong Zou, Mengya Wang, Yan Lei, Bin Zhang, Yongzhen Zhao, Linyuan Jiang, Xiaohan Chen and Qingchao Wang
Biology 2025, 14(8), 1082; https://doi.org/10.3390/biology14081082 - 19 Aug 2025
Viewed by 403
Abstract
In aquaculture, Pacific white shrimp (Litopenaeus vannamei) growth in low-salinity waters is limited by osmoregulatory stress; therefore, improving resistance to low-salinity stress via nutritional modulation is key. In the present study, shrimp postlarvae were provided with a taurine supplement under low-salinity [...] Read more.
In aquaculture, Pacific white shrimp (Litopenaeus vannamei) growth in low-salinity waters is limited by osmoregulatory stress; therefore, improving resistance to low-salinity stress via nutritional modulation is key. In the present study, shrimp postlarvae were provided with a taurine supplement under low-salinity stress, and then the survival rate, the histology, the Na+/K+-ATPase (NKA) expression pattern and transcriptomic sequencing were investigated to evaluate the postlarval responses. The results showed that the postlarva survival rate in low-salinity water was only 61.11%, which is significantly lower than that for postlarvae reared in saline water (92.67%). However, taurine supplementation significantly increased the postlarva survival rate in low-salinity culture to 76.67% and also increased the shrimp body length. Moreover, immunofluorescence and enzyme activity assays indicated that taurine alleviated NKA overactivation in the shrimp postlarvae under low-salinity stress. Furthermore, a GO enrichment analysis of differentially expressed genes suggested that the overactivation of hormone and receptor signaling under low-salinity stress was significantly downregulated after taurine supplementation. On the other hand, taurine supplementation may promote epithelial cell proliferation in shrimp postlarvae by negatively regulating the Wnt signaling pathway. These findings suggest that taurine may enhance the shrimp postlarval osmoregulatory capacity, thereby improving their ability to acclimatize to low-salinity environments. Full article
Show Figures

Figure 1

14 pages, 1292 KB  
Article
The Adipose Tissue-Derived Secretome (ADS) in Obesity Uniquely Regulates the Na-Glucose Transporter SGLT1 in Intestinal Epithelial Cells
by Vivian Naa Amua Wellington and Soudamani Singh
Cells 2025, 14(16), 1241; https://doi.org/10.3390/cells14161241 - 12 Aug 2025
Viewed by 624
Abstract
Obesity is a complex chronic inflammatory condition that results from excess fat accumulation. It increases the risk of developing numerous co-morbidities such as Type 2 diabetes mellitus, cardiovascular disease, hypertension, and stroke. The adipose tissue is itself a vital endocrine organ that secretes [...] Read more.
Obesity is a complex chronic inflammatory condition that results from excess fat accumulation. It increases the risk of developing numerous co-morbidities such as Type 2 diabetes mellitus, cardiovascular disease, hypertension, and stroke. The adipose tissue is itself a vital endocrine organ that secretes numerous adipokines, cytokines, and exosomes, which are collectively known as the adipose-derived secretome (ADS). This ADS has been shown to influence and modulate many physiological processes. During obesity, the composition of ADS is altered, which may contribute to the development of obesity-associated diseases. Type-2 diabetes mellitus is one of the most common complications of obesity due to alterations in glucose homeostasis. Glucose absorption occurs via Na-glucose co-transport via SGLT1 at the brush border membrane (BBM) of small intestinal villus cells. This process of transepithelial glucose uptake is the primary method of glucose absorption from diet. However, how ADS mediates the function of SGLT1 is not yet known. This study aims to determine the mechanism of regulation of SGLT1 by ADS in intestinal epithelial cells. We show that ADS from OZR (but not LZR) stimulates SGLT1 in IEC-18 cells. OZR-ADS treatment diminished Na/K-ATPase activity in IEC-18 cells. Kinetic studies indicated that the mechanism of stimulation for SGLT1 during OZR-ADS treatment was secondary to an increase in the affinity (1/Km) of the co-transporter for glucose without a change in co-transporter number. Western blot studies revealed that SGLT1 protein expression was unaltered in the two groups, confirming our kinetic studies. Immunoprecipitation demonstrated that an increase in the affinity of the SGLT1 protein was mediated by altered phosphorylation. In conclusion, during obesity, the adipose tissue secretome stimulates SGLT1 in intestinal epithelial cells, leading to an increase in affinity for glucose. The affinity change is due to alterations in SGLT1 phosphorylation. Together, these results may provide important insight into the mechanisms underlying altered glucose homeostasis in obesity and how this may lead to the development of Type 2 diabetes mellitus. Full article
Show Figures

Figure 1

19 pages, 15448 KB  
Article
Adverse Effects of Glyphosate and Microcystin-LR on Fish Health: Evidence from Structural and Functional Impairments in Zebrafish Gills
by Yidan Zhang, Han Hu, Linmei Song, Zhihui Liu, Junguo Ma and Xiaoyu Li
Animals 2025, 15(16), 2355; https://doi.org/10.3390/ani15162355 - 11 Aug 2025
Viewed by 436
Abstract
Glyphosate (GLY) and microcystin-LR (MC-LR) frequently co-occur in natural water bodies. In this study, a subacute exposure test was conducted on zebrafish treated with 3.5 mg/L GLY and 35 μg/L MC-LR, individually and in combination, for 21 d to determine their effects on [...] Read more.
Glyphosate (GLY) and microcystin-LR (MC-LR) frequently co-occur in natural water bodies. In this study, a subacute exposure test was conducted on zebrafish treated with 3.5 mg/L GLY and 35 μg/L MC-LR, individually and in combination, for 21 d to determine their effects on the gills of zebrafish and their potential mechanisms. The hematoxylin and eosin staining and scanning electron microscopy examination results showed that GLY and MC-LR exposure caused structural damage to gills. Biochemical analysis revealed Na+-K+-ATPase activity decreased, and the levels of reactive oxygen species, 8-hydroxy-2′-deoxyguanosine, and malondialdehyde increased, inducing oxidative damage to DNA and lipids of gills. Meanwhile, the inflammatory and immune function of the gill was significantly influenced, as evidenced by the alteration of the expression of tumor necrosis factor-α, interleukin-1β, complement 3, and immunoglobulin M. RNA-seq results revealed that GLY and/or MC-LR treatment induced transcriptional changes in the fish gills, which may affect various biological functions, and the lipid metabolism disruption potentially involved in the aforementioned process. Integrating histopathological, biochemical, and transcriptomic analyses, this study revealed that both individual and combined exposures to GLY and MC-LR had adverse effects on zebrafish gills, with combined exposure appears to result in more pronounced adverse effects, potentially compromising fish health. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Graphical abstract

18 pages, 3976 KB  
Article
Impact of Salinity Stress on Antioxidant Enzyme Activity, Histopathology, and Gene Expression in the Hepatopancreas of the Oriental River Prawn, Macrobrachium nipponense
by Shubo Jin, Zhenghao Ye, Hongtuo Fu, Yiwei Xiong, Hui Qiao, Wenyi Zhang and Sufei Jiang
Animals 2025, 15(15), 2319; https://doi.org/10.3390/ani15152319 - 7 Aug 2025
Viewed by 405
Abstract
Macrobrachium nipponense represents a commercial decapod species that predominantly inhabits freshwater ecosystems or environments with low salinity. However, the species exhibits normal survival and reproductive capacity in natural aquatic habitats with salinity levels up to 10 parts per thousand (ppt). The present study [...] Read more.
Macrobrachium nipponense represents a commercial decapod species that predominantly inhabits freshwater ecosystems or environments with low salinity. However, the species exhibits normal survival and reproductive capacity in natural aquatic habitats with salinity levels up to 10 parts per thousand (ppt). The present study aimed to elucidate the molecular mechanisms underlying salinity acclimation in M. nipponense by investigating alterations in oxidative stress, morphological adaptations, and hepatopancreatic gene expression profiles following exposure to a salinity level of 10 ppt. The present study demonstrates that glutathione peroxidase and Na+/K+-ATPase play critical roles in mitigating oxidative stress induced by elevated salinity in M. nipponense. Furthermore, histological analysis revealed distinct pathological alterations in the hepatopancreas of M. nipponense following 7-day salinity exposure, including basement-membrane disruption, luminal expansion, vacuolization, and a marked reduction in storage cells. Transcriptomic profiling of M. nipponense hepatopancreas suggested coordinated activation of both immune (lysosome and protein processing in endoplasmic reticulum pathways) and energy (pyruvate metabolism, glycolysis/gluconeogenesis, and citrate cycle) metabolic processes during salinity acclimation in M. nipponense. Quantitative real-time PCR validation confirmed the reliability of RNA-seq data. This study provides molecular insights into the salinity adaptation mechanisms in M. nipponense, offering potential applications for improving cultivation practices in brackish water environments. Full article
(This article belongs to the Special Issue Developmental Genetics of Adaptation in Aquatic Animals)
Show Figures

Figure 1

16 pages, 1287 KB  
Review
Oxidative Stress in the Regulation of Autosis-Related Proteins
by María Guerra-Andrés, Inés Martínez-Rojo, Alejandra Piedra-Macías, Elena Lavado-Fernández, Marina García-Macia and Álvaro F. Fernández
Antioxidants 2025, 14(8), 958; https://doi.org/10.3390/antiox14080958 - 4 Aug 2025
Viewed by 674
Abstract
Physiological levels of reactive oxygen species (ROS) play a crucial role as intracellular signaling molecules, helping to maintain cellular homeostasis. However, when ROS accumulate excessively, they become toxic to cells, leading to damage to lipids, proteins, and DNA. This oxidative stress can impair [...] Read more.
Physiological levels of reactive oxygen species (ROS) play a crucial role as intracellular signaling molecules, helping to maintain cellular homeostasis. However, when ROS accumulate excessively, they become toxic to cells, leading to damage to lipids, proteins, and DNA. This oxidative stress can impair cellular function and lead to various forms of cell death, including apoptosis, necroptosis, ferroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis. Despite their significance, the role of ROS in autosis (an autophagy-dependent form of cell death) remains largely unexplored. In this review, we gather current knowledge on autotic cell death and summarize how oxidative stress influences the activity of Beclin-1 and the Na+,K+-ATPase pump, both of which are critical effectors of this pathway. Finally, we discuss the theoretical potential for ROS to modulate this type of cell death, proposing a possible dual role for these species in autosis regulation through effectors such as HIF-1α, TFEB, or the FOXO family, and highlighting the need to experimentally address cellular redox status when working on autotic cell death. Full article
(This article belongs to the Special Issue Crosstalk between Autophagy and Oxidative Stress)
Show Figures

Figure 1

20 pages, 2847 KB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 531
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

13 pages, 2212 KB  
Article
Ablation of the Evolutionarily Acquired Functions of the Atp1b4 Gene Increases Metabolic Capacity and Reduces Obesity
by Nikolai N. Modyanov, Lucia Russo, Sumona Ghosh Lester, Tamara R. Castañeda, Himangi G. Marathe, Larisa V. Fedorova, Raymond E. Bourey, Sonia M. Najjar and Ivana L. de la Serna
Life 2025, 15(7), 1103; https://doi.org/10.3390/life15071103 - 14 Jul 2025
Viewed by 481
Abstract
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete [...] Read more.
In placental mammals, the co-option of vertebrate orthologous ATP1B4 genes has profoundly altered the properties of the encoded BetaM proteins, which function as bona fide β-subunits of Na,K-ATPases in lower vertebrates. Eutherian BetaM acquired an extended Glu-rich N-terminal domain resulting in the complete loss of its ancestral function and became a skeletal and cardiac muscle-specific component of the inner nuclear membrane. BetaM is expressed at the highest level during perinatal development and is implicated in gene regulation. Here we report the long-term consequences of Atp1b4 ablation on metabolic parameters in adult mice. Male BetaM-deficient (Atp1b4−/Y) mice have remarkably lower body weight and adiposity than their wild-type littermates, despite higher food intake. Indirect calorimetry shows higher energy expenditure (heat production and oxygen consumption) with a greater spontaneous locomotor activity in Atp1b4−/Y males. Their lower respiratory exchange ratio suggests a greater reliance on fat metabolism compared to their wild-type counterparts. Consistently, Atp1b4−/Y KO mice exhibit enhanced β-oxidation in skeletal muscle, along with improved glucose and insulin tolerance. These robust metabolic changes induced by Atp1b4 disruption demonstrate that eutherian BetaM plays an important role in regulating adult mouse metabolism. This demonstrates that bypassing the co-option of Atp1b4 potentially reduces susceptibility to obesity. Thus, Atp1b4 ablation leading to the loss of evolutionarily acquired BetaM functions serves as a model for a potential alternative pathway in mammalian evolution. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

23 pages, 5105 KB  
Article
Behavioral, Hematological, Histological, Physiological Regulation and Gene Expression in Response to Heat Stress in Amur Minnow (Phoxinus lagowskii)
by Weijie Mu, Jing Wang, Yanyan Zhou, Shibo Feng, Ye Huang and Qianyu Li
Fishes 2025, 10(7), 335; https://doi.org/10.3390/fishes10070335 - 8 Jul 2025
Viewed by 600
Abstract
Rising water temperatures due to climate change pose a significant threat to Phoxinus lagowskii, a cold-water fish that is ecologically vital to the high-latitude regions of China. This study assessed heat stress effects on behavioral, hematological, histological, physiological, and molecular responses in [...] Read more.
Rising water temperatures due to climate change pose a significant threat to Phoxinus lagowskii, a cold-water fish that is ecologically vital to the high-latitude regions of China. This study assessed heat stress effects on behavioral, hematological, histological, physiological, and molecular responses in P. lagowskii. The critical maximum temperature (CTmax) was determined using the loss of equilibrium (LOE) method, with the CTmax reaching 29 °C. Elevated temperatures lead to an increase in the OBR. Fish were subjected to acute heat stress at 28 °C (below CTmax) for 48 h, with samples collected during the 48 h period. RBC, WBC, HGB, and HCT significantly increased during heat stress but decreased 12 h after heat stress. The levels of serum cortisol and blood glucose after heat stress were significantly higher than those in the control group. After heat stress, the height of the ILCM in the gills increased significantly, and the liver exhibited vacuolar degeneration and hypopigmentation. The activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in the gills initially increased and then decreased over the duration of heat stress. Most enzyme activities (PK, LDH, PFK, and HK) decreased during heat stress, while LPL and HL levels increased, indicating that lipid metabolism was the primary utilization process under heat stress. There was an increase in SOD activity at 12 h, followed by a decrease at 24 h, and an increase in CAT activity under heat stress. Integrated biomarker response (IBR) and principal component analysis (PCA) were employed to synthesize multi-level responses. The IBR values reached their peak at 3 h and 48 h of heat stress. We observed an upregulation of heat shock proteins (Hsp70, Hsp90, and Hsc70) as well as interleukin-10 (IL-10) in response to heat stress. Our findings offer novel insights into the mechanisms underlying the heat stress response in P. lagowskii, thereby enhancing our understanding of the effects of heat stress on cold-water fish. Full article
(This article belongs to the Special Issue Environmental Physiology of Aquatic Animals)
Show Figures

Graphical abstract

15 pages, 2598 KB  
Case Report
Two Cases of Chronic Tubular Necrosis Presenting as Fanconi Syndrome Induced by Red Yeast Rice Choleste-Help
by Kanako Mita, Shunsuke Takahashi, Satoshi Yanagida, Akihiro Aoyama, Takayuki Shiraishi, Takayuki Hamada, Yumiko Nakamura, Mariko Sato, Kento Hirose, Ryo Yamamoto, Yuya Shioda, Kaori Takayanagi, Izumi Nagayama, Yuko Ono, Hajime Hasegawa and Akito Maeshima
Diagnostics 2025, 15(13), 1722; https://doi.org/10.3390/diagnostics15131722 - 6 Jul 2025
Viewed by 578
Abstract
Background and Clinical Significance: Although dietary supplements have often been deemed safe, some have been linked to drug-induced nephropathy due to their diverse ingredients. The aim of this report is to enhance clinical awareness of a novel and emerging cause of Fanconi syndrome [...] Read more.
Background and Clinical Significance: Although dietary supplements have often been deemed safe, some have been linked to drug-induced nephropathy due to their diverse ingredients. The aim of this report is to enhance clinical awareness of a novel and emerging cause of Fanconi syndrome due to red yeast rice supplements and to contribute new histopathological and clinical data. Case Presentation: We report two cases of renal dysfunction and Fanconi syndrome associated with the use of red yeast rice supplements. Both patients presented with renal impairment accompanied by elevated markers of tubular injury, hypouricemia, hypokalemia, and glucosuria, consistent with Fanconi syndrome. Following the discontinuation of the red yeast rice supplement and initiation of steroid therapy, Fanconi syndrome resolved, however, moderate renal dysfunction persisted. Urinary NGAL levels improved after treatment in both cases. KIM-1 normalized in one case but remained elevated in the other. Uromodulin recovery was complete in one case and partial in the other. Renal biopsy revealed mild tubulointerstitial nephritis, with notable shedding of proximal tubular epithelial cells. Immunohistochemical analysis demonstrated reduced expression of URAT-1, Na-K ATPase, and Na-Pi IIa in some tubules. Conclusions: These findings suggest that renal injury induced by red yeast rice supplements is mediated by direct proximal tubular necrosis caused by a harmful substance in the supplement, resulting in persistence of tubular dysfunction. Full article
(This article belongs to the Special Issue Kidney Disease: Biomarkers, Diagnosis, and Prognosis: 3rd Edition)
Show Figures

Figure 1

21 pages, 2467 KB  
Article
Chronic Ammonia Stress in Chinese Perch (Siniperca chuatsi): Oxidative Response, Nitrogen Metabolism, and Multi-Enzyme-Mediated Molecular Detoxification Defense Mechanisms
by Yan Li, Ru Yang, Minghui He, Jianmei Su and Liwei Liu
Antioxidants 2025, 14(7), 768; https://doi.org/10.3390/antiox14070768 - 22 Jun 2025
Cited by 1 | Viewed by 594
Abstract
Chinese perch (Siniperca chuatsi), an economically important freshwater fish in China, faces ammonia nitrogen stress under high-density aquaculture. This study investigated chronic ammonia nitrogen exposure effects on juvenile fish (95 ± 5 g) to establish safe concentration. Acute toxicity tests revealed [...] Read more.
Chinese perch (Siniperca chuatsi), an economically important freshwater fish in China, faces ammonia nitrogen stress under high-density aquaculture. This study investigated chronic ammonia nitrogen exposure effects on juvenile fish (95 ± 5 g) to establish safe concentration. Acute toxicity tests revealed a 96 h-LC50 of 12.91 mg/L ammonia nitrogen, with a safe concentration of 1.29 mg/L ammonia nitrogen (non-ionic ammonia: 0.097 mg/L). In 28-day chronic experiments with ammonia nitrogen levels at 0, 0.61, 1.29, and 2.58 mg/L, ammonia nitrogen induced hepatic oxidative stress, with total superoxide dismutase, catalase, and glutathione peroxidase activities and malondialdehyde content increasing proportionally to ammonia nitrogen concentration initially but declining over time. Concurrently, gill Na+-K+-ATPase activity was significantly suppressed, while the gene expression of ammonia transporters (rhag, rhbg, and rhcg) exhibited ammonia nitrogen concentration-dependent upregulation, inversely correlated with the exposure duration. Histological gill damage intensified at higher concentrations. Hepatic ammonia detoxification enzymes activities (asparagine synthase, glutamine synthetase, and glutamate dehydrogenase) and glutamine accumulation increased with ammonia nitrogen levels, aligning with gene expression trends, though enzyme activity diminished over time. Serum alanine aminotransferase and aspartate aminotransferase activities and their gene expressions rose with ammonia nitrogen levels, while total protein declined. These findings demonstrate that chronic ammonia nitrogen stress disrupts antioxidant capacity, osmoregulation, and nitrogen metabolism, compelling Chinese perch to mitigate toxicity via glutamine synthesis. To ensure sustainable aquaculture, ammonia nitrogen levels should remain below 1.29 mg/L under adequate dissolved oxygen conditions. Full article
(This article belongs to the Special Issue The Role of Oxidative Stress in Aquaculture)
Show Figures

Graphical abstract

43 pages, 3064 KB  
Review
Cardiac Glycosides: From Natural Defense Molecules to Emerging Therapeutic Agents
by Arturo Ponce, Catalina Flores-Maldonado and Ruben G. Contreras
Biomolecules 2025, 15(6), 885; https://doi.org/10.3390/biom15060885 - 17 Jun 2025
Viewed by 2108
Abstract
Cardiac glycosides (CGs), a class of plant- and animal-derived compounds historically used to treat heart failure, have garnered renewed interest for their diverse pharmacological properties beyond Na+/K+-ATPase (NKA) inhibition. Recent studies reveal that CGs modulate key signaling pathways—such as [...] Read more.
Cardiac glycosides (CGs), a class of plant- and animal-derived compounds historically used to treat heart failure, have garnered renewed interest for their diverse pharmacological properties beyond Na+/K+-ATPase (NKA) inhibition. Recent studies reveal that CGs modulate key signaling pathways—such as NF-κB, PI3K/Akt, JAK/STAT, and MAPK—affecting processes central to cancer, viral infections, immune regulation, and neurodegeneration. In cancer, CGs induce multiple forms of regulated cell death, including apoptosis, ferroptosis, pyroptosis, and immunogenic cell death, while also inhibiting angiogenesis, epithelial–mesenchymal transition, and cell cycle progression. They demonstrate broad-spectrum antiviral activity by disrupting viral entry, replication, and mRNA processing in viruses such as HSV, HIV, influenza, and SARS-CoV-2. Immunologically, CGs regulate Th17 differentiation via RORγ signaling, although both inhibitory and agonistic effects have been reported. In the nervous system, CGs modulate neuroinflammation, support synaptic plasticity, and improve cognitive function in models of Alzheimer’s disease, epilepsy, and multiple sclerosis. Despite their therapeutic potential, clinical translation is hindered by narrow therapeutic indices and systemic toxicity. Advances in drug design and nanocarrier-based delivery are critical to unlocking CGs’ full potential as multi-target agents for complex diseases. This review synthesizes the current knowledge on the emerging roles of CGs and highlights strategies for their safe and effective repurposing. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

Back to TopTop