Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Nitraria L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1349 KB  
Article
Anatomical Adaptations of Halophyte Leaves (Nitraria retusa [Forsskal] Asch. and Atriplex halimus L.) in Response to Cement Dust Pollution in Arid Environments
by Nouha Krir, Mounira Mkaddem Guedri, Mehrez Romdhane and Manel Abdullah Alshaqha
Life 2025, 15(1), 61; https://doi.org/10.3390/life15010061 - 7 Jan 2025
Viewed by 1215
Abstract
This study investigates the anatomical adaptations of leaves from two halophyte species, Nitraria retusa (Forsskal) Asch. and Atriplex halimus L., in response to pollutants from a cement factory and human activities. In industrial areas, these plants absorb pollutants through their leaf surfaces, including [...] Read more.
This study investigates the anatomical adaptations of leaves from two halophyte species, Nitraria retusa (Forsskal) Asch. and Atriplex halimus L., in response to pollutants from a cement factory and human activities. In industrial areas, these plants absorb pollutants through their leaf surfaces, including Cu, Zn, and Pb. The two species were examined for anatomical changes under air pollution, and key factors including leaf blade thickness, palisade parenchyma cell height, spongy parenchyma cell diameter, epidermal characteristics, and stomatal traits were assessed. Under pollution, the leaves displayed smaller and denser stomata and idioblasts in the palisade and spongy parenchyma. These anatomical responses suggest that N. retusa and A. halimus could be effective bioindicators for detecting cement dust pollutants. Their leaf relative water content (RWC) exhibited a range of values: 70.1% and 87% for N. retusa and 64.8% to 74.2% for A. halimus on the highly polluted site (S1) and the control site (S4), respectively. Notably, a statistically significant site effect was observed (p > 0.01), confirming previous studies, and indicating reduced leaf relative water content (RWC) values in plants exposed to heavy metals like Cd and Pb. Heavy metals can lead to mineralization by binding to cell walls, altering their physicochemical properties and plasticity. Furthermore, significant correlations between specific heavy metals and histological parameters in A. halimus leaves indicated potential interactions between metal composition and leaf structure, highlighting their role in modulating anatomical adaptations. The correlation of leaf thickness, upper epidermal thickness, and stomatal density with Zn and Pb levels underlines the importance of these anatomical features in heavy metal accumulation and retention in plant tissues. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

21 pages, 28510 KB  
Article
Predicting the Global Distribution of Nitraria L. Under Climate Change Based on Optimized MaxEnt Modeling
by Ke Lu, Mili Liu, Qi Feng, Wei Liu, Meng Zhu and Yizhong Duan
Plants 2025, 14(1), 67; https://doi.org/10.3390/plants14010067 - 28 Dec 2024
Viewed by 1356
Abstract
The genus of Nitraria L. are Tertiary-relict desert sand-fixing plants, which are an important forage and agricultural product, as well as an important source of medicinal and woody vegetable oil. In order to provide a theoretical basis for better protection and utilization of [...] Read more.
The genus of Nitraria L. are Tertiary-relict desert sand-fixing plants, which are an important forage and agricultural product, as well as an important source of medicinal and woody vegetable oil. In order to provide a theoretical basis for better protection and utilization of species in the Nitraria L., this study collected global distribution information within the Nitraria L., along with data on 29 environmental and climatic factors. The Maximum Entropy (MaxEnt) model was used to simulate the globally suitable distribution areas for Nitraria L. The results showed that the mean AUC value was 0.897, the TSS average value was 0.913, and the model prediction results were excellent. UV-B seasonality (UVB-2), UV-B of the lowest month (UVB-4), precipitation of the warmest quarter (bio18), the DEM (Digital Elevation Model), and annual precipitation (bio12) were the key variables affecting the distribution area of Nitraria L, with contributions of 54.4%, 11.1%, 8.3%, 7.4%, and 4.1%, respectively. The Nitraria L. plants are currently found mainly in Central Asia, North Africa, the neighboring Middle East, and parts of southern Australia and Siberia. In future scenarios, except for a small expansion of the 2030s scenario model Nitraria L., the potential suitable distribution areas showed a decreasing trend. The contraction area is mainly concentrated in South Asia, such as Afghanistan and Pakistan, North Africa, Libya, as well as in areas of low suitability in northern Australia, where there was also significant shrinkage. The areas of expansion are mainly concentrated in the Qinghai–Tibet Plateau to the Iranian plateau, and the Sahara Desert is also partly expanded. With rising Greenhouse gas concentrations, habitat fragmentation is becoming more severe. Center-of-mass migration results also suggest that the potential suitable area of Nitraria L. will shift northwestward in the future. This study can provide a theoretical basis for determining the scope of Nitraria L. habitat protection, population restoration, resource management and industrial development in local areas. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 4334 KB  
Article
Phytochemical Analysis and Multifaceted Biomedical Activities of Nitraria retusa Extract as Natural Product-Based Therapies
by Manal M. Khowdiary, Zinab Alatawi, Amirah Alhowiti, Mohamed A. Amin, Hussam Daghistani, Faisal Miqad K. Albaqami, Mohamed Ali Abdel-Rahman, Ahmed Ghareeb, Nehad A. Shaer, Ahmed M. Shawky and Amr Fouda
Life 2024, 14(12), 1629; https://doi.org/10.3390/life14121629 - 9 Dec 2024
Cited by 3 | Viewed by 1404
Abstract
This study examined the phytochemical profile and biomedical activities of Nitraria retusa, a halophytic and drought-resistant shrub. HPLC analysis showed gallic acid (1905.1 μg/g), catechin (1984.1 μg/g), and ellagic acid (2671.1 μg/g) as the primary constituents, while FT-IR analysis revealed a complex [...] Read more.
This study examined the phytochemical profile and biomedical activities of Nitraria retusa, a halophytic and drought-resistant shrub. HPLC analysis showed gallic acid (1905.1 μg/g), catechin (1984.1 μg/g), and ellagic acid (2671.1 μg/g) as the primary constituents, while FT-IR analysis revealed a complex organic profile with significant functional groups. The extract demonstrated strong antioxidant activity in DPPH assays, outperforming ascorbic acid (IC50 = 18.7 ± 1.0 μg/mL) with an IC50 of 16.4 ± 4.4 μg/mL. It demonstrated specific antiproliferative effects on cancer cell lines as it showed selective cytotoxicity against cancer cell lines; normal WI38 cells were largely unaffected, showing 50.0% viability at 125 μg/mL. The most sensitive cell line was Caco2, which showed 50.0% viability at 125 μg/mL. Anti-diabetic properties were exhibited by means of inhibition of α-amylase (IC50 = 68.2 ± 4.2 μg/mL) and α-glucosidase (IC50 = 22.8 ± 3.3 μg/mL). Additionally, antimicrobial activity was observed to be broad-spectrum, and it was most effective against E. coli (32.6 mm inhibition zone at 400 μg/mL) and Penicillium glabrum (35.3 mm at 400 μg/mL). These findings highlight the potential of N. retusa in developing plant-based therapeutic approaches. Full article
(This article belongs to the Special Issue Advances in the Biomedical Applications of Plants and Plant Extracts)
Show Figures

Figure 1

17 pages, 1370 KB  
Article
Response of Typical Shrubs Growth and Soil Nutrients to Graphene Addition in Impoverished Land of the Ulan Buh Desert
by Ren Mu, Jun Qiao, Chuijiu Kong, Xuting Hao, Guangfu Xu, Jingfu Han and Xinle Li
Plants 2024, 13(22), 3214; https://doi.org/10.3390/plants13223214 - 15 Nov 2024
Viewed by 793
Abstract
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research [...] Read more.
Graphene can promote plant growth and improve soil conditions, but its effectiveness in enhancing infertile soils in arid regions remains unclear. This study selected three typical shrubs from the Ulan Buh Desert Nitraria tangutorum, Xanthoceras sorbifolium, and Amygdalus mongolica as research subjects. Five graphene addition levels were set: 0 mg/L (C0), 25 mg/L (C1), 50 mg/L (C2), 100 mg/L (C3), and 200 mg/L (C4).A pot experiment was conducted in June 2023 to investigate the effects of graphene addition on shrub growth and soil nutrients. The results showed that the optimal graphene addition levels for A. mongolica, X. sorbifolium, and N. tangutorum were C2, C2, and C3, respectively. Compared with the control, the total biomass of the different shrubs increased by 185.31%, 50.86%, and 161.10%, respectively. However, when the graphene addition exceeded the optimal level, shrub biomass showed a decreasing trend with increasing graphene concentration. Total shrub biomass was positively correlated with soil available nitrogen and potassium, while redundancy analysis indicated that soil organic matter was the primary factor influencing shrub growth. This suggests that graphene promotes shrub growth by affecting soil organic matter and available nutrients. Therefore, graphene addition can enhance soil fertility in barren lands in arid regions and significantly promote shrub growth. However, due to soil leaching effects, this growth-promoting effect may decrease over time. Full article
Show Figures

Figure 1

24 pages, 5096 KB  
Article
The Effect of Two Siderophore-Producing Bacillus Strains on the Growth Promotion of Perennial Ryegrass under Cadmium Stress
by Lingling Wu, Yongli Xie, Junxi Li, Mingrong Han, Xue Yang and Feifei Chang
Microorganisms 2024, 12(6), 1083; https://doi.org/10.3390/microorganisms12061083 - 27 May 2024
Cited by 5 | Viewed by 1878
Abstract
Cadmium (Cd) is a highly toxic and cumulative environmental pollutant. Siderophores are heavy metal chelators with high affinity to heavy metals, such as Cd. Ryegrass (Lolium perenne L.) has a potential remediation capacity for soils contaminated by heavy metals. Consequently, using ryegrass [...] Read more.
Cadmium (Cd) is a highly toxic and cumulative environmental pollutant. Siderophores are heavy metal chelators with high affinity to heavy metals, such as Cd. Ryegrass (Lolium perenne L.) has a potential remediation capacity for soils contaminated by heavy metals. Consequently, using ryegrass alongside beneficial soil microorganisms that produce siderophores may be an effective means to remediate soils contaminated with Cd. In this study, the Bacillus strains WL1210 and CD303, which were previously isolated from the rhizospheres of Nitraria tangutorum in Wulan and Peganum harmala L. in Dachaidan, Qinghai, China, respectively, both arid and sandy environments, were evaluated for heavy metal pollution mitigation. Our quantitative analyses have discerned that the two bacterial strains possess commendable attributes of phosphorus (P) solubilization and potassium (K) dissolution, coupled with the capacity to produce phytohormones. To assess the heavy metal stress resilience of these strains, they were subjected to a cadmium concentration gradient, revealing their incremental growth despite cadmium presence, indicative of a pronounced tolerance threshold. The subsequent phylogenetic analysis, bolstered by robust genomic data from conserved housekeeping genes, including 16S rDNA, gyr B gene sequencing, as well as dnaK and recA, delineated a species-level phylogenetic tree, thereby confirming the strains as Bacillus atrophaeus. Additionally, we identified the types of iron-carrier-producing strains as catechol (WL1210) and carboxylic acid ferrophilin (CD303). A genomic analysis uncovered functional genes in strain CD303 associated with plant growth and iron carrier biosynthesis, such as fnr and iscA. Ryegrass seed germination assays, alongside morphological and physiological evaluations under diverse heavy metal stress, underscored the strains’ potential to enhance ryegrass growth under high cadmium stress when treated with bacterial suspensions. This insight probes the strains’ utility in leveraging alpine microbial resources and promoting ryegrass proliferation. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

18 pages, 3364 KB  
Article
Transcriptome Profiling and Chlorophyll Metabolic Pathway Analysis Reveal the Response of Nitraria tangutorum to Increased Nitrogen
by Chenggong Liu, Na Duan, Xiaona Chen, Xu Li, Naqi Zhao, Wenxu Cao, Huiqing Li, Bo Liu, Fengsen Tan, Xiulian Zhao and Qinghe Li
Plants 2023, 12(4), 895; https://doi.org/10.3390/plants12040895 - 16 Feb 2023
Cited by 6 | Viewed by 2325
Abstract
To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 [...] Read more.
To identify genes that respond to increased nitrogen and assess the involvement of the chlorophyll metabolic pathway and associated regulatory mechanisms in these responses, Nitraria tangutorum seedlings were subjected to four nitrogen concentrations (N0, N6, N36, and N60: 0, 6, 36, and 60 mmol·L−1 nitrogen, respectively). The N. tangutorum seedling leaf transcriptome was analyzed by high-throughput sequencing (Illumina HiSeq 4000), and 332,420 transcripts and 276,423 unigenes were identified. The numbers of differentially expressed genes (DEGs) were 4052 in N0 vs. N6, 6181 in N0 vs. N36, and 3937 in N0 vs. N60. Comparing N0 and N6, N0 and N36, and N0 and N60, we found 1101, 2222, and 1234 annotated DEGs in 113, 121, and 114 metabolic pathways, respectively, classified in the Kyoto Encyclopedia of Genes and Genomes database. Metabolic pathways with considerable accumulation were involved mainly in anthocyanin biosynthesis, carotenoid biosynthesis, porphyrin and chlorophyll metabolism, flavonoid biosynthesis, and amino acid metabolism. N36 increased δ-amino levulinic acid synthesis and upregulated expression of the magnesium chelatase H subunit, which promoted chlorophyll a synthesis. Hence, N36 stimulated chlorophyll synthesis rather than heme synthesis. These findings enrich our understanding of the N. tangutorum transcriptome and help us to research desert xerophytes’ responses to increased nitrogen in the future. Full article
Show Figures

Figure 1

15 pages, 3051 KB  
Article
Polysaccharides from Nitraria retusa Fruit: Extraction, Purification, Structural Characterization, and Antioxidant Activities
by Lijun Song, Shiqi Liu, Li Zhang, Leiqing Pan and Long Xu
Molecules 2023, 28(3), 1266; https://doi.org/10.3390/molecules28031266 - 28 Jan 2023
Cited by 14 | Viewed by 2760
Abstract
Polysaccharides are important bioactive components of Nitraria retusa fruit (NRF). In this study, the ultrasonic-assisted extraction (UAE) conditions of polysaccharides from Nitraria retusa fruit (NRFPs) were optimized by response surface methodology (RSM). The structural characteristics and antioxidant activity were investigated. The maximum NRFPs [...] Read more.
Polysaccharides are important bioactive components of Nitraria retusa fruit (NRF). In this study, the ultrasonic-assisted extraction (UAE) conditions of polysaccharides from Nitraria retusa fruit (NRFPs) were optimized by response surface methodology (RSM). The structural characteristics and antioxidant activity were investigated. The maximum NRFPs yield of 3.35% was obtained under the following optimal conditions: temperature of 59.5 °C, time of 30.5 min, liquid-to-solid ratio of 19.5 mL/g. Three polysaccharide fractions, NRFP-1 (20.01 kDa), NRFP-2 (28.96 kDa), and NRFP-3 (67.45 kDa), were isolated. Glucose, galactose, and arabinose in different percentages were identified as the primary monosaccharide units. The Fourier transform infrared spectrometer (FT-IR) and nuclear magnetic resonance (NMR) analysis indicated the presence of α- and β-glycosidic bonds in NRFPs. The NRFP-3 exhibited the highest scavenging activities against DPPH, ABTS, -OH free radicals, and Fe+3-reducing activity. Full article
(This article belongs to the Special Issue Research and Application of Plant Sourced Polysaccharides)
Show Figures

Graphical abstract

11 pages, 3817 KB  
Article
Genetic Diversity in Marginal Populations of Nitraria schoberi L. from Romania
by Ioana C. Paica, Cristian Banciu, Gabriel M. Maria, Mihnea Vladimirescu and Anca Manole
Diversity 2022, 14(10), 882; https://doi.org/10.3390/d14100882 - 18 Oct 2022
Cited by 6 | Viewed by 2688
Abstract
Nitraria schoberi L. (Nitrariaceae) is a halophytic plant with a continuous range in Central Asia and with only two populations in the westernmost distribution limit of species, in Romania. Currently, there is no documented explanation for the species’ presence in Europe, [...] Read more.
Nitraria schoberi L. (Nitrariaceae) is a halophytic plant with a continuous range in Central Asia and with only two populations in the westernmost distribution limit of species, in Romania. Currently, there is no documented explanation for the species’ presence in Europe, outside the main distribution area. Considering that marginal populations genetics are important in establishing range limits and species adaptative potential, genetic diversity was assessed using Inter-simple sequence repeat markers (ISSR). Both the Shannon’s Information Index (I) and Expected Heterozygosity (He) suggested a relatively low level of genetic diversity within the two populations. However, the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrogram and Principal Coordinates Analysis clearly distinguished the two populations. Our presumptions, based on current results, are that the marginal westernmost population of N. schoberi was established due to the unique conditions from the “islands of desert” developed in a temperate continental climate. The European establishment of this species was likely accidental and probably due to ornithochory. Genetic relatedness between populations could be a consequence of their common origin, presumably from proximal Asian N. schoberi populations, while the separation can be explained by the lack of genetic material exchange between the two populations. Full article
(This article belongs to the Special Issue Diversity and Conservation of Scrublands Flora and Vegetation)
Show Figures

Graphical abstract

18 pages, 2276 KB  
Article
Effect of Plant Growth Regulators on Osmotic Regulatory Substances and Antioxidant Enzyme Activity of Nitraria tangutorum
by Dom Alizet Didi, Shiping Su, Faisal Eudes Sam, Richard John Tiika and Xu Zhang
Plants 2022, 11(19), 2559; https://doi.org/10.3390/plants11192559 - 28 Sep 2022
Cited by 27 | Viewed by 4728
Abstract
Plant growth regulators (PGRs) are natural hormones and synthetic hormone analogues. At low concentrations, PGRs have the ability to influence cell division, cell expansion, and cell structure and function, in addition to mediating environmental stress. In this study, experiments were conducted to determine [...] Read more.
Plant growth regulators (PGRs) are natural hormones and synthetic hormone analogues. At low concentrations, PGRs have the ability to influence cell division, cell expansion, and cell structure and function, in addition to mediating environmental stress. In this study, experiments were conducted to determine how exogenous PGRs indole acetic acid (IAA), abscisic acid (ABA), and gibberellic acid (GA) influenced osmotic regulatory substances and activity of antioxidant enzymes in Nitraria tangutorum. Using a completely randomized design, IAA, ABA, and GA3 were applied as foliar spray at concentrations of 50 mg/L, 100 mg/L, 150 mg/L, and 200 mg/L to N. tangutorum shrubs. Some selected shrubs did not receive any treatment and served as the control (Ck). The results showed that the foliar spray of IAA, ABA, and GA3 significantly increased the content of osmotic regulatory substances (soluble sugar, soluble protein, and proline) and antioxidant enzymes (SOD and POD) at most concentrations. In addition, the malondialdehyde (MDA) content significantly reduced after treatment, but after regrowth of coppiced shrubs, lipid peroxidation increased and was still lower than Ck. Our study provides evidence that 100 mg/L 150 mg/L, and 200 mg/L concentrations of IAA, ABA, and GA3 treatments are effective for enhancing osmotic regulatory substances and the activity of antioxidant enzymes in N. tangutorum, which offers an effective strategy not only for increasing tolerance to abiotic and biotic stresses, but also improving the adaptability of N. tangutorum shrubs to the environment. Full article
Show Figures

Figure 1

17 pages, 5320 KB  
Article
Pollen Morphology of Some Species from Genus Nitraria
by Maria Tomoshevich, Evgeny Banaev, Sofia Khozyaykina and Anna Erst
Plants 2022, 11(18), 2359; https://doi.org/10.3390/plants11182359 - 9 Sep 2022
Cited by 6 | Viewed by 5830
Abstract
An analysis of pollen grains (in Nitraria sibirica Pall., N. schoberi L., N. komarovii Iljin & Lava ex Bobrov, and N. pamirica L. Vassil.) was performed on natural material collected in Russia, Kazakhstan, and Tajikistan. Herbarium specimens from the collection at Komarov Botanical [...] Read more.
An analysis of pollen grains (in Nitraria sibirica Pall., N. schoberi L., N. komarovii Iljin & Lava ex Bobrov, and N. pamirica L. Vassil.) was performed on natural material collected in Russia, Kazakhstan, and Tajikistan. Herbarium specimens from the collection at Komarov Botanical Institute, Russian Academy of Sciences (N. tangutorum Bobrov and N. praevisa Bobrov) were examined, too. Pollen grains of two species—N. pamirica and N. praevisa—were studied for the first time. N. tangutorum and N. praevisa were found to have the perprolate pollen shape, whereas N. pamirica was found to have the subprolate shape. An intraspecific differentiation of N. sibirica was noted. Populations of N. sibirica (Taskarasu, Karatal, and Basshi) possess pollen grains of the subprolate or prolate shape, striate and perforate exine ornamentation, and a longer equatorial axis and a shorter polar axis than other specimens of N. sibirica. N. schoberi in all populations had anomalous shapes of some pollen grains. Overall, we demonstrated that the length ratio of the polar axis to the equatorial axis, characteristics of pollen in polar view, colpus morphology, and surface ornamentation of pollen grains in the genus Nitraria are of great taxonomic importance for the identification of species. Full article
(This article belongs to the Special Issue Floral Biology 2.0)
Show Figures

Figure 1

10 pages, 1497 KB  
Article
Anti-Influenza Activity of Medicinal Material Extracts from Qinghai–Tibet Plateau
by Olga Kurskaya, Elena Prokopyeva, Hongtao Bi, Ivan Sobolev, Tatyana Murashkina, Alexander Shestopalov, Lixin Wei and Kirill Sharshov
Viruses 2022, 14(2), 360; https://doi.org/10.3390/v14020360 - 10 Feb 2022
Cited by 13 | Viewed by 3228
Abstract
To discover sources for novel anti-influenza drugs, we evaluated the antiviral potential of nine extracts from eight medicinal plants and one mushroom (Avena sativa L., Hordeum vulgare Linn. var. nudum Hook. f., Hippophae rhamnoides Linn., Lycium ruthenicum Murr., Nitraria tangutorum Bobr., Nitraria [...] Read more.
To discover sources for novel anti-influenza drugs, we evaluated the antiviral potential of nine extracts from eight medicinal plants and one mushroom (Avena sativa L., Hordeum vulgare Linn. var. nudum Hook. f., Hippophae rhamnoides Linn., Lycium ruthenicum Murr., Nitraria tangutorum Bobr., Nitraria tangutorum Bobr. by-products, Potentilla anserina L., Cladina rangiferina (L.) Nyl., and Armillaria luteo-virens) from the Qinghai–Tibetan plateau against the influenza A/H3N2 virus. Concentrations lower than 125 μg/mL of all extracts demonstrated no significant toxicity in MDCK cells. During screening, seven extracts (A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens) exhibited antiviral activity, especially the water-soluble polysaccharide from the fruit body of the mushroom A. luteo-virens. These extracts significantly reduced the infectivity of the human influenza A/H3N2 virus in vitro when used at concentrations of 15.6–125 μg/mL. Two extracts (N. tangutorum by-products and P. anserina) had no A/H3N2 virus inhibitory activity. Notably, the extract obtained from the fruits of N. tangutorum and N. tangutorum by-products exhibited different anti-influenza effects. The results suggest that extracts of A. sativa, H. vulgare, H. rhamnoides, L. ruthenicum, N. tangutorum, C. rangiferina, and A. luteo-virens contain substances with antiviral activity, and may be promising sources of new antiviral drugs. Full article
(This article belongs to the Special Issue State-of-the-Art Respiratory Viruses Research in Russia)
Show Figures

Figure 1

17 pages, 2318 KB  
Article
Novel Antioxidant, Anti-α-Amylase, Anti-Inflammatory and Antinociceptive Water-Soluble Polysaccharides from the Aerial Part of Nitraria retusa
by Ilhem Rjeibi, Faiez Hentati, Anouar Feriani, Najla Hfaiedh, Cédric Delattre, Philippe Michaud and Guillaume Pierre
Foods 2020, 9(1), 28; https://doi.org/10.3390/foods9010028 - 26 Dec 2019
Cited by 19 | Viewed by 4886
Abstract
In this paper, water-soluble polysaccharides (named as NRLP) were extracted from Nitraria retusa leaves. The main structural features of NRLP were determined by High-pressure size exclusion chromatography, Fourier transform infrared and Gas Chromatography/Mass Spectrometry-Electronic Impact analysis. The in vitro and in vivo biological [...] Read more.
In this paper, water-soluble polysaccharides (named as NRLP) were extracted from Nitraria retusa leaves. The main structural features of NRLP were determined by High-pressure size exclusion chromatography, Fourier transform infrared and Gas Chromatography/Mass Spectrometry-Electronic Impact analysis. The in vitro and in vivo biological potential of NRLP were evaluated by measuring its antioxidant (•OH and DPPH• scavenging, total antioxidant capacity), anti-α-amylase as well as anti-inflammatory and antinociceptive activities in a mice model. NRLP was composed of Rha (33.7%), Gal (18.1%), GalA (15.0%), Glc (13.3%), Ara (13.3%), Xyl (3.8%), and GlcA (2.8%) and showed a Molecular Weight (Mw) of 23.0 kDa and a polydispersity index (PDI) of 1.66. The investigations highlighted a significant antioxidant activity (IC50 = 2.4–2.6 mg/mL) and an inhibition activity against α-amylase (IC50 = 4.55 mg/mL) in a dose-dependent manner. Further, NRLP revealed interesting anti-edematous effects and antinociceptive activities (both > 70%). These results open up new pharmacological prospects for the water-soluble polysaccharides extracted from Nitraria retusa leaves. Full article
Show Figures

Figure 1

12 pages, 1253 KB  
Article
Analysis of Nitraria Tangutourum Bobr-Derived Fatty Acids with HPLC-FLD-Coupled Online Mass Spectrometry
by Na Hu, Jian Ouyang, Qi Dong and Honglun Wang
Molecules 2019, 24(21), 3836; https://doi.org/10.3390/molecules24213836 - 24 Oct 2019
Cited by 1 | Viewed by 2721
Abstract
Fatty acids (FAs) are basic components in plants. The pharmacological significance of FAs has attracted attentions of nutritionists and pharmaceutists. Sensitive and accurate detection of FAs is of great importance. In the present study, a pre-column derivatization and online mass spectrometry-based qualitative and [...] Read more.
Fatty acids (FAs) are basic components in plants. The pharmacological significance of FAs has attracted attentions of nutritionists and pharmaceutists. Sensitive and accurate detection of FAs is of great importance. In the present study, a pre-column derivatization and online mass spectrometry-based qualitative and quantitative analysis of FAs was developed. Nineteen main FAs were derivatized by 2-(7-methyl-1H-pyrazolo-[3,4-b]quinoline-1-yl)ethyl-4-methyl benzenesulfonate (NMP) and separated on reversed-phase Hypersil BDS C8 column with gradient elution. All FAs showed excellent linear responses with correlation coefficients more than 0.9996. The method obtained LOQs between 0.93 ng/mL and 5.64 ng/mL. FA derivatives were identified by both retention time and protonated molecular ion corresponding to m/z [M + H]+. A comparative study based on FA contents in peel and pulp, seeds and leaves of Nitraria tangutourum Bobr (NTB) from different geographical origins was performed with the established method. Results indicated that NTB were rich in FAs, and the types and contents of FAs varied among tissues. On the other hand, the same tissue of NTB from different geographical areas differed in the content, but not in type, of FAs. Full article
(This article belongs to the Special Issue Food Analytical Chemistry–Advance Instrumental Methods and Sensors)
Show Figures

Figure 1

14 pages, 1686 KB  
Article
Rapid Determination of Amino Acids of Nitraria tangutorum Bobr. from the Qinghai-Tibet Plateau Using HPLC-FLD-MS/MS and a Highly Selective and Sensitive Pre-Column Derivatization Method
by Wu Zhou, Yuwei Wang, Fang Yang, Qi Dong, Honglun Wang and Na Hu
Molecules 2019, 24(9), 1665; https://doi.org/10.3390/molecules24091665 - 28 Apr 2019
Cited by 15 | Viewed by 4848
Abstract
Amino acids are indispensable components of living organisms. The high amino acid content in Nitraria tangutorum Bobr. fruit distinguishes it from other berry plants and is of great significance to its nutritional value. Herein, using 10-ethyl-acridine-3-sulfonyl chloride as a fluorescent pre-column labeling reagent, [...] Read more.
Amino acids are indispensable components of living organisms. The high amino acid content in Nitraria tangutorum Bobr. fruit distinguishes it from other berry plants and is of great significance to its nutritional value. Herein, using 10-ethyl-acridine-3-sulfonyl chloride as a fluorescent pre-column labeling reagent, a method for the efficient and rapid determination of amino acid content in N. tangutorum by pre-column fluorescence derivatization and on-line mass spectrometry was established and further validated. The limits of detection (signal-to-noise ratio = 3) were between 0.13 and 1.13 nmol/L, with a linear coefficient greater than 0.997 and a relative standard deviation between 1.37% and 2.64%. In addition, the method required a short analysis time, separating 19 amino acids within 20 min. Subsequently, the method was used to analyze the amino acid content of Nitraria tangutorum Bobr. from tissues retrieved from seven regions of the Qinghai-Tibet Plateau. Nitraria tangutorum Bobr. was shown to contain a large amount of amino acids, with the total content and main amino acid varying between the different tissues. This research supports the nutritional evaluation, quality control, and development and utilization of Nitraria tangutorum Bobr. Full article
(This article belongs to the Special Issue Food Analytical Chemistry–Advance Instrumental Methods and Sensors)
Show Figures

Figure 1

Back to TopTop