Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = OcUGT1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1249 KiB  
Article
Evaluating the Impact of Oral Contraceptives on Pancreatic Cancer Risk: A Two-Sample Mendelian Randomization Analysis
by Yuxin Tang, Yu Zhang, Shuaiyi Wang, Xinyi Shi, Xinjia Ruan, Yu Cheng, Fangrong Yan and Tiantian Liu
Biomedicines 2025, 13(6), 1351; https://doi.org/10.3390/biomedicines13061351 - 31 May 2025
Viewed by 272
Abstract
Background: The relationship between oral contraceptive (OC) use and pancreatic cancer (PC) risk remains controversial, with inconsistent findings reported in observational studies. To clarify this relationship and better identify potential risk factors for PC prevention, more unbiased and robust approaches are needed. Methods: [...] Read more.
Background: The relationship between oral contraceptive (OC) use and pancreatic cancer (PC) risk remains controversial, with inconsistent findings reported in observational studies. To clarify this relationship and better identify potential risk factors for PC prevention, more unbiased and robust approaches are needed. Methods: We investigated the potential causal relationship between OC use and PC risk using a two-sample Mendelian randomization (MR) analysis, with blood protein quantitative trait loci (pQTLs) as instrumental variables. To ensure the robustness of our findings, we performed a series of sensitivity analyses, colocalization analyses, and reverse MR. The causal effects of protein-coding genes on PC risk, as well as their expression patterns across different single-cell types, were subsequently investigated. To elucidate the potential pathogenic pathways, we conducted pathway enrichment analysis, protein–protein interaction (PPI) network analysis, and causal inference. Results: Our MR analysis identified five drug-targeted proteins significantly associated with PC risk. Higher levels of COMT, AGT, FN1, and UGT1A1, as well as lower levels of SERPINC1, were associated with an increased risk of PC. Among these, AGT, FN1, and COMT demonstrated consistent associations across sensitivity analyses and downstream analyses, providing robust evidence supporting their involvement in PC risk. Conclusions: This study provides genetic evidence suggesting, in European groups, a potential causal link between OC use and increased PC risk, possibly mediated through drug-targeted proteins such as AGT and FN1. These results highlight the importance for further research to elucidate the underlying mechanisms and assess the implications of OC use on PC risk. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

21 pages, 5055 KiB  
Article
The Active Glucuronide Metabolite of the Brain Protectant IMM-H004 with Poor Blood–Brain Barrier Permeability Demonstrates a High Partition in the Rat Brain via Multiple Mechanisms
by Jianwei Jiang, Lijun Luo, Ziqian Zhang, Xiao Liu, Naihong Chen, Yan Li and Li Sheng
Pharmaceutics 2024, 16(3), 330; https://doi.org/10.3390/pharmaceutics16030330 - 27 Feb 2024
Cited by 1 | Viewed by 1816
Abstract
Background: Glucuronidation is an essential metabolic pathway for a variety of drugs. IMM-H004 is a novel neuroprotective agent against ischemic stroke, and its glucuronide metabolite IMM-H004G exhibits similar pharmacological activity. Despite possessing a higher molecular weight and polarity, brain exposure of IMM-H004G is [...] Read more.
Background: Glucuronidation is an essential metabolic pathway for a variety of drugs. IMM-H004 is a novel neuroprotective agent against ischemic stroke, and its glucuronide metabolite IMM-H004G exhibits similar pharmacological activity. Despite possessing a higher molecular weight and polarity, brain exposure of IMM-H004G is much higher than that of IMM-H004. This study aimed to investigate the brain metabolism and transport mechanisms of IMM-H004 and IMM-H004G. Methods: First, the possibility of IMM-H004 glucuronidation in the brain was evaluated in several human brain cell lines and rat homogenate. Subsequently, the blood–brain barrier carrier-mediated transport mechanism of IMM-H004 and IMM-H004G was studied using overexpression cell models. In addition, intracerebroventricular injection, in situ brain perfusion model, and microdialysis/microinjection techniques were performed to study the distribution profiles of IMM-H004 and IMM-H004G. Results: IMM-H004 could be metabolized to IMM-H004G in both rat brain and HEB cells mediated by UGT1A7. However, IMM-H004G could not be hydrolyzed back into IMM-H004. Furthermore, the entry and efflux of IMM-H004 in the brain were mediated by the pyrilamine-sensitive H+/OC antiporter and P-gp, respectively, while the transport of IMM-H004G from the blood to the brain was facilitated by OATP1A2 and OATP2B1. Ultimately, stronger concentration gradients and OATP-mediated uptake played a critical role in promoting greater brain exposure of IMM-H004G. Conclusions: The active glucuronide metabolite of the brain protectant IMM-H004 with poor blood–brain barrier permeability demonstrates a high partition in the rat brain via multiple mechanisms, and our findings deepen the understanding of the mechanisms underlying the blood–brain barrier metabolism and transport of active glucuronide conjugates. Full article
Show Figures

Graphical abstract

14 pages, 1151 KiB  
Article
A Prognostic and Carboplatin Response Predictive Model in Ovarian Cancer: A Mono-Institutional Retrospective Study Based on Clinics and Pharmacogenomics
by Nicoletta Staropoli, Mariamena Arbitrio, Angela Salvino, Francesca Scionti, Domenico Ciliberto, Rossana Ingargiola, Caterina Labanca, Giuseppe Agapito, Eleonora Iuliano, Vito Barbieri, Maria Cucè, Valeria Zuccalà, Mario Cannataro, Pierfrancesco Tassone and Pierosandro Tagliaferri
Biomedicines 2022, 10(5), 1210; https://doi.org/10.3390/biomedicines10051210 - 23 May 2022
Cited by 3 | Viewed by 2582
Abstract
Carboplatin is the cornerstone of ovarian cancer (OC) treatment, while platinum-response, dependent on interindividual variability, is the major prognostic factor for long-term outcomes. This retrospective study was focused on explorative search of genetic polymorphisms in the Absorption, Distribution, Metabolism, Excretion (ADME) genes for [...] Read more.
Carboplatin is the cornerstone of ovarian cancer (OC) treatment, while platinum-response, dependent on interindividual variability, is the major prognostic factor for long-term outcomes. This retrospective study was focused on explorative search of genetic polymorphisms in the Absorption, Distribution, Metabolism, Excretion (ADME) genes for the identification of biomarkers prognostic/predictive of platinum-response in OC patients. Ninety-two advanced OC patients treated with carboplatin-based therapy were enrolled at our institution. Of these, we showed that 72% of patients were platinum-sensitive, with a significant benefit in terms of OS (p = 0.001). We identified an inflammatory-score with a longer OS in patients with lower scores as compared to patients with the maximum score (p = 0.001). Thirty-two patients were genotyped for 1931 single nucleotide polymorphisms (SNPs) and five copy number variations (CNVs) by the DMET Plus array platform. Among prognostic polymorphisms, we found a potential role of UGT2A1 both as a predictor of platinum-response (p = 0.01) and as prognostic of survival (p = 0.05). Finally, we identified 24 SNPs related to OS. UGT2A1 correlates to an “inflammatory-score” and retains a potential prognostic role in advanced OC. These data provide a proof of concept that warrants further validation in follow-up studies for the definition of novel biomarkers in this aggressive disease. Full article
Show Figures

Figure 1

17 pages, 6562 KiB  
Article
OcUGT1-Catalyzing Glycodiversification of Steroids through Glucosylation and Transglucosylation Actions
by Yan-Li Xu and Jian-Qiang Kong
Molecules 2020, 25(3), 475; https://doi.org/10.3390/molecules25030475 - 22 Jan 2020
Cited by 10 | Viewed by 3274
Abstract
Steroidal glycosides are important sources of innovative drugs. The increased diversification of steroidal glycosides will expand the probability of discovering active molecules. It is an efficient approach to diversify steroidal glycosides by using steroidal glycosyltransferases. OcUGT1, a uridine diphosphate-d-glucose (UDP-Glc)-dependent glycosyltransferase [...] Read more.
Steroidal glycosides are important sources of innovative drugs. The increased diversification of steroidal glycosides will expand the probability of discovering active molecules. It is an efficient approach to diversify steroidal glycosides by using steroidal glycosyltransferases. OcUGT1, a uridine diphosphate-d-glucose (UDP-Glc)-dependent glycosyltransferase from Ornithogalum caudatum, is a multifunctional enzyme, and its glycodiversification potential towards steroids has never been fully explored. Herein, the glycodiversification capability of OcUGT1 towards 25 steroids through glucosylation and transglucosylation reactions were explored. Firstly, each of 25 compounds was glucosylated with UDP-Glc. Under the action of OcUGT1, five steroids (testosterone, deoxycorticosterone, hydrocortisone, estradiol, and 4-androstenediol) were glucosylated to form corresponding mono-glucosides and biosides. Next, OcUGT1-mediated transglucosylation activity of these compounds with another sugar donor ortho-nitrophenyl-β-d-glucopyranoside (oNPGlc) was investigated. Results revealed that the same five steroids could be glucosylated to generate mono-glucosides and biosides by OcUGT1 through transglucosylation reactions. These data indicated that OcUGT1-assisted glycodiversification of steroids could be achieved through glucosylation and transglucosylation reactions. These results provide a way to diversify steroidal glycosides, which lays the foundation for the increase of the probability of obtaining active lead compounds. Full article
(This article belongs to the Special Issue Natural Sterols)
Show Figures

Graphical abstract

9 pages, 1262 KiB  
Article
OcUGT1-Catalyzed Glucosylation of Sulfuretin Yields Ten Glucosides
by Shuai Yuan, Yan-Li Xu, Yan Yang and Jian-Qiang Kong
Catalysts 2018, 8(10), 416; https://doi.org/10.3390/catal8100416 - 25 Sep 2018
Cited by 5 | Viewed by 3322
Abstract
Sulfuretin glucosides are important sources of innovative drugs. However, few glucosides of sulfuretin have been observed in nature. Therefore, it is urgent to diversify sulfuretin glycosides. Herein, glycosyltransferase (GT)-catalyzed glycodiversification of sulfuretin was achieved. Specifically, a flavonoid GT designated as OcUGT1 was used [...] Read more.
Sulfuretin glucosides are important sources of innovative drugs. However, few glucosides of sulfuretin have been observed in nature. Therefore, it is urgent to diversify sulfuretin glycosides. Herein, glycosyltransferase (GT)-catalyzed glycodiversification of sulfuretin was achieved. Specifically, a flavonoid GT designated as OcUGT1 was used as a biocatalyst for the glucosylation of sulfuretin with UDP-Glc. The OcUGT1-assisted glucosylation of sulfuretin yielded ten glycosylated products, including three monoglucosides, five diglucosides and two triglucosides. The three monoglucosides were thus identified to be sulfuretin 3′-, 4′- and 6-glucoside according to HR-ESI-TOFMS data and their coelution with respective standards. A major diglucoside was assigned as sulfuretin 4′,6-diglucoside by HR-ESI-TOFMS in conjunction with NMR analysis. The exact structure of the other four diglucosides was not well characterized due to their trace amount. However, they were reasonably inferred as sulfuretin 3′,6-diglucoside, sulfuretin 3′,4′-diglucoside and two disaccharide glucosides. In addition, the structural identification of the remaining two triglucosides was not performed because of their small amount. However, one of the triglucosides was deduced to be sulfuretin 3′,4′,6-triglucoside based on the catalytic behavior of OcUGT1. Of the ten sulfuretin glucosides, at least six were new compounds. This is the first time to obtain monoglucosides, diglucosides and triglucosides of sulfuretin simultaneously by a single glycosyltransferase. Full article
Show Figures

Figure 1

15 pages, 2481 KiB  
Article
Transcriptome-Wide Identification of an Aurone Glycosyltransferase with Glycosidase Activity from Ornithogalum saundersiae
by Shuai Yuan, Ming Liu, Yan Yang, Jiu-Ming He, Ya-Nan Wang and Jian-Qiang Kong
Genes 2018, 9(7), 327; https://doi.org/10.3390/genes9070327 - 28 Jun 2018
Cited by 6 | Viewed by 3884
Abstract
Aurone glycosides display a variety of biological activities. However, reports about glycosyltransferases (GTs) responsible for aurones glycosylation are limited. Here, the transcriptome-wide discovery and identification of an aurone glycosyltransferase with glycosidase activity is reported. Specifically, a complementary DNA (cDNA), designated as OsUGT1, was [...] Read more.
Aurone glycosides display a variety of biological activities. However, reports about glycosyltransferases (GTs) responsible for aurones glycosylation are limited. Here, the transcriptome-wide discovery and identification of an aurone glycosyltransferase with glycosidase activity is reported. Specifically, a complementary DNA (cDNA), designated as OsUGT1, was isolated from the plant Ornithogalum saundersiae based on transcriptome mining. Conserved domain (CD)-search speculated OsUGT1 as a flavonoid GT. Phylogenetically, OsUGT1 is clustered as the same phylogenetic group with a putative 5,6-dihydroxyindoline-2-carboxylic acid (cyclo-DOPA) 5-O-glucosyltransferase, suggesting OsUGT1 may be an aurone glycosyltransferase. The purified OsUGT1 was therefore used as a biocatalyst to incubate with the representative aurone sulfuretin. In vitro enzymatic analyses showed that OsUGT1 was able to catalyze sulfuretin to form corresponding monoglycosides, suggesting OsUGT1 was indeed an aurone glycosyltransferase. OsUGT1 was observed to be a flavonoid GT, specific for flavonoid substrates. Moreover, OsUGT1 was demonstrated to display transglucosylation activity, transferring glucosyl group to sulfuretin via o-Nitrophenyl-β-d-glucopyranoside (oNP-β-Glc)-dependent fashion. In addition, OsUGT1-catalyzed hydrolysis was observed. This multifunctionality of OcUGT1 will broaden the application of OcUGT1 in glycosylation of aurones and other flavonoids. Full article
(This article belongs to the Special Issue Plant Metabolic Engineering of High Value Bioactive Products)
Show Figures

Graphical abstract

Back to TopTop