Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (755)

Search Parameters:
Keywords = Orbitrap

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1113 KB  
Article
Identification of Daphnane Diterpenoids from Flower Buds and Blooming Flowers of Daphne odora Using UHPLC-Q-Exactive-Orbitrap MS
by Kouharu Otsuki, Kousei Miyamoto, Mami Goto, Mi Zhang, Takashi Kikuchi and Wei Li
Plants 2025, 14(17), 2616; https://doi.org/10.3390/plants14172616 - 22 Aug 2025
Viewed by 122
Abstract
Daphne odora is an evergreen shrub belonging to the Thymelaeaceae family that is widely cultivated as an ornamental garden plant. Its roots, leaves, and flowers have traditionally been used in Chinese medicine to treat pain, skin diseases, and rheumatism. While previous phytochemical studies [...] Read more.
Daphne odora is an evergreen shrub belonging to the Thymelaeaceae family that is widely cultivated as an ornamental garden plant. Its roots, leaves, and flowers have traditionally been used in Chinese medicine to treat pain, skin diseases, and rheumatism. While previous phytochemical studies have reported the presence of phenols, coumarins, biflavonoids, lignans, and daphnane diterpenoids in D. odora, its flowers remain largely unexplored. In the present study, the first comprehensive investigation of daphnane diterpenoids contained in the flower buds and blooming flowers of D. odora was conducted using ultra-high-performance liquid chromatography coupled with Q-Exactive-Orbitrap high-resolution mass spectrometry (UHPLC-Q-Exactive-Orbitrap MS). A total of 30 daphnane diterpenoids were identified, including 12 previously unreported compounds, through detailed analysis of their retention times and MS/MS fragmentation patterns. Comparative profiling revealed that flower buds contained a higher abundance and greater diversity of daphnane diterpenoids than flowers. Furthermore, LC–MS-guided isolation enabled the purification of a novel compound, daphneodorin I (16), and its structure was elucidated through extensive physicochemical and spectroscopic analyses. Compound 16 represents the first daphnane diterpenoid with a Z-configured phenolic acyl moiety isolated from plants of the Thymelaeaceae family. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Approaches in Natural Products Research)
Show Figures

Figure 1

15 pages, 6299 KB  
Article
Qualitative and Quantitative Metabolite Comparison of Grain, Persimmon, and Apple Vinegars with Antioxidant Activities
by Hyun-Ji Tak, Sowon Yang, So-Young Kim, Na-Rae Lee and Choong Hwan Lee
Antioxidants 2025, 14(8), 1029; https://doi.org/10.3390/antiox14081029 - 21 Aug 2025
Viewed by 398
Abstract
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome [...] Read more.
Fermented vinegars have been highlighted globally for their health benefits. The benefits can differ according to the type of vinegar; therefore, we investigated the differences of 15 grain (GV), 10 persimmon (PV), and 14 apple vinegars (AV) using integrated non-targeted and targeted metabolome analyses. We profiled non-volatile and volatile metabolites using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), ultra-high-performance liquid chromatography–orbitrap–tandem mass spectrometry, and headspace–solid-phase microextraction–GC-TOF-MS. Among the 132 identified metabolites, 73 non-volatile and 40 volatile metabolites showed significant differences across the three vinegar types. Amino acids, hydroxy fatty acids, phenolic compounds, aldehydes, pyrazines, and sulfides were abundant in GV. Some phenolic compounds, alcohols, and esters were abundant in PV, whereas carbohydrates, flavonoids, and terpenoids were abundant in AV, contributing to nutrients, tastes, and flavors. Bioactivity assays revealed that GV showed notable antioxidant activity, whereas PV and AV had the highest total phenolic and flavonoid contents, respectively. Through quantitative analysis, we revealed that acetic acid, propionic acid, butanoic acid, lactic acid, and alanine were major components in the three types of vinegar, although their composition was different in each vinegar. Our comprehensive qualitative and quantitative metabolite comparison provides insights into the differences among the three vinegar types, classified according to their raw materials. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 1327 KB  
Article
Tentative Identification of Chemical Constituents in Liuwei Dihuang Pills Based on UPLC-Orbitrap-MS
by Lanxiang Yang, Min Tao, Rongping Tao, Mingzhu Cao and Rui Wang
Metabolites 2025, 15(8), 561; https://doi.org/10.3390/metabo15080561 - 21 Aug 2025
Viewed by 175
Abstract
Background: Liuwei Dihuang Pills, a classic traditional Chinese medicine formula, has been widely used in clinical practice for its multiple pharmacological effects. However, the systematic characterization and identification of its chemical constituents, especially the aqueous decoction, remain insufficient, which hinders in-depth research on [...] Read more.
Background: Liuwei Dihuang Pills, a classic traditional Chinese medicine formula, has been widely used in clinical practice for its multiple pharmacological effects. However, the systematic characterization and identification of its chemical constituents, especially the aqueous decoction, remain insufficient, which hinders in-depth research on its pharmacodynamic material basis. Thus, there is an urgent need for a comprehensive analysis of its chemical components using advanced analytical techniques. Methods: After screening chromatographic columns, the ACQUITY UPLC™ HSS T3 column (100 mm × 2.1 mm, 1.8 μm) was selected. The column temperature was set to 40 °C, and the mobile phase consisted of 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). A gradient elution program was adopted, and the separation was completed within 20 min. Ultra-high performance liquid chromatography–Orbitrap mass spectrometry (UPLC-Orbitrap-MS) combined with a self-established information database was used for the analysis. Results: A total of 80 compounds were tentatively identified, including 13 monoterpenoids, 6 phenolic acids, 16 iridoids, 11 flavonoids, 25 triterpenoids, and 9 other types. Triterpenoids are mainly derived from Poria cocos and Alisma orientale; iridoids are mainly from Rehmannia glutinosa; monoterpenoids are mainly from Moutan Cortex; and flavonoids are mainly from Dioscorea opposita. Among them, monoterpenoids, iridoids, and triterpenoids are important pharmacodynamic components. The cleavage pathways of typical compounds (such as pachymic acid, catalpol, oxidized paeoniflorin, and puerarin) are clear, and their mass spectral fragment characteristics are consistent with the literature reports. Conclusions: Through UPLC-Orbitrap-MS technology and systematic optimization of conditions, this study significantly improved the coverage of chemical component identification in Liuwei Dihuang Pills, providing a comprehensive reference for the research on its pharmacodynamic substances. However, challenges remain in the identification of trace components and isomers. In the future, analytical methods will be further improved by combining technologies such as ion mobility mass spectrometry or multi-dimensional liquid chromatography. Full article
(This article belongs to the Special Issue Analysis of Specialized Metabolites in Natural Products)
Show Figures

Figure 1

14 pages, 764 KB  
Article
Effect of Coridothymus capitatus Essential Oil on Chrysanthemum Aphid Behaviour and Survival: Phytochemical Analysis and Antioxidant Potential
by Paraskevi Yfanti, Andreas Papavlasopoulos, Polyxeni Lazaridou, Dimitra Douma and Marilena E. Lekka
Molecules 2025, 30(16), 3437; https://doi.org/10.3390/molecules30163437 - 20 Aug 2025
Viewed by 305
Abstract
There is a growing interest in using essential oils with phytoprotectant properties instead of synthetic pesticides to mitigate the risks of insect pesticide resistance, environmental harm, and adverse effects on non-target organisms and human health. This study focused on the effects of Coridothymus [...] Read more.
There is a growing interest in using essential oils with phytoprotectant properties instead of synthetic pesticides to mitigate the risks of insect pesticide resistance, environmental harm, and adverse effects on non-target organisms and human health. This study focused on the effects of Coridothymus capitatus essential oil on host selection, settling behaviour, and survival of Macrosiphoniella sanborni in dual-choice and no-choice tests. The essential oil and methanol extract of C. capitatus were analyzed using Gas Chromatography–Mass Spectrometry (GC-MS) and Liquid Chromatography–Mass Spectrometry (LTQ-LC-MS Orbitrap), respectively. The antioxidant activity was also tested through the radical scavenging assay. The settling inhibitory activity in the dual-choice test increased dose-dependently from 60% to 72% for essential oil concentrations of 0.1 to 0.3% (v/v) for up to 120 min exposure, but decreased thereafter. However, under no-choice conditions, the inhibitory effect after 60 min of exposure was inversely proportional to the concentration but became proportional by the end of the experiment (72 h). After 72 h, both assays produced a mortality rate of 15% to 17%. C. capitatus was classified as a Carvacrol chemotype. Fifteen phenolic compounds were identified in the MeOH extract, and both the extract and essential oil exhibited substantial antioxidant activity. In conclusion, our findings indicate that C. capitatus essential oil affects the behaviour and survival of M. sanborni. Full article
(This article belongs to the Special Issue Chemical Composition and Bioactivities of Essential Oils, 3rd Edition)
Show Figures

Figure 1

21 pages, 1395 KB  
Article
Unlocking the Anti-Breast Cancer Potential of Aralia chinensis L.
by Juan Xue, Lei Li, Yongjia Shu, Chengshi Xie, Tian Lu and Huifang Chai
Curr. Issues Mol. Biol. 2025, 47(8), 662; https://doi.org/10.3390/cimb47080662 - 16 Aug 2025
Viewed by 285
Abstract
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in [...] Read more.
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in conjunction with Q Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) alongside serum pharmacochemistry to analyze the chemical constituents of total saponins derived from A. chinensis (TSAC) and to identify the blood-absorbed prototypes in a rat model. Network pharmacology predicted targets and pathways of serum prototypes, validated by molecular docking and in vitro experiments. We identified 38 triterpenoid saponins, 3 steroidal saponins, and 8 triterpenoids in TSAC, with 22 prototype compounds detected in serum. An integrative analysis encompassing 486 compound targets and 1747 genes associated with breast cancer elucidated critical pathways, notably the PI3K-Akt signaling pathway and resistance mechanisms to EGFR tyrosine kinase inhibitors. Molecular docking confirmed strong binding of araloside A and elatoside L to SRC, PIK3R1, PIK3CA, STAT3, and EGFR. In MCF-7 cells, TSAC suppressed proliferation and migration while downregulating Src, PI3K, and EGFR expression at the gene and protein levels. This study successfully identified TSAC’s serum-absorbed bioactive components and demonstrated their anti-breast cancer effects via multi-target mechanisms involving the Src/PI3K/EGFR axis, providing a crucial pharmacological foundation for developing A. chinensis-derived breast cancer therapies. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

14 pages, 1685 KB  
Article
Targeted LC-MS Orbitrap Method for the Analysis of Azaarenes, and Nitrated and Oxygenated PAHs in Road Paving Emissions
by Maria Bou Saad, Sylvain Ravier, Amandine Durand, Brice Temime-Roussel, Vincent Gaudefroy, Audrey Pevere, Henri Wortham and Pierre Doumenq
Molecules 2025, 30(16), 3397; https://doi.org/10.3390/molecules30163397 - 16 Aug 2025
Viewed by 383
Abstract
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted [...] Read more.
Polycyclic aromatic hydrocarbon (PAH) derivatives, specifically azaarenes and nitrated and oxygenated PAHs, are emerging contaminants of concern due to their increased toxicity and persistence compared to the parent PAHs. Despite their toxicity, their simultaneous analysis in complex matrices, such as in fumes emitted from bituminous mixtures, remains challenging due to limitations of conventional analytical techniques. To address this, an advanced methodology was developed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS Orbitrap Eclipse) equipped with an APCI source for the simultaneous identification and quantification of 14 PAH derivatives. Chromatographic and ionization parameters were optimized to ensure maximum sensitivity and selectivity. Following ICH Q2(R2) guidelines, the method was validated, demonstrating excellent linearity (R2 > 0.99), high mass accuracy (≤5 ppm), strong precision (<15%), and excellent sensitivity. Limits of detection (LODs) ranged from 0.1 µg L−1 to 0.6 µg L−1 and limits of quantification (LOQs) ranged from 0.26 µg L−1 to 1.87 µg L−1. The validated method was successfully applied to emissions from asphalt pavement materials collected on quartz filters under controlled conditions, enabling the identification and quantification of all 14 targeted compounds. These results confirm the method’s robustness and suitability for trace-level analysis of PAH derivatives in complex environmental matrices. Full article
Show Figures

Figure 1

21 pages, 7534 KB  
Article
Investigation of Pharmacological Mechanisms and Active Ingredients of Cichorium intybus L. in Alleviating Renal Urate Deposition via lncRNA H19/miR-21-3p Regulation to Enhance ABCG2 Expression
by Xiaoye An, Yi Xu, Qiuyue Mao, Chengjin Lu, Xiaoyang Yin, Siying Chen, Bing Zhang, Zhijian Lin and Yu Wang
Int. J. Mol. Sci. 2025, 26(16), 7892; https://doi.org/10.3390/ijms26167892 - 15 Aug 2025
Viewed by 183
Abstract
Renal urate deposition is a pathological inflammatory condition characterized by the accumulation of urate crystals in the kidneys, resulting from uric acid supersaturation. Cichorium intybus L. (chicory) is a traditional medicinal herb recognized for its efficacy in treating hyperuricemia and gout; however, its [...] Read more.
Renal urate deposition is a pathological inflammatory condition characterized by the accumulation of urate crystals in the kidneys, resulting from uric acid supersaturation. Cichorium intybus L. (chicory) is a traditional medicinal herb recognized for its efficacy in treating hyperuricemia and gout; however, its effectiveness and underlying mechanisms in mitigating renal urate deposition remain inadequately understood. This study investigates the role of the ATP-binding cassette sub-family G member 2 (ABCG2) transporter and the lncRNA H19/miR-21-3p in renal urate deposition, while also validating the therapeutic effects and mechanisms of chicory extract. Renal urate deposition was induced in rats through the administration of potassium oxonate, adenine, yeast extract, and lipopolysaccharide. The levels of serum uric acid (SUA), urate deposition, inflammation, renal function, and histological changes were analyzed. Dual-luciferase assays, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry were utilized to elucidate the relationship among ABCG2, lncRNA H19, and miR-21-3p. The chemical composition and active ingredients of chicory were analyzed using UPLC-LTQ-Orbitrap-MS, along with molecular docking and cell experiments. In rats with renal urate deposition, serum UA levels were elevated, renal UA excretion was reduced, and levels of low inflammatory factors, such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and hypersensitivity C-reactive protein (hs-CRP), were increased. Additionally, significant renal tissue damage accompanied the urate deposition. Notably, these abnormalities were substantially reversed following treatment with chicory extract. A dual-luciferase reporter assay confirmed the regulatory relationships among miR-21-3p, lncRNA H19, and ABCG2. Immunohistochemical analysis and RT-qPCR demonstrated a significant upregulation of miR-21-3p expression, alongside a downregulation of lncRNA H19, ABCG2 mRNA, and ABCG2 expression in the kidney tissue of rats with renal urate deposition. Chicory extract may exert its inhibitory effect on renal urate deposition by regulating the lncRNA H19/miR-21-3p axis to enhance ABCG2 expression. Furthermore, UPLC-LTQ-Orbitrap-MS identified 69 components in the chicory extract, including scopoletin, quercetin-3-O-β-D-glucuronide, 11β,13-dihydrolactucopicrin, and kaempferol-3-O-β-D-glucuronide, which were absorbed into the blood of both normal rats and those with renal urate deposition. Molecular docking and cell experiment further validated the effective regulation of 11β,13-dihydrolactucopicrin in ABCG2 and the lncRNA H19/miR-21-3p axis. The downregulation of ABCG2, mediated by the lncRNA H19/miR-21-3p axis, may represent a critical pathogenic mechanism in renal urate deposition. Chicory alleviates this deposition by modulating the lncRNA H19/miR-21-3p axis to enhance ABCG2 expression, potentially through its component, 11β,13-dihydrolactucopicrin, thereby revealing novel therapeutic insights for renal urate deposition. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

19 pages, 3393 KB  
Article
Integrated Phytochemical Profiling, UPLC-HRMS Characterization, and Bioactivity Evaluation of Zingiber officinale and Piper nigrum
by Aicha Boubker, Abdelmoula El Ouardi, Taha El Kamli, Mohammed Kaicer, Faouzi Kichou, Khaoula Errafii, Adnane El Hamidi, Rachid Ben Aakame and Aicha Sifou
Int. J. Mol. Sci. 2025, 26(16), 7782; https://doi.org/10.3390/ijms26167782 - 12 Aug 2025
Viewed by 299
Abstract
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their [...] Read more.
The phytochemical profiles, antioxidant capacities, mineral composition, and antibacterial activities of Zingiber officinale (Z. officinal) and Piper nigrum (P. nigrum) were explored through aqueous, ethanolic, and methanolic extractions. The extracts were analyzed for polyphenols, flavonoids, and tannins, and their antioxidant potential was assessed using the DPPH assay. UPLC-HRMS identified major bioactive compounds, including 6-gingerol and shogaol in Z. officinale, and piperine and piperlonguminine in P. nigrum. Mineral analysis showed that P. nigrum was particularly rich in essential elements, including calcium (Ca), magnesium (Mg), and iron (Fe). In antibacterial testing, P. nigrum demonstrated wider zones of inhibition against E. coli, whereas Z. officinale was more active at lower concentrations, showing MICs as low as 3.91 µg/mL against Salmonella and S. aureus. PCA analysis revealed strong correlations between phenolic content and biological effects. These results underscore the potential of both spices as effective natural agents for use in food preservation and health-promoting applications. Full article
(This article belongs to the Special Issue Bioactive Compounds and Their Antioxidant Role: 2nd Edition)
Show Figures

Figure 1

31 pages, 3977 KB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 - 6 Aug 2025
Viewed by 539
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Graphical abstract

20 pages, 1722 KB  
Article
Andean Pistacia vera L. Crops: Phytochemical Update and Influence of Soil-Growing Elemental Composition on Nutritional Properties of Nuts
by Daniela Zalazar-García, Mario J. Simirgiotis, Jessica Gómez, Alejandro Tapia and María Paula Fabani
Horticulturae 2025, 11(8), 925; https://doi.org/10.3390/horticulturae11080925 - 5 Aug 2025
Viewed by 322
Abstract
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in [...] Read more.
Pistachio nuts are among the 50 best foods with the highest antioxidant potential. They have a balanced content of mono- (~70%) and polyunsaturated (~20%) fatty acids, minerals, and bioactive compounds such as tocopherols, phytosterols, and phenolic compounds, which have shown rapid accessibility in the stomach. Pistachio consumption provides several health benefits, primarily due to its antioxidant properties and high content of essential nutrients. In this study, we analyzed the mineral composition, total phenolic content (TP), antioxidant activity (AA), and UHPLC/MS-MS polyphenolic profile of three Argentinian pistachio crops. Additionally, the physicochemical parameters and the elemental profiles of the growing soils were determined, as they influence mineral uptake and the synthesis of bioactive compounds in pistachio kernels. The TP was not significantly modified by the growing soils, with Crop3 presenting the highest TP content (276 ± 14 mg GA/100 g DW). Crop3 exhibited 18% higher TP content compared to Crop2. Similarly, FRAP values ranged from 28.0 to 36.5 mmol TE/100 g DW, with Crop1 showing a 30% increase compared to Crop2. DPPH values varied from 19.0 to 24.3 mmol TE/100 g DW, with Crop1 displaying 28% higher activity than Crop2. However, the polyphenolic profile was similar for all crops analyzed. Thirty compounds were identified; only Crop 1 contained the flavanone eriodyctiol and the isoflavone genistein, while the flavanone naringenin and the flavone luteolin were identified in Crop1 and Crop3. Regarding mineral content, the pistachio kernels mainly contained K, Ca, and Mg. Multivariate analyses revealed distinct elemental and antioxidant profiles among crops. LDA achieved classification accuracies of 77.7% for soils and 74.4% for kernels, with Pb, Zn, Cu, Rb, Sr, and Mn as key discriminants. CCA confirmed strong soil–kernel mineral correlations (r = 1), while GPA showed higher congruence between antioxidant traits and kernel composition than with soil geochemistry. These findings underscore the importance of soil composition in determining the nutritional quality of pistachio kernels, thereby supporting the beneficial health effects associated with pistachio consumption. Full article
Show Figures

Graphical abstract

17 pages, 5591 KB  
Article
Pharmacological Investigation of Tongqiao Jiuxin Oil Against High-Altitude Hypoxia: Integrating Chemical Profiling, Network Pharmacology, and Experimental Validation
by Jiamei Xie, Yang Yang, Yuhang Du, Xiaohua Su, Yige Zhao, Yongcheng An, Xin Mao, Menglu Wang, Ziyi Shan, Zhiyun Huang, Shuchang Liu and Baosheng Zhao
Pharmaceuticals 2025, 18(8), 1153; https://doi.org/10.3390/ph18081153 - 2 Aug 2025
Viewed by 393
Abstract
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, [...] Read more.
Background: Acute mountain sickness (AMS) is a prevalent and potentially life-threatening condition caused by rapid exposure to high-altitude hypoxia, affecting pulmonary and neurological functions. Tongqiao Jiuxin Oil (TQ), a traditional Chinese medicine formula composed of aromatic and resinous ingredients such as sandalwood, agarwood, frankincense, borneol, and musk, has been widely used in the treatment of cardiovascular and cerebrovascular disorders. Clinical observations suggest its potential efficacy against AMS, yet its pharmacological mechanisms remain poorly understood. Methods: The chemical profile of TQ was characterized using UHPLC-Q-Exactive Orbitrap HRMS. Network pharmacology was applied to predict the potential targets and pathways involved in AMS. A rat model of AMS was established by exposing animals to hypobaric hypoxia (~10% oxygen), simulating an altitude of approximately 5500 m. TQ was administered at varying doses. Physiological indices, oxidative stress markers (MDA, SOD, GSH), histopathological changes, and the expression of hypoxia- and apoptosis-related proteins (HIF-1α, VEGFA, EPO, Bax, Bcl-2, Caspase-3) in lung and brain tissues were assessed. Results: A total of 774 chemical constituents were identified from TQ. Network pharmacology predicted the involvement of multiple targets and pathways. TQ significantly improved arterial oxygenation and reduced histopathological damage in both lung and brain tissues. It enhanced antioxidant activity by elevating SOD and GSH levels and reducing MDA content. Mechanistically, TQ downregulated the expression of HIF-1α, VEGFA, EPO, and pro-apoptotic markers (Bax/Bcl-2 ratio, Caspase-3), while upregulated Bcl-2, the anti-apoptotic protein expression. Conclusions: TQ exerts protective effects against AMS-induced tissue injury by improving oxygen homeostasis, alleviating oxidative stress, and modulating hypoxia-related and apoptotic signaling pathways. This study provides pharmacological evidence supporting the potential of TQ as a promising candidate for AMS intervention, as well as the modern research method for multi-component traditional Chinese medicine. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

22 pages, 11011 KB  
Article
Flavonoid Extract of Senecio scandens Buch.-Ham. Ameliorates CTX-Induced Immunosuppression and Intestinal Damage via Activating the MyD88-Mediated Nuclear Factor-κB Signaling Pathway
by Xiaolin Zhu, Lulu Zhang, Xuan Ni, Jian Guo, Yizhuo Fang, Jianghan Xu, Zhuo Chen and Zhihui Hao
Nutrients 2025, 17(15), 2540; https://doi.org/10.3390/nu17152540 - 1 Aug 2025
Viewed by 309
Abstract
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated [...] Read more.
Background/Objectives: Senecio scandens Buch.-Ham. is a flavonoid-rich traditional medicinal plant with established immunomodulatory properties. However, the mechanisms underlying the immunoregulatory and intestinal protective effects of its flavonoid extract (Senecio scandens flavonoids—SSF) remain unclear. This study characterized SSF’s bioactive components and evaluated its efficacy against cyclophosphamide (CTX)-induced immunosuppression and intestinal injury. Methods: The constituents of SSF were identified using UHPLC/Q-Orbitrap/HRMS. Mice with CTX-induced immunosuppression were treated with SSF (80, 160, 320 mg/kg) for seven days. Immune parameters (organ indices, lymphocyte proliferation, cytokine, and immunoglobulin levels) and gut barrier integrity markers (ZO-1, Occludin, Claudin-1 protein expression; sIgA secretion; microbiota composition) were assessed. Network pharmacology combined with functional assays elucidated the underlying regulatory mechanisms. Results: Twenty flavonoids were identified in SSF, with six prototype compounds detectable in the blood. The SSF treatment significantly ameliorated CTX-induced weight loss and atrophy of the thymus and spleen. It enhanced splenic T- and B-lymphocyte proliferation by 43.6% and 29.7%, respectively; normalized the CD4+/CD8+ ratio (1.57-fold increase); and elevated levels of IL-2, IL-6, IL-10, TNF-α, IFN-γ, IgM, and IgG. Moreover, SSF reinforced the intestinal barrier by upregulating tight junction protein expression and sIgA levels while modulating the gut microbiota, enriching beneficial taxa (e.g., the Lachnospiraceae_NK4A136_group, Akkermansia) and suppressing pathogenic Alistipes. Mechanistically, SSF activated the TLR/MyD88/NF-κB pathway, with isoquercitrin identified as a pivotal bioactive constituent. Conclusions: SSF effectively mitigates CTX-induced immunosuppression and intestinal damage. These findings highlight SSF’s potential as a dual-functional natural agent for immunomodulation and intestinal protection. Subsequent research should validate isoquercitrin’s molecular targets and assess SSF’s clinical efficacy. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

19 pages, 10865 KB  
Article
Evaluation of Immunoprotective Activities of White Button Mushroom (Agaricus bisporus) Water Extract Against Major Pathogenic Bacteria (Aeromonas hydrophila or Vibrio fluvialis) in Goldfish (Carassius auratus)
by Shujun Sun, Jing Chen, Pan Cui, Xiaoxiao Yang, Yuhan Zheng, Zijian Ma, Yong Liu and Xiang Liu
Animals 2025, 15(15), 2257; https://doi.org/10.3390/ani15152257 - 1 Aug 2025
Viewed by 337
Abstract
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it [...] Read more.
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it was found that the polysaccharide, protein, and polyphenol components of AB-WE were 9.11%, 3.3%, and 1.5%, respectively. The 246 compounds were identified in AB-WE, and the major small-molecule components included L-Isoleucine, L-Tyrosine, L-Valine, and Linoleic acid by HPLC-Q Exactive-Orbitrap-MS. Secondly, the AB-WE was evaluated for its immunological activities through dietary administration and pathogen challenge (Aeromonas hydrophila and Vibrio fluvialis) in goldfish (Carassius auratus). The results showed that the levels of immune factors of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) increased (p < 0.05) in goldfish, and the relative percentage survival of AB-WE against A. hydrophila and V. fluvialis were 80.00% (p < 0.05) and 81.82% (p < 0.05), respectively. The AB-WE reduced the bacterial content in renal tissue, enhanced the phagocytic activity of leukocytes, and exhibited antioxidant and anti-inflammatory effects by reducing the expression of antioxidant-related factors and inflammatory factors. Through histopathological and immunofluorescence techniques, it was found that AB-WE maintained the integrity of visceral tissues and reduced renal tissue apoptosis and DNA damage. Therefore, AB-WE exhibits immunoprotective activity against A. hydrophila and V. fluvialis infections in fish, and holds promise as an immunotherapeutic agent against major pathogenic bacteria in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

22 pages, 1588 KB  
Article
Scaffold-Free Functional Deconvolution Identifies Clinically Relevant Metastatic Melanoma EV Biomarkers
by Shin-La Shu, Shawna Benjamin-Davalos, Xue Wang, Eriko Katsuta, Megan Fitzgerald, Marina Koroleva, Cheryl L. Allen, Flora Qu, Gyorgy Paragh, Hans Minderman, Pawel Kalinski, Kazuaki Takabe and Marc S. Ernstoff
Cancers 2025, 17(15), 2509; https://doi.org/10.3390/cancers17152509 - 30 Jul 2025
Viewed by 513
Abstract
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed [...] Read more.
Background: Melanoma metastasis, driven by tumor microenvironment (TME)-mediated crosstalk facilitated by extracellular vesicles (EVs), remains a major therapeutic challenge. A critical barrier to clinical translation is the overlap in protein cargo between tumor-derived and healthy cell EVs. Objective: To address this, we developed Scaffold-free Functional Deconvolution (SFD), a novel computational approach that leverages a comprehensive healthy cell EV protein database to deconvolute non-oncogenic background signals. Methods: Beginning with 1915 proteins (identified by MS/MS analysis on an Orbitrap Fusion Lumos Mass Spectrometer using the IonStar workflow) from melanoma EVs isolated using REIUS, SFD applies four sequential filters: exclusion of normal melanocyte EV proteins, prioritization of metastasis-linked entries (HCMDB), refinement via melanocyte-specific databases, and validation against TCGA survival data. Results: This workflow identified 21 high-confidence targets implicated in metabolic-associated acidification, immune modulation, and oncogenesis, and were analyzed for reduced disease-free and overall survival. SFD’s versatility was further demonstrated by surfaceome profiling, confirming enrichment of H7-B3 (CD276), ICAM1, and MIC-1 (GDF-15) in metastatic melanoma EV via Western blot and flow cytometry. Meta-analysis using Vesiclepedia and STRING categorized these targets into metabolic, immune, and oncogenic drivers, revealing a dense interaction network. Conclusions: Our results highlight SFD as a powerful tool for identifying clinically relevant biomarkers and therapeutic targets within melanoma EVs, with potential applications in drug development and personalized medicine. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

27 pages, 1726 KB  
Article
Integrated Spectroscopic Analysis of Wild Beers: Molecular Composition and Antioxidant Properties
by Dessislava Gerginova, Plamena Staleva, Zhanina Petkova, Konstantina Priboyska, Plamen Chorbadzhiev, Ralitsa Chimshirova and Svetlana Simova
Int. J. Mol. Sci. 2025, 26(14), 6993; https://doi.org/10.3390/ijms26146993 - 21 Jul 2025
Viewed by 395
Abstract
Wild ales represent a diverse category of spontaneously fermented beers, influenced by complex microbial populations and variable ingredients. This study employed an integrated metabolomic profiling approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy, liquid chromatography–mass spectrometry (LC-MS), and spectrophotometric assays [...] Read more.
Wild ales represent a diverse category of spontaneously fermented beers, influenced by complex microbial populations and variable ingredients. This study employed an integrated metabolomic profiling approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy, liquid chromatography–mass spectrometry (LC-MS), and spectrophotometric assays (DPPH and FRAP) to characterize the molecular composition and antioxidant potential of 22 wild ales from six countries. A total of 53 compounds were identified and quantified using NMR, while 62 compounds were identified by using LC-MS. The compounds in question included organic acids, amino acids, sugars, alcohols, bitter acids, phenolic compounds, and others. Ingredient-based clustering revealed that the addition of dark fruits resulted in a significant increase in the polyphenolic content and antioxidant activity. Concurrently, herb-infused and light-fruit beers exhibited divergent phytochemical profiles. Prolonged aging (>18 months) has been demonstrated to be associated with increased levels of certain amino acids, fermentation-derived aldehydes, and phenolic degradation products. However, the influence of maturation duration on the antioxidant capacity was found to be less significant than that of the type of fruit. Country-specific metabolite trends were revealed, indicating the influence of regional brewing practices on beer composition. Correlation analysis was employed to identify the major contributors to antioxidant activity, with salicylic, dihydroxybenzoic, and 4-hydroxybenzoic acids being identified as the most significant. These findings underscore the biochemical intricacy of wild ales and exemplify metabolomics’ capacity to correlate compositional variation with functionality and authenticity in spontaneously fermented beverages. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop