Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = P. gingivalis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2263 KB  
Article
Effects of Porphyromonas gingivalis Bacteria on Inflammation, Oxidative Stress and Lipid Metabolism in Models of Obese db/db Mice and 3T3-L1 Adipose Cells
by Katy Thouvenot, Fanny Le Sage, Angélique Arcambal, David Couret, Wildriss Viranaïcken, Philippe Rondeau, Olivier Meilhac and Marie-Paule Gonthier
Microorganisms 2025, 13(9), 2074; https://doi.org/10.3390/microorganisms13092074 - 5 Sep 2025
Viewed by 124
Abstract
During periodontitis, Porphyromonas gingivalis and its lipopolysaccharides (LPS) may translocate into the bloodstream and alter adipocyte function, aggravating obesity-related disorders. This study aimed to evaluate the inflammatory and metabolic effects of P. gingivalis in obese db/db mice, and to decipher the [...] Read more.
During periodontitis, Porphyromonas gingivalis and its lipopolysaccharides (LPS) may translocate into the bloodstream and alter adipocyte function, aggravating obesity-related disorders. This study aimed to evaluate the inflammatory and metabolic effects of P. gingivalis in obese db/db mice, and to decipher the molecular mechanisms targeted by P. gingivalis or its LPS in 3T3-L1 adipocytes. Then, we determined the ability of three major dietary polyphenols, namely caffeic acid, quercetin and epicatechin, to protect adipocytes under LPS conditions. Results show that obese mice exposed to P. gingivalis exhibited an altered lipid profile with higher triglyceride accumulation, an enhanced pro-inflammatory response and a reduced antioxidant SOD activity in the adipose tissue. In adipose cells, P. gingivalis and LPS induced the TLR2-4/MyD88/NFκB signaling pathway, and promoted IL-6 and MCP-1 secretion. Bacterial stimuli also increased ROS levels and the expression of NOX2, NOX4 and iNOS genes, while they deregulated mRNA levels of Cu/ZnSOD, MnSOD, catalase, GPx and Nrf2. Interestingly, caffeic acid, quercetin and epicatechin protected adipose cells via antioxidant and anti-inflammatory effects. Overall, these findings show the deleterious impact of P. gingivalis on inflammation, oxidative stress and lipid metabolism in obese mice and adipose cells, and highlight the therapeutic potential of polyphenols in mitigating periodontal bacteria-mediated complications during obesity. Full article
(This article belongs to the Special Issue Microbiota in Human Health and Disease)
Show Figures

Figure 1

14 pages, 558 KB  
Article
Microbiological and Clinical Short-Term Evaluation of the Efficacy of an Herbal Tincture as an Adjunctive Treatment in the Management of Stage II, Grade A Periodontitis
by Milica Petrović, Ljiljana Kesić, Bojana Miladinović, Radmila Obradović, Ana Pejčić, Marija Bojović, Katarina Šavikin, Jelena Živković, Ivana Stanković and Dušanka Kitić
Pathogens 2025, 14(9), 861; https://doi.org/10.3390/pathogens14090861 - 29 Aug 2025
Viewed by 374
Abstract
The increased incidence of periodontitis, the resistance of periodontal pathogens to antibiotics, and the adverse effects of certain drugs used in general dentistry present a strong rationale for seeking safe and effective plant-based treatments for periodontitis. HPLC-DAD analysis of a commercial herbal tincture [...] Read more.
The increased incidence of periodontitis, the resistance of periodontal pathogens to antibiotics, and the adverse effects of certain drugs used in general dentistry present a strong rationale for seeking safe and effective plant-based treatments for periodontitis. HPLC-DAD analysis of a commercial herbal tincture confirmed the presence of rosmarinic acid (1102.79 ± 21.56 µg/mL), luteolin-7-O-glucoside (358.06 ± 5.64 µg/mL), and isorhamnetin (24.17 ± 0.49 µg/mL), bioactive phytochemicals known for their antimicrobial and anti-inflammatoryproperties. The randomized prospective study analyzed Tinctura paradentoica® as an adjunct to anti-infectious non-surgical periodontal therapy (NSPT) on clinical and microbiological parameters in patients with moderate periodontitis (Stage II, Grade A). All 60 recruited participants were randomly allocated to either the intervention group (NSPT + Tinctura paradentoica®) or the control group (NSPT alone). The rate of prevalence of the following periodontopathogenic microorganisms (Treponema denticola, Tannerella forsythensis), assessed by polymerase chain reaction (PCR) analysis, was significantly lower in the intervention group (p < 0.001), but no statistically significant difference was found for Porphyromonas gingivalis. The herbal tincture, combined with NSPT, produces a short-term reduction in periodontal clinical parameters (Green–Vermilion plaque index, bleeding on probing index (BOP), and clinical attachment level (CAL), without clinical relevance, and the prevalence of the following bacteria species (Tannerella forsythensis, Treponema denticola). Full article
(This article belongs to the Special Issue Oral Microbiome and Human Systemic Health)
Show Figures

Figure 1

27 pages, 4785 KB  
Review
Discovery of Gingipains and Porphyromonas gingivalis Inhibitors from Food-Derived Natural Products: A Narrative Review
by Desheng Wu, Xiaofeng Li, Guanglei Zhao, Lisha Hao and Xiaohan Liu
Foods 2025, 14(16), 2869; https://doi.org/10.3390/foods14162869 - 19 Aug 2025
Viewed by 598
Abstract
Porphyromonas gingivalis is a key periodontal pathogen whose cysteine proteases, gingipains (Rgp and KGP), are essential for nutrient acquisition and virulence. Targeting gingipains may attenuate bacterial pathogenicity and prevent related systemic diseases. This paper aimed to review advances in food-derived natural products that [...] Read more.
Porphyromonas gingivalis is a key periodontal pathogen whose cysteine proteases, gingipains (Rgp and KGP), are essential for nutrient acquisition and virulence. Targeting gingipains may attenuate bacterial pathogenicity and prevent related systemic diseases. This paper aimed to review advances in food-derived natural products that inhibit P. gingivalis or gingipains, with emphasis on mechanisms, potency, and translational potential. A literature search of several databases identified 64 studies on food-derived compounds demonstrating in vitro, in vivo, or clinical effects against P. gingivalis or gingipains. The results showed that tea polyphenols and dihydrochalcones (e.g., phloretin and phlorizin) inhibited gingipain activity, and a variety of food-derived natural products (especially polyphenols and polysaccharides) suppressed the growth, survival, biofilm formation, and virulence of P. gingivalis. Structure–activity relationships suggest galloyl moieties and dihydrochalcone scaffolds enhance gingipain inhibition. Polysaccharides and alkaloids exhibited anti-adhesion or protease inhibition, though with limited potency data. In summary, food-derived natural products represent promising gingipain inhibitors. These inhibitors have potential structure–activity relationships, indicating that food-derived natural products have considerable research prospects. Future research should prioritize structure-based discovery and structure optimization to realize their therapeutic potential. Full article
Show Figures

Figure 1

15 pages, 1514 KB  
Article
Injectable Thermosensitive Hydrogel Containing Bakuchiol Reduces Periodontal Inflammation and Alveolar Bone Loss in a Rat Model
by Seong-Jin Shin, Gyu-Yeon Shim, Seong-Hee Moon, Yu-Jin Kim, Hyun-Jin Kim, Seunghan Oh, Jung-Hwan Lee and Ji-Myung Bae
J. Funct. Biomater. 2025, 16(8), 292; https://doi.org/10.3390/jfb16080292 - 13 Aug 2025
Viewed by 1063
Abstract
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and [...] Read more.
This study aimed to develop and evaluate a bakuchiol-loaded thermosensitive hydrogel (BTH) as a novel local drug delivery system for the management of periodontitis. Bakuchiol, a natural phenolic compound extracted from Psoralea corylifolia, was incorporated into a hydrogel composed of poloxamers and carboxymethylcellulose. The gelation behavior, physicochemical properties, and drug release profile were analyzed. Additionally, antibacterial activity against Porphyromonas gingivalis was assessed. Cytotoxicity was evaluated in human gingival fibroblasts and RAW 264.7 cells. Anti-inflammatory effects were determined by measuring proinflammatory cytokine expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Furthermore, alveolar bone loss, cytokine expression, and histological findings were assessed in a rat model of ligature-induced periodontitis. BTH demonstrated sol–gel transition at body temperature, with sustained drug release over 15 days. Moreover, it exhibited significant antibacterial activity against P. gingivalis and was non-cytotoxic at an extract concentration of 6.25%. In vitro, it significantly downregulated inflammatory cytokines in activated macrophages. In vivo, BTH application reduced alveolar bone loss and interleukin-1β expression in gingival tissues. Histological analysis confirmed decreased inflammatory cell infiltration and alveolar bone destruction. Thus, BTH demonstrated both antibacterial and anti-inflammatory activities, exhibiting potential as a promising therapeutic strategy for localized periodontal treatment. Full article
(This article belongs to the Section Dental Biomaterials)
Show Figures

Figure 1

22 pages, 8184 KB  
Article
Porphyromonas gingivalis GroEL Accelerates Abdominal Aortic Aneurysm Formation by Induction of M1 Polarization in Macrophages
by Yi-Wen Lin, Yi-Ting Tsai, Ming-Jen Cheng, Chun-Ming Shih, Chun-Yao Huang, Chien-Sung Tsai, Shih-Ying Sung, Ze-Hao Lai, Chen-Wei Liu and Feng-Yen Lin
Int. J. Mol. Sci. 2025, 26(16), 7781; https://doi.org/10.3390/ijms26167781 - 12 Aug 2025
Viewed by 406
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease characterized by chronic inflammation, extracellular matrix degradation, and smooth muscle cell apoptosis. Porphyromonas gingivalis (P. gingivalis), a key periodontal pathogen, has been implicated in the progression of cardiovascular diseases, including AAA, but [...] Read more.
Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease characterized by chronic inflammation, extracellular matrix degradation, and smooth muscle cell apoptosis. Porphyromonas gingivalis (P. gingivalis), a key periodontal pathogen, has been implicated in the progression of cardiovascular diseases, including AAA, but the underlying mechanisms remain unclear. In this study, we investigated the role of GroEL, a bacterial heat shock protein 60 homolog derived from P. gingivalis, in AAA development. We employed a CaCl2-induced AAA mouse model to evaluate the in vivo effects of GroEL. Mice received periaortic CaCl2 application followed by intravenous injections of recombinant GroEL. Histological analyses were performed to assess aneurysmal dilation, elastin degradation, and inflammatory cell infiltration. Flow cytometry and immunohistochemistry were used to determine macrophage phenotypes, while cytokine profiles were quantified via ELISA. In vitro, THP-1 monocytes were treated with GroEL to evaluate its impact on macrophage polarization and cytokine expression. Our results showed that GroEL administration significantly enhanced aortic diameter expansion and elastin breakdown, accompanied by increased infiltration of M1-like macrophages and elevated levels of pro-inflammatory cytokines such as TNF-α and IL-6. In vitro findings confirmed that GroEL promotes M1 polarization and inhibits M2 marker expression in THP-1-derived macrophages. These findings suggest that P. gingivalis-derived GroEL plays a pathogenic role in AAA by modulating macrophage polarization toward a pro-inflammatory phenotype. Targeting microbial components such as GroEL may offer new therapeutic strategies for AAA management. Full article
Show Figures

Figure 1

27 pages, 1767 KB  
Review
The Periodontal–Cardiovascular Disease Association: Molecular Mechanisms and Clinical Implications
by Elisabetta Ferrara, Alessandro D’Albenzio, Jessica Bassignani, Isabella Di Tanna, Giovanna Murmura and Giuseppe Balice
Int. J. Mol. Sci. 2025, 26(16), 7710; https://doi.org/10.3390/ijms26167710 - 9 Aug 2025
Cited by 1 | Viewed by 731
Abstract
The relationship between periodontitis and cardiovascular diseases (CVDs) extends beyond epidemiological associations, as demonstrated by meta-analyses showing a significantly increased risk for coronary heart disease development. At the core of this association lies systemic inflammation, where periodontal pathogens initiate cascades of pro-inflammatory cytokines. [...] Read more.
The relationship between periodontitis and cardiovascular diseases (CVDs) extends beyond epidemiological associations, as demonstrated by meta-analyses showing a significantly increased risk for coronary heart disease development. At the core of this association lies systemic inflammation, where periodontal pathogens initiate cascades of pro-inflammatory cytokines. This inflammatory response manifests through substantial elevations in interleukin-1 beta (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in periodontitis patients. Oxidative stress plays a crucial role, with Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase 2 (NOX2) activation leading to markedly increased superoxide production compared to healthy controls. The peroxynitrite formed via NO–superoxide interaction accumulates in affected vascular tissues, substantially reducing nitric oxide (NO) bioavailability. Molecular mimicry mechanisms are evidenced by P. gingivalis heat shock protein sharing significant sequence homology with human HSP60, triggering autoimmune responses that affect cardiovascular tissues. Epigenetic modifications show specific alterations, with Nrf2 target gene expression substantially downregulated in chronic periodontal inflammation, particularly affecting heme oxygenase-1 (HO-1) and NAD(P)H:Quinone Oxidoreductase 1 (NQO1) expression. These molecular pathways create a complex network of interactions that fundamentally link periodontal and cardiovascular pathologies. Full article
Show Figures

Figure 1

16 pages, 1855 KB  
Article
Emodin-Loaded Thermoresponsive Hydrogel as a Potential Drug Delivery System for Periodontal Disease in a Rat Model of Ligature-Induced Periodontitis
by Gyu-Yeon Shim, Seong-Hee Moon, Seong-Jin Shin, Hyun-Jin Kim, Seunghan Oh and Ji-Myung Bae
Polymers 2025, 17(15), 2108; https://doi.org/10.3390/polym17152108 - 31 Jul 2025
Viewed by 470
Abstract
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis [...] Read more.
Periodontitis, a chronic inflammatory disease, causes alveolar bone loss. Current treatments show limitations in achieving dual antimicrobial and anti-inflammatory effects. We evaluated an emodin-loaded thermoresponsive hydrogel as a local drug delivery system for periodontitis treatment. Emodin itself demonstrated antibacterial activity against Porphyromonas gingivalis, with minimal inhibitory and minimal bactericidal concentrations of 50 μM. It also suppressed mRNA expression of proinflammatory cytokines [tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6] in lipopolysaccharide-stimulated RAW 264.7 cells. The hydrogel, formulated with poloxamers and carboxymethylcellulose, remained in a liquid state at room temperature and formed a gel at 34 °C, providing sustained drug release for 96 h and demonstrating biocompatibility with human periodontal ligament stem cells while exhibiting antibacterial activity against P. gingivalis. In a rat model of periodontitis, the hydrogel significantly reduced alveolar bone loss and inflammatory responses, as confirmed by micro-computed tomography and reverse transcription quantitative polymerase chain reaction of gingival tissue. The dual antimicrobial and anti-inflammatory properties of emodin, combined with its thermoresponsive delivery system, provide advantages over conventional treatments by maintaining therapeutic concentrations in the periodontal pocket while minimizing systemic exposure. This shows the potential of emodin-loaded thermoresponsive hydrogels as effective local delivery systems for periodontitis treatment. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

18 pages, 1515 KB  
Article
Enhancing Professional Periodontal Therapy with a Novel PMA-Zeolite Application: A Clinical Study on Periodontal Outcomes and Microbiological Changes
by Ines Đapić, Andrej Aurer, Jurica Žučko, Marinka Mravak-Stipetić, Marinka Baranović Baričević, Krešimir Pavelić, Fusun Ozer and Sandra Kraljević Pavelić
J. Funct. Biomater. 2025, 16(8), 270; https://doi.org/10.3390/jfb16080270 - 22 Jul 2025
Viewed by 749
Abstract
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the periodontal supporting tissues, including alveolar bone, potentially resulting in tooth loss. Etiopathogenesis involves a dysbiotic shift in the subgingival microbiota where the presence of pathogenic species such as Porphyromonas [...] Read more.
Periodontitis is a chronic, multifactorial inflammatory disease characterized by the progressive destruction of the periodontal supporting tissues, including alveolar bone, potentially resulting in tooth loss. Etiopathogenesis involves a dysbiotic shift in the subgingival microbiota where the presence of pathogenic species such as Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, and Treponema denticola has been documented. This disbalance is combined with an inadequate host immune response, often exacerbated by other systemic comorbidities including diabetes mellitus and cardiovascular diseases. Conventional therapy typically comprises mechanical debridement and adjunctive local or systemic antimicrobials, but emerging antibiotic resistance highlights a need for alternative adjuvant therapeutic strategies. The present descriptive analysis of microbiome and clinical trends study evaluated the adjuvant effects of a clinoptilolite-based zeolite material, namely PMA-zeolite, with professional prophylaxis on clinical and microbiological parameters in patients with chronic periodontitis over a 10-week period. Clinical assessment revealed significant reductions in bleeding on probing (BoP) and periodontal pocket depth (PD), indicating improved inflammatory status. Microbiome profiling demonstrated a marked decrease in key periodontal pathogens, suggesting that PMA-zeolite can help rebalance the oral microbiome. These findings suggest that the combined therapy exhibits promising anti-inflammatory and antimicrobial properties, indicating its role in promoting microbial homeostasis and reducing periodontal inflammation. However, further investigation through larger, controlled clinical trials is needed to validate the efficacy of the therapy. Full article
(This article belongs to the Special Issue Active Biomedical Materials and Their Applications, 2nd Edition)
Show Figures

Figure 1

17 pages, 2234 KB  
Article
Impact of Live Ligilactobacillus salivarius CCFM1332 and Its Postbiotics on Porphyromonas gingivalis Colonization, Alveolar Bone Resorption and Inflammation in a Rat Model of Periodontitis
by Qing Hong, Yu Ren, Xin Tang, Bingyong Mao, Qiuxiang Zhang, Jianxin Zhao, Shumao Cui and Zhenmin Liu
Microorganisms 2025, 13(7), 1701; https://doi.org/10.3390/microorganisms13071701 - 20 Jul 2025
Viewed by 637
Abstract
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and [...] Read more.
Periodontitis is a chronic inflammatory disease caused by periodontopathic bacteria such as Porphyromonas gingivalis (P. gingivalis), which leads to alveolar bone destruction and systemic inflammation. Emerging evidence suggests that probiotics may mitigate periodontal pathology. To systematically evaluate the alleviative effects and mechanisms of different forms of probiotics, including live bacteria and postbiotics, on periodontitis, we first screened and identified Ligilactobacillus salivarius CCFM1332 (L. salivarius CCFM1332) through in vitro antibacterial and anti-biofilm activity assays. Subsequently, we investigated its therapeutic potential in a rat model of experimental periodontitis. The results demonstrated that both live L. salivarius CCFM1332 (PL) and its postbiotics (PP) significantly reduced the gingival index (GI) and probing depth (PD) in rats, while suppressing oral colonization of P. gingivalis. Serum pro-inflammatory cytokine levels were differentially modulated: the PL group exhibited reductions in interleukin-17A (IL-17A), interleukin-6 (IL-6), and interleukin-1β (IL-1β) by 39.31% (p < 0.01), 17.26% (p < 0.05), and 14.74% (p < 0.05), respectively, whereas the PP group showed decreases of 34.79% (p < 0.05), 29.85% (p < 0.01), and 19.74% (p < 0.05). Micro-computed tomography (Micro-CT) analysis demonstrated that compared to the periodontitis model group (PM), the PL group significantly reduced alveolar bone loss (ABL) by 30.1% (p < 0.05) and increased bone volume fraction (BV/TV) by 49.5% (p < 0.01). In contrast, while the PP group similarly decreased ABL by 32.7% (p < 0.05), it resulted in a 40.4% improvement in BV/TV (p > 0.05). Histological assessments via hematoxylin and eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining confirmed that both the PL group and the PP group alleviated structural damage to alveolar bone-supporting tissues and reduced osteoclast-positive cell counts. This study suggests that live L. salivarius CCFM1332 and its postbiotics reduce alveolar bone resorption and attachment loss in rats through antibacterial and anti-inflammatory pathways, thereby alleviating periodontal inflammation in rats. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

14 pages, 869 KB  
Article
Subgingival Microbiome Profiles in Bulgarian Children Aged 10–14 with Gingival Inflammation and Healthy Periodontium: A Targeted PCR Study
by Hristina Tankova and Nadezhda Mitova
Microorganisms 2025, 13(7), 1656; https://doi.org/10.3390/microorganisms13071656 - 14 Jul 2025
Viewed by 644
Abstract
The subgingival microbiome is a critical component of the oral microbiota and plays a central role in pediatric periodontology. This study investigated differences in periodontopathogen profiles in children with gingival inflammation compared to healthy controls using real-time PCR, with a focus on the [...] Read more.
The subgingival microbiome is a critical component of the oral microbiota and plays a central role in pediatric periodontology. This study investigated differences in periodontopathogen profiles in children with gingival inflammation compared to healthy controls using real-time PCR, with a focus on the microbial complexes defined by Socransky. A total of 73 children (ages 10–14) underwent comprehensive periodontal assessment, including assessments of general health status, the O’Leary hygiene index (HI), gingival condition, and the papillary bleeding index (PBI). Subgingival plaque samples were analyzed using real-time PCR to identify key bacterial species associated with gingival health and disease. Highly pathogenic periodontopathogens such as Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, and Eubacterium nodatum were absent in healthy subjects. In contrast, Tannerella forsythia was significantly more frequently detected in children with gingival inflammation (p < 0.05). The most abundant species in the inflammation group were Prevotella intermedia and Capnocytophaga gingivalis. Children with gingival inflammation exhibit a distinct subgingival microbiome profile characterized by an increased presence of specific periodontopathogens, including a higher prevalence of red complex species as defined by Socransky. However, the cross-sectional nature of this study limits the ability to establish causal relationships. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

11 pages, 1712 KB  
Article
Impact of Aging on Periodontitis Progression: A Murine Model Study of Porphyromonas gingivalis-Induced Alveolar Bone Loss
by Mitsutaka Nishimura, Motohiro Komaki, Shuntaro Sugihara and Toshiro Kodama
Oral 2025, 5(3), 51; https://doi.org/10.3390/oral5030051 - 10 Jul 2025
Viewed by 514
Abstract
Background: Periodontitis is a chronic inflammatory disease influenced by host aging, yet the specific effects of aging on disease susceptibility remain unclear. Objective: This study aimed to evaluate whether aging increases susceptibility to Porphyromonas gingivalis (P. gingivalis)-induced periodontitis in [...] Read more.
Background: Periodontitis is a chronic inflammatory disease influenced by host aging, yet the specific effects of aging on disease susceptibility remain unclear. Objective: This study aimed to evaluate whether aging increases susceptibility to Porphyromonas gingivalis (P. gingivalis)-induced periodontitis in a murine model. We formulated the null hypothesis that age does not affect susceptibility to periodontal bone loss. Methods: Young (8 weeks) and aged (78 weeks) male C57BL/6 mice were randomly assigned into four groups: young control, young infected, old control, and old infected (n = 8 per group, except for old control, where n = 7). Experimental periodontitis was induced by oral application of P. gingivalis suspended in 5% carboxymethylcellulose (CMC), administered every other day, for a total of three applications. Alveolar bone loss was assessed 39 days after the last inoculation using histomorphometric measurement of buccal distance from the cemento-enamel junction to the alveolar bone crest (CEJ–ABC distance) and micro-computed tomography (μCT) at mesial and distal interdental sites. Bonferroni’s correction was applied to the Mann–Whitney U Test to determine statistical significance. A p-value of less than 0.05 was considered statistically significant. Results: Morphometric analysis showed significantly greater buccal bone loss in infected mice versus controls in both age groups (young: 0.193 mm vs. 0.100 mm, p < 0.01; old: 0.262 mm vs. 0.181 mm, p < 0.01). μCT analysis revealed that interdental bone loss was significant only in aged infected mice (mesial: 0.155 mm vs. 0.120 mm, p < 0.05; distal: 0.185 mm vs. 0.100 mm, p < 0.01), and not significant in young infected mice. Conclusions: Aging significantly exacerbates P. gingivalis-induced alveolar bone loss, particularly in interdental regions. These results allowed us to reject the null hypothesis. This study validates a clinically relevant murine model for analyzing age-related periodontitis and provides a foundation for investigating underlying molecular mechanisms and potential therapeutic interventions. Full article
Show Figures

Graphical abstract

15 pages, 1338 KB  
Article
The Effect of Limosilactobacillus fermentum MG4717 on Oral Health and Biosafety
by Jeong-Yong Park, Ji Yeon Lee, YongGyeong Kim, Byoung-Kook Kim and Soo-Im Choi
Microorganisms 2025, 13(7), 1600; https://doi.org/10.3390/microorganisms13071600 - 7 Jul 2025
Viewed by 537
Abstract
Oral diseases such as periodontitis and dental caries, as well as conditions related to oral health such as halitosis, are closely associated with dysbiosis of the oral microbiota and continue to pose significant public health challenges worldwide. With the increasing resistance to existing [...] Read more.
Oral diseases such as periodontitis and dental caries, as well as conditions related to oral health such as halitosis, are closely associated with dysbiosis of the oral microbiota and continue to pose significant public health challenges worldwide. With the increasing resistance to existing antibiotics and side effects of chemical disinfectants, probiotics have emerged as promising alternatives for oral healthcare. This study aimed to evaluate the oral health efficacy and probiotic properties of Limosilactobacillus fermentum (L. fermentum) MG4717 isolated from the human oral cavity. L. fermentum MG4717 showed notable antimicrobial activity against the key oral pathogens Streptococcus mutans (S. mutans), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Porphyromonas gingivalis (P. gingivalis), and Fusobacterium nucleatum (F. nucleatum) and effectively inhibited biofilm formation. Additionally, L. fermentum MG4717 significantly downregulated methionine gamma-lyase (mgl) mRNA expression in P. gingivalis, which is implicated in halitosis and pathogenicity. L. fermentum MG4717 strongly adhered to the KB and HT-29 epithelial cells and exhibited good resilience under simulated gastrointestinal conditions. Whole-genome sequencing (WGS) and average nucleotide identity (ANI) analysis confirmed strain identity (98.73% average nucleotide identity with L. fermentum DSM20052) and the absence of transferable antibiotic resistance genes. Safety assessments revealed no cytotoxicity, hemolytic activity, or bile salt hydrolase activity. These findings suggest that L. fermentum MG4717 has the potential to be used as a safe and effective oral probiotic beneficial for oral health. Full article
(This article belongs to the Special Issue The Oral Microbiota and Oral Health)
Show Figures

Figure 1

14 pages, 11665 KB  
Article
In Vitro Microbial Adhesion on the Surfaces of Various Polytetrafluoroethylene Membranes Used in Guided Bone Regeneration
by Adel Al-Asfour, Maria G. Katsikogianni, Maribasappa Karched, Syed Saad Bin Qasim, Branko Trajkovski and Gregor-Georg Zafiropoulos
Dent. J. 2025, 13(7), 301; https://doi.org/10.3390/dj13070301 - 2 Jul 2025
Viewed by 2857
Abstract
Aim: The aim of this study was to evaluate the adhesion of oral microorganisms on the surfaces of polytetrafluoroethylene (PTFE) membranes used in guided bone regeneration (GBR) procedures. Materials and Methods: In this study, three oral microorganisms (Streptococcus mutans, Porphyromonas gingivalis [...] Read more.
Aim: The aim of this study was to evaluate the adhesion of oral microorganisms on the surfaces of polytetrafluoroethylene (PTFE) membranes used in guided bone regeneration (GBR) procedures. Materials and Methods: In this study, three oral microorganisms (Streptococcus mutans, Porphyromonas gingivalis, and Candida albicans) were used, and six PTFE membranes were characterized by their surface roughness, contact angle (CA), and surface free energy (SFE). Microbial hydrophobicity was investigated, and adhesion was examined via DNA extraction and quantitative real-time PCR. Results: Significant differences were noted amongst the membranes with respect to SFE, CA, and roughness (p < 0.001). S. mutans was the most hydrophobic microorganism, followed by C. albicans and P. gingivalis. SEM analyses confirmed that the microorganisms adhered to all membranes, with Surgitime being the membrane that attracted the highest number of S. mutans (p < 0.001) and P. gingivalis (p < 0.001). By contrast, OsseoGuard-TXT was one of the membranes that attracted the lowest number (p < 0.001) of all three tested species. Conclusions: The results showed that microbial adhesion to PTFE membranes was affected by the membrane surface roughness and SFE, as well as the characteristics of the microorganisms. The most hydrophilic bacteria adhered the least to all the tested membranes, whereas membranes with a low surface roughness and high SFE attracted the lowest number of all the tested microbes. These results may guide the selection of an appropriate GBR membrane. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Figure 1

20 pages, 4816 KB  
Article
Exploring the Structural Design, Antibacterial Activity, and Molecular Docking of Newly Synthesized Zn(II) Complexes with NNO-Donor Carbazate Ligands
by Claudia C. Gatto, Daniel J. de Siqueira, Eduardo de A. Duarte, Érica C. M. Nascimento, João B. L. Martins, Mariana B. Santiago, Nagela B. S. Silva and Carlos H. G. Martins
Molecules 2025, 30(13), 2822; https://doi.org/10.3390/molecules30132822 - 30 Jun 2025
Viewed by 536
Abstract
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate [...] Read more.
The present work reports the synthesis and structural design of three novel Zn(II) complexes [Zn(L1)(CH3COO)(H2O)] (1), [Zn(L2)2] (2), and [Zn(L3)2] (3) with carbazate ligands, 2-acetylpyridine-methylcarbazate (HL1), 2-acetylpyridine-ethylcarbazate (HL2), and 2-acetylpyridine-benzylcarbazate (HL3). All compounds were characterized by spectroscopic methods, and the crystal structures of the complexes were elucidated by single-crystal X-ray. Based on the analysis, distorted square pyramid geometry is suggested for complex (1) and an octahedral geometry is suggested for complexes (2) and (3) with the ligands exhibiting an NNO-donor system. The 3D Hirshfeld surface and the 2D fingerprint plot were used to study the non-covalent interactions in the crystal structures. The in vitro antibacterial investigation of the free ligands and their complexes was performed against different strains of periodontopathogen bacteria. The Zn(II) complexes showed more potent antibacterial activity than the free ligand. Molecular docking studies showed the metal complexes as promising candidates for further therapeutic exploration, particularly in targeting the ATP-binding cassette transporter with peptidase domain of the cariogenic bacteria S. mutans (PDB code 5XE9) and the prolyl tripeptidyl aminopeptidase from P. gingivalis anaerobic bacteria (PDB code 2EEP) inhibition. Full article
Show Figures

Graphical abstract

17 pages, 670 KB  
Article
Effects of Oral Appliance Therapy with a Mouth Shield in Periodontitis Patients Who Snore: A Split-Mouth Randomized Controlled Trial
by Ju-Ying Lin, Emet Schneiderman, Jason Hui, Carlos Parra Carrasquer, William Stenberg, Zohre German, Jason Adam Harvey and Preetam Schramm
Dent. J. 2025, 13(7), 292; https://doi.org/10.3390/dj13070292 - 27 Jun 2025
Viewed by 789
Abstract
Background: Periodontitis is linked to sleep-disordered breathing (SDB), including snoring, with 50–75% of cases involving mouth breathing (MB). Standard treatment includes scaling and root planing (SRP). Oral appliance therapy (OAT) is used to treat snoring and SDB. OAT plus a mouth shield [...] Read more.
Background: Periodontitis is linked to sleep-disordered breathing (SDB), including snoring, with 50–75% of cases involving mouth breathing (MB). Standard treatment includes scaling and root planing (SRP). Oral appliance therapy (OAT) is used to treat snoring and SDB. OAT plus a mouth shield (OAT+) worn during sleep may reduce MB to enhance periodontal health. This study evaluated whether OAT+, as an adjunct to SRP, improves periodontal health by reducing periodontal pathogens and facilitating upper airway patency. Methods: Fourteen participants with mild–moderate periodontitis were randomized to receive SRP on one side of the mouth at baseline (T0). Pocket depth (PD), bleeding on probing (BOP), and plaque index (PI) were recorded, and bacterial DNA from periodontal pockets were analyzed via PCR at baseline (T0) and 12 weeks (T3). At 4 weeks (T1), all participants received a self-titrated myTAP® OA, followed by a mouth shield at 8 weeks (T2). Sleep metrics, including respiratory disturbance index (RDI), were recorded using the NOX T3 at T0–T3. Results: BOP and deep PD levels exhibited slight improvements from the baseline for both SRP and non-SRP (OAT+ only) treated sites but did not achieve significance. BOP decreased significantly more from the baseline in the SRP than in the non-SRP group at T3 (p = 0.028); P. gingivalis’ presence declined on both sides (p = 0.0135). Other periodontal and bacterial parameters showed no significant differences between or within groups. Snoring (p = 0.011), MB (p = 0.025), and RDI (p = 0.019) significantly decreased with OAT+ at T3. Conclusions: In mild–moderate periodontitis patients who snore, OAT+ reduces snoring, MB, and obstructive events, serving as an adjunct to SRP with no negative clinical effects over the short term. The combined therapy yielded similar results to OAT+ alone, likely due to minimization of MB. Its capacity to improve the oral environment is worthy of further investigation. Full article
(This article belongs to the Special Issue Dentistry in the 21st Century: Challenges and Opportunities)
Show Figures

Figure 1

Back to TopTop