Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (63,447)

Search Parameters:
Keywords = P3H4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11841 KB  
Article
Fabrication and Mechanism of Pickering Emulsions Stability over a Broad pH Range Using Tartary Buckwheat Protein–Sodium Alginate Composite Particles
by Yu Song, Xueli Shen, Gangyue Zhou, Xia Xu, Yanan Cao, Wei Li, Yichen Hu, Jianglin Zhao, Dingtao Wu, Zunxi Huang and Liang Zou
Foods 2025, 14(19), 3429; https://doi.org/10.3390/foods14193429 (registering DOI) - 5 Oct 2025
Abstract
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with [...] Read more.
In this study, the insufficient ability of tartary buckwheat protein (TBP) to stabilize Pickering emulsions was addressed by preparing TBP–sodium alginate (SA) composite particles via cross-linking and systematic optimization of the preparation parameters. The results showed that at a pH of 9.0 with 1.0% (w/v) TBP and 0.2% (w/v) SA, the zeta potential of the prepared TBP–SA composite particles was significantly more negative, and the particle size was significantly larger, than those of TBP, while emulsifying activity index and emulsifying stability index increased to 53.76 m2/g and 78.78%, respectively. Scanning electron microscopy confirmed the formation of a dense network structure; differential scanning calorimetry revealed a thermal denaturation temperature of 83 °C. Fourier transform infrared spectroscopy and surface hydrophobicity results indicated that the complex was formed primarily through hydrogen bonding and hydrophobic interactions between TBP and SA, which induced conformational changes in the protein. The Pickering emulsion prepared with 5% (w/v) TBP–SA composite particles and 60% (φ) oil phase was stable during 4-month storage, at a high temperature of 75 °C, high salt conditions of 600 mM, and pH of 3.0–9.0. The stabilization mechanisms may involve: (1) strong electrostatic repulsion provided by the highly negative zeta potential; (2) steric hindrance and mechanical strength imparted by the dense interfacial network; and (3) restriction of droplet mobility due to SA-induced gelation. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Figure 1

20 pages, 1154 KB  
Article
Development and Characterization of Topical Gels Containing Lipid Nanosystems Loaded with Echinacea purpurea
by Ramona-Daniela Pavaloiu, Georgeta Neagu, Adrian Albulescu, Mihaela Deaconu, Anton-Liviu Petrica, Corina Bubueanu and Fawzia Sha’at
Gels 2025, 11(10), 801; https://doi.org/10.3390/gels11100801 (registering DOI) - 5 Oct 2025
Abstract
This study explores an innovative delivery strategy for the management of skin conditions: lipid nanosystems incorporated into a gel matrix. Echinacea purpurea extract, known for its antibacterial, antioxidant, and wound-healing properties, was encapsulated into lipid-based nanosystems and subsequently incorporated into Carbopol-based gel. The [...] Read more.
This study explores an innovative delivery strategy for the management of skin conditions: lipid nanosystems incorporated into a gel matrix. Echinacea purpurea extract, known for its antibacterial, antioxidant, and wound-healing properties, was encapsulated into lipid-based nanosystems and subsequently incorporated into Carbopol-based gel. The extract, rich in chicoric and caftaric acids, exhibited strong antioxidant activity (IC50 = 56.9 µg/mL). The resulting nanosystems showed nanometric size (about 200 nm), high entrapment efficiency (63.10–75.15%), and excellent short-term stability. Superior biocompatibility of the nanosystems, compared to the free extract, was demonstrated using an MTS assay on L-929 fibroblasts. Moreover, the cytoprotective potential of the lipid carriers was evident, as pre-treatment significantly increased cell viability under H2O2-induced oxidative stress. These findings suggest that lipid-based encapsulation enhances the therapeutic profile of E. purpurea. The optimal lipid formulation was incorporated into a Carbopol-based gel, which demonstrated an appropriate pH (5.15 ± 0.75), favorable textural properties, sustained polyphenol release, and overall good stability. This research highlights the potential of plant-derived bioactives in the development of dermatocosmetic products, aligning with current trends in eco-conscious and sustainable skincare. Full article
(This article belongs to the Special Issue Gels for Skin Treatment and Wound Healing)
Show Figures

Graphical abstract

20 pages, 3013 KB  
Article
Exploring Static Biological Aging as a Method for Producing Low-Alcohol ‘Fino’ Type White Wines
by Raquel Muñoz-Castells, Lourdes Vega-Espinar, Juan Carlos García-García, Maria Trinidad Alcalá-Jiménez, Jaime Moreno-García, Cristina Lasanta and Juan Moreno
Fermentation 2025, 11(10), 575; https://doi.org/10.3390/fermentation11100575 (registering DOI) - 5 Oct 2025
Abstract
Spanish “Fino”-style white wines are traditionally aged by a dynamic process under a flor veil of Saccharomyces cerevisiae, requiring ≥15% (v/v) ethanol, which is typically achieved through fortification. Market demand for lower-alcohol wines and the need to reduce [...] Read more.
Spanish “Fino”-style white wines are traditionally aged by a dynamic process under a flor veil of Saccharomyces cerevisiae, requiring ≥15% (v/v) ethanol, which is typically achieved through fortification. Market demand for lower-alcohol wines and the need to reduce production costs have encouraged the development of alternative approaches. Here, static biological aging was evaluated as a method for producing Fino-type wines with reduced ethanol content. Base wines with ~14% and ~15% (v/v) ethanol were aged for nine months, during which chemical, microbiological, and sensory parameters were analyzed, along with flor veil activity. Lower-ethanol wines showed greater flor activity, with approximately 20 more yeast isolates in the wines with 14% (v/v) ethanol. Higher acetaldehyde levels were detected in these wines, reaching about 377 mg L−1 compared to 230 mg L−1 in the control wines (≥15% v/v ethanol). Significant changes were observed in pH (3.13–3.47 vs. 3.04–3.46), volatile acidity (0.20–0.26 g L−1 vs. 0.31–0.66 g L−1), and several volatile compounds, resulting in chemical and sensory profiles consistent with traditional biologically aged wine. Static biological aging can yield lower-alcohol Fino-style white wines with sensory and chemical attributes comparable to the traditional fortified versions, providing a cost-effective alternative that aligns with evolving consumer preferences. Full article
(This article belongs to the Special Issue Scale-Up Challenges in Microbial Fermentation)
Show Figures

Figure 1

20 pages, 3411 KB  
Article
Assessing the Impacts of Greenhouse Lifespan on the Evolution of Soil Quality in Highland Mountain Vegetable Farmland
by Keyu Yan, Xiaohan Mei, Jing Li, Xinmei Zhao, Qingsong Duan, Zhengfa Chen and Yanmei Hu
Agronomy 2025, 15(10), 2343; https://doi.org/10.3390/agronomy15102343 (registering DOI) - 5 Oct 2025
Abstract
Long-term greenhouse operations face a critical challenge in the form of soil quality degradation, yet the key intervention periods and underlying mechanisms of this process remain unclear. This study aims to quantify the effects of greenhouse lifespan on the evolution of soil quality [...] Read more.
Long-term greenhouse operations face a critical challenge in the form of soil quality degradation, yet the key intervention periods and underlying mechanisms of this process remain unclear. This study aims to quantify the effects of greenhouse lifespan on the evolution of soil quality and to identify critical periods for intervention. We conducted a systematic survey of greenhouse operations in a representative area of Yunnan Province, Southwest China, and adopted a space-for-time substitution design. Using open-field cultivation (OF) as the control, we sampled and analyzed soils from vegetable greenhouses with greenhouse lifespans of 2 years (G2), 5 years (G5), and 10 years (G10). The results showed that early-stage greenhouse operation (G2) significantly increased soil temperature (ST) by 8.38–19.93% and soil porosity (SP) by 16.21–56.26%, promoted nutrient accumulation and enhanced aggregate stability compared to OF. However, as the greenhouse lifespan increased, the soil aggregates gradually disintegrated, particle-size distribution shifted toward finer clay fractions, and pH changed from neutral to slightly alkaline, exacerbating nutrient imbalances. Compared with G2, G10 exhibited reductions in mean weight diameter (MWD) and soil organic matter (SOM) of 2.41–5.93% and 24.78–30.93%, respectively. Among greenhouses with different lifespans, G2 had the highest soil quality index (SQI), which declined significantly with extended operation; at depths of 0–20 cm and 20–40 cm, the SQI of G10 was 32.59% and 38.97% lower than that of G2, respectively (p < 0.05). Structural equation modeling (SEM) and random forest analysis indicated that the improvement in SQI during the early stage of greenhouse use was primarily attributed to the optimization of soil hydrothermal characteristics and pore structure. Notably, the 2–5 years was the critical stage of rapid decline in SQI, during which intensive water and fertilizer inputs reduced the explanatory power of soil nutrients for SQI. Under long-term continuous cropping, the reduction in MWD and SOM was the main reason for the decline in SQI. This study contributes to targeted soil management during the critical period for sustainable production of protected vegetables in southern China. Full article
Show Figures

Figure 1

15 pages, 3711 KB  
Article
Consequences of the Construction of a Small Dam on the Water Quality of an Urban Stream in Southeastern Brazil
by Lucas Galli do Rosário, Ricardo Hideo Taniwaki and Luis César Schiesari
Limnol. Rev. 2025, 25(4), 48; https://doi.org/10.3390/limnolrev25040048 (registering DOI) - 5 Oct 2025
Abstract
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to [...] Read more.
The growth of the human population, combined with climate change, has made the provisioning of water resources to human populations one of the greatest challenges of recent decades. One commonly adopted solution has been the construction of small dams and reservoirs close to urban settlements. However, concerns have arisen that, despite their small size, small dams may have environmental impacts similar to those known for large dams. The severe water crisis observed between 2014 and 2015 led to the multiplication of small dams in southeastern Brazil, such as the one built on the Fetá stream at the Capivari River basin in the municipality of Louveira. This study aimed to contribute to the assessment of the impacts of small dam construction on water quality by monitoring basic parameters and nutrients during the filling and stabilization period of the Fetá reservoir. As expected, the interruption of water flow and the increase in water residence time led to increases in temperature, pH, electrical conductivity, dissolved oxygen and concentrations of dissolved carbon and nitrogen, as well as a reduction in turbidity. Consistent with the shallow depth of the water column, neither thermal nor chemical stratification was observed. Nevertheless, the water quality of surface and bottom layers was markedly different. Over time, water volume and water quality tended to stabilize. This research clearly demonstrates that small dams and reservoirs cause qualitatively similar environmental impacts to those of large-scale dams and reservoirs worldwide. Full article
(This article belongs to the Special Issue Functional Ecology of Urban Streams)
Show Figures

Figure 1

23 pages, 5258 KB  
Article
Bilayer TMDs for Future FETs: Carrier Dynamics and Device Implications
by Shoaib Mansoori, Edward Chen and Massimo Fischetti
Nanomaterials 2025, 15(19), 1526; https://doi.org/10.3390/nano15191526 (registering DOI) - 5 Oct 2025
Abstract
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer [...] Read more.
Bilayer transition metal dichalcogenides (TMDs) are promising materials for next-generation field-effect transistors (FETs) due to their atomically thin structure and favorable transport properties. In this study, we employ density functional theory (DFT) to compute the electronic band structures and phonon dispersions of bilayer WS2, WSe2, and MoS2, and the electron-phonon scattering rates using the EPW (electron-phonon Wannier) method. Carrier transport is then investigated within a semiclassical full-band Monte Carlo framework, explicitly including intrinsic electron-phonon scattering, dielectric screening, scattering with hybrid plasmon–phonon interface excitations (IPPs), and scattering with ionized impurities. Freestanding bilayers exhibit the highest mobilities, with hole mobilities reaching 2300 cm2/V·s in WS2 and 1300 cm2/V·s in WSe2. Using hBN as the top gate dielectric preserves or slightly enhances mobility, whereas HfO2 significantly reduces transport due to stronger IPP and remote phonon scattering. Device-level simulations of double-gate FETs indicate that series resistance strongly limits performance, with optimized WSe2 pFETs achieving ON currents of 820 A/m, and a 10% enhancement when hBN replaces HfO2. These results show the direct impact of first-principles electronic structure and scattering physics on device-level transport, underscoring the importance of material properties and the dielectric environment in bilayer TMDs. Full article
(This article belongs to the Special Issue First Principles Study of Two-Dimensional Materials)
26 pages, 3172 KB  
Article
Influence of Extended Photoperiod Using Blue Light Masks on Hypertrichosis, Coat Condition and General Health Parameters in Horses with Pituitary Pars Intermedia Dysfunction
by Sinead Parmantier, Panoraia Kyriazopoulou, Margaret McClendon, Amanda Adams and Barbara A. Murphy
Animals 2025, 15(19), 2905; https://doi.org/10.3390/ani15192905 (registering DOI) - 5 Oct 2025
Abstract
Fifty-two horses aged >15 years, diagnosed with pituitary pars intermedia dysfunction (PPID), and displaying hypertrichosis were recruited via an online survey of PPID horse owners. From mid-December, group T (n = 29) wore Equilume® light masks extending photoperiod to 15 h [...] Read more.
Fifty-two horses aged >15 years, diagnosed with pituitary pars intermedia dysfunction (PPID), and displaying hypertrichosis were recruited via an online survey of PPID horse owners. From mid-December, group T (n = 29) wore Equilume® light masks extending photoperiod to 15 h daily, while group C1 (n = 23) remained under natural photoperiod. As 85% (44/52) of recruited study horses received pergolide medication, a second unmedicated PPID research herd (C2; n = 17) was recruited and remained under natural photoperiod. Hair coat samples, shedding and body condition scores were collected monthly by owners for 13 months and analysed by the research team. Data related to management, coat condition and PPID clinical signs were collected using bimonthly questionnaires (BMQ). Time (p < 0.001), group (p = 0.025) and time-by-group interaction (p = 0.005) affected hair length. Group differences were attributable to shorter hair lengths in C2, and no differences in hair length occurred between T and C1 (p > 0.05). Time affected shedding scores (p < 0.001) which was advanced by one month in T (p < 0.05). In group T, BMQ responses showed improved coat condition in April (p = 0.035), decreased fat coverage in April and June (p < 0.05), and increased energy/alertness in February (p = 0.022). Improvements in coat condition (p = 0.043), clinical signs of PPID (p = 0.018), and general quality of life (p = 0.035) were reported in T only in a final study questionnaire. Blue light treatment merits further investigation as a complementary treatment for PPID. Full article
(This article belongs to the Section Animal Physiology)
13 pages, 3944 KB  
Article
A Novel Electrochemical Sensor Based on Ti3C2Tx MXene/Mesoporous Hollow Carbon Sphere Hybrid to Detect Bisphenol A
by Fei Cao, Qirong Zhou, Yanting Zhou, Yaqi Yang, Li Zhang and Yixi Xie
Molecules 2025, 30(19), 3992; https://doi.org/10.3390/molecules30193992 (registering DOI) - 5 Oct 2025
Abstract
Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA), an endocrine-disrupting chemical with recognized adverse effects on human health and ecosystems, urgently requires convenient, sensitive, and accurate detection methods. In this study, a hierarchical heterostructure was fabricated by incorporating Ti3C2Tx MXene and mesoporous [...] Read more.
Bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA), an endocrine-disrupting chemical with recognized adverse effects on human health and ecosystems, urgently requires convenient, sensitive, and accurate detection methods. In this study, a hierarchical heterostructure was fabricated by incorporating Ti3C2Tx MXene and mesoporous hollow carbon spheres (MHCs) to develop a high-performance electrochemical sensor for BPA. The nanocomposite was thoroughly characterized using SEM, TEM, and XRD, and then applied to modify a glassy carbon electrode (GCE). Under optimized conditions including pH and accumulation time, BPA detection was carried out via differential pulse voltammetry (DPV). The sensor exhibited a wide linear detection range from 10 to 200 μM and a low detection limit of 2.6 μM. Moreover, it was successfully applied to environmental water samples, demonstrating high accuracy and practicality for real-world BPA monitoring. Full article
(This article belongs to the Special Issue Advances in Electrochemical Sensors)
17 pages, 2088 KB  
Article
Synthesis and Characterization of Rosa Canina-Fe3O4/Chitosan Nanocomposite and Treatment of Safranin O Dye from Wastewater
by Tugba Ceylan, İlknur Tosun Satır and Bediha Akmeşe
Water 2025, 17(19), 2894; https://doi.org/10.3390/w17192894 (registering DOI) - 5 Oct 2025
Abstract
In response to the increasing demand for environmentally friendly and cost-effective adsorbents in wastewater treatment, this study reports the green synthesis, characterization, and application of a magnetic epichlorohydrin Rosa canina (m-ECH-RC) nanocomposite for removing Safranin O (SO), a commonly used cationic dye in [...] Read more.
In response to the increasing demand for environmentally friendly and cost-effective adsorbents in wastewater treatment, this study reports the green synthesis, characterization, and application of a magnetic epichlorohydrin Rosa canina (m-ECH-RC) nanocomposite for removing Safranin O (SO), a commonly used cationic dye in textile effluents. The synthesized material was characterized using Brunauer–Emmett–Teller (BET), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and zeta potential analyses to reveal its surface morphology, pore structure, functional groups, crystallinity, and colloidal stability. Adsorption performance was systematically tested under various conditions, including pH, adsorbent dose, contact time, ionic strength, and initial dye concentration. Kinetic analyses revealed that the adsorption process of Safranin O dye mainly obeys pseudo-second-order kinetics, but intraparticle and film diffusion also contribute to the process. As a result of the Isotherm analysis, it was found that the adsorption process conformed to the Langmuir model. Testing on real textile wastewater samples demonstrated a removal efficiency of 75.09% under optimized conditions. Reusability experiments further revealed that the material maintained high adsorption–desorption performance for up to five cycles, emphasizing its potential for practical use. These findings suggest that m-ECH-RC is a viable and sustainable adsorbent for treating dye-laden industrial effluents. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
28 pages, 4025 KB  
Article
Banana (Musa sapientum) Waste-Derived Biochar–Magnetite Magnetic Composites for Acetaminophen Removal via Photochemical Fenton Oxidation
by Manasik M. Nour, Maha A. Tony, Mai Kamal Fouad and Hossam A. Nabwey
Catalysts 2025, 15(10), 955; https://doi.org/10.3390/catal15100955 (registering DOI) - 5 Oct 2025
Abstract
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign [...] Read more.
Recently, researchers have been focused on the recycling as well as transforming of bio-waste streams into a valuable resource. Banana peels are promising for such application, due to their wide availability. In this context, the integration of banana peel-derived biochar with environmentally benign magnetite has significantly broadened its potential applications as a solar photocatalyst compared to the conventional photocatalysts. The materials are mixed in varied proportions of Ban-Char500-Mag@-(0:1), Ban-Char500@Mag-(1:1) and Ban-Char500@Mag-(2:1) and characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) augmented with dispersive X-ray spectroscopy (EDX). Such modification is leading to an improvement in its application as a solar photocatalyst using the photochemical solar collector facility. The study discusses the factors controlling acetaminophen removal from aqueous effluent within 30 min of solar illumination time. Furthermore, the highlighted optimum parameters are pH 3.0, using 10 mg/L of the Ban-Char500@Mag-(1:1) catalyst and 100 mg/L of the hydrogen peroxide as a Fenton combination system for removing a complete acetaminophen from wastewater (100% oxidation). Also, the temperature influence in the oxidation system is studied and the high temperature is unfavorable, which verifies that the reaction is exothermic in nature. The catalyst is signified as a sustainable (recoverable, recyclable and reusable) substance, and showed a 72% removal even though it was in the six cyclic uses. Further, the kinetic study is assessed, and the experimental results revealed the oxidation process is following the first-order kinetic reaction. Also, the kinetic–thermodynamic parameters of activation are investigated and it is confirmed that the oxidation is exothermic and non-spontaneous in nature. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
17 pages, 896 KB  
Article
Photocatalytic Remediation of Carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) Using UV/FeCl3 in Industrial Soil
by Mohamed Hamza EL-Saeid, Abdulaziz G. Alghamdi, Zafer Alasmary and Thawab M. Al-Bugami
Catalysts 2025, 15(10), 956; https://doi.org/10.3390/catal15100956 (registering DOI) - 5 Oct 2025
Abstract
Currently, the potential environmental concerns around the world for polycyclic aromatic hydrocarbon carcinogenic (PAHCs) contamination as carcinogenic compounds in industrial soils (automobile industry) are rising day by day. At present, the technology of treating contaminated soils using photocatalysts is commonly used; however, this [...] Read more.
Currently, the potential environmental concerns around the world for polycyclic aromatic hydrocarbon carcinogenic (PAHCs) contamination as carcinogenic compounds in industrial soils (automobile industry) are rising day by day. At present, the technology of treating contaminated soils using photocatalysts is commonly used; however, this study tested photolysis and photocatalysis through ultraviolet light (306 nm) due to its high treatment efficiency. FeCl3 (0.3, 0.4 M) was used as an iron catalyst for each treatment in the presence of H2O2 (10%, 20%) as an oxidizing agent. The impact of light treatment on soils that contained various concentrations of PAHCs like naphthalene (NAP), chrysene (CRY), benzo(a) pyrene (BaP), indeno (1,2,3-cd) pyrene (IND) was investigated. The QuEChERS method was used to extract PAHCs, and a gas chromatograph mass spectrometer (GCMSMS) was used to determine concentration. The concentrations of PAHCs were measured for soils at intervals of every 2 h after exposure to ultraviolet rays. The results showed a decrease in PAHCs concentrations with increased exposure to UV irradiation, as the initial values were 26.8 ng/g (NAP), 97 ng/g (CRY), 9.1 ng/g (BaP) and 9.7 ng/g (IND), which decreased to 2.17 ng/g (NAP), 3.14 ng/g (CRY), 0.33 ng/g (BaP) and 0.46 ng/g (IND) at 20, 40, 30 and 40 h of UV exposure; moreover, with an increase in concentration of the catalyst (0.4 M FeCl3 with 20% H2O2), NAP, CRY, BaP and IND became undetectable at 8, 26, 14 and 20 h, respectively. It was concluded that a significant effect of ultraviolet rays on the photolysis of PAHCs, along with Photovoltaic at 306 nm wavelength, was observed while using FeCl3 (0.4 M) combined with H2O2 (20%) produced better results in a shorter time compared to FeCl3 (0.3 M) with H2O2 (10%). Full article
(This article belongs to the Special Issue Advances in Photocatalytic Wastewater Purification, 2nd Edition)
Show Figures

Graphical abstract

24 pages, 1879 KB  
Article
Comparison of Hard Tick (Acari: Ixodidae) Fauna in Natural and Anthropogenic Habitats in Croatia
by Stjepan Krčmar, Marko Vucelja, Marco Pezzi, Marko Boljfetić, Josip Margaletić and Linda Bjedov
Insects 2025, 16(10), 1027; https://doi.org/10.3390/insects16101027 (registering DOI) - 5 Oct 2025
Abstract
Due to the evident increase in tick-borne diseases worldwide, it is necessary to constantly update information on the distribution and zoonotic potential of hard ticks. We studied diversity, population structure, and seasonal dynamics of hard tick fauna, faunal similarity and the climate impact [...] Read more.
Due to the evident increase in tick-borne diseases worldwide, it is necessary to constantly update information on the distribution and zoonotic potential of hard ticks. We studied diversity, population structure, and seasonal dynamics of hard tick fauna, faunal similarity and the climate impact on tick occurrence in natural habitats (NHs) (forest communities) and anthropogenic habitats (AHs) (orchards, grasslands, degraded forests) in eastern and central parts of Continental Croatia. Host-seeking hard ticks were sampled by the flag-dragging method in lowland AHs (Bansko Hill (BH); 2023–2024 yr.) and in mountainous NHs (Medvednica Mountain (MM); 2019–2021, 2024 yr.). Overall, 2726 specimens belonging to eight hard tick species (Ixodes ricinus, I. frontalis, I. hexagonus, I. kaiseri, Haemaphysalis inermis, H. concinna, Dermacentor marginatus, D. reticulatus) were identified in AHs, while in NHs 1543 hard ticks, belonging to three species (I. ricinus, I. frontalis, D. reticulatus), were collected. The most abundant species in both habitat types (47.83% in AHs, 99.80% in NHs) was I. ricinus, showing unimodal seasonal activity within studied NHs and bimodal activity at AHs. Comparison of hard tick fauna in different habitats using the Sørenson index on BH and MM showed a high percentage of similarity (50.0–88.8). At AHs, a significant (p < 0.05) negative correlation was determined between the abundance (N) and the mean monthly air temperatures (°C) for H. inermis (r = −0.5931; p = 0.0421) and D. reticulatus (r = −0.6289; p = 0.0285), while their numbers positively correlated (r = 0.5551; p = −0.2667; r = 0.4430; p = 0.1492) with air humidity (%). In contrast, the number of sampled host-seeking I. ricinus ticks at natural forest habitats on MM was positively associated with air temperature and negatively with air humidity at elevations from 200 to 1000 m a.s.l. (r = −0.7684; p = 0.0259; at 200 m a.s.l.). Collected specimens of I. frontalis mark the first record for Osijek–Baranja County, while the sampled D. reticulatus on MM represents the first catch at 1000 m a.s.l. in Croatia. This new data on the distribution and seasonality of medically important hard tick species in Continental Croatia contributes to identifying tick-risk foci and high-risk periods. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2109 KB  
Article
Lead Immobilization in Soil and Uptake Reduction in Brassica chinensis Using Sepiolite-Supported Manganese Ferrite
by Fengzhuo Geng, Yaping Lyu, Liansheng Ma, Yin Zhou, Jiayue Shi, Roland Bol, Peng Zhang, Iseult Lynch and Xiuli Dang
Plants 2025, 14(19), 3077; https://doi.org/10.3390/plants14193077 (registering DOI) - 5 Oct 2025
Abstract
Lead (Pb) in soil poses serious environmental and health risks, and its removal requires complex and costly treatment methods to meet strict regulatory standards. To effectively address this challenge, innovative and efficient techniques are essential. Sepiolite-supported MnFe2O4 (MnFe2O [...] Read more.
Lead (Pb) in soil poses serious environmental and health risks, and its removal requires complex and costly treatment methods to meet strict regulatory standards. To effectively address this challenge, innovative and efficient techniques are essential. Sepiolite-supported MnFe2O4 (MnFe2O4/SEP) composites were synthesized via a chemical co-precipitation method. The effects of MnFe2O4/SEP on soil pH, cation exchange capacity (CEC), available Pb content, Pb2+ uptake, and the activities of antioxidant enzymes in Brassica chinensis (Pak Choi) were examined. MnFe2O4/SEP showed superior Pb2+ adsorption compared to SEP alone, fitting Langmuir models, Dubinin-Radushkevich (D-R) models, Temkin models and pseudo-second-order kinetics. The maximum adsorption capacities at 298, 308, and 318 K were 459, 500 and 549 mg·g−1, respectively. XPS analysis indicated that chemisorption achieved through ion exchange between Pb2+ and H+ was the main mechanism. MnFe2O4/SEP increased the soil pH by 0.2–1.5 units and CEC by 18–47%, while reducing available Pb by 12–83%. After treatment with MnFe2O4/SEP, acid-extractable and reducible Pb in the soil decreased by 14% and 39%, while oxidizable and residual Pb increased by 26% and 21%, respectively. In Brassica chinensis, MnFe2O4/SEP reduced Pb2+ uptake by 76%, increased chlorophyll content by 36%, and decreased malondialdehyde (MDA) levels by 36%. The activities of antioxidant enzymes—superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)—were decreased by 29%, 38% and 17%, respectively. These findings demonstrate that MnFe2O4/SEP is an efficient Pb2+ adsorbent that immobilizes Pb in soil mainly through ion exchange, thereby providing a highly effective strategy for remediating Pb-contaminated soils and improving plant health. Full article
Show Figures

Figure 1

20 pages, 1854 KB  
Article
Encapsulated Probiotics in Orange Juice: Survival During Storage, GIT Simulation, and Impact on Co-Inoculated Salmonella enterica Strains
by Stamatia Vitsou-Anastasiou, Olga S. Papadopoulou, Agapi I. Doulgeraki, Aikaterini Frantzi, Ismini-Maria Patsopoulou, Anthoula Argyri, Nikos Chorianopoulos, Chrysoula C. Tassou and George-John Nychas
Appl. Sci. 2025, 15(19), 10726; https://doi.org/10.3390/app151910726 (registering DOI) - 5 Oct 2025
Abstract
This study evaluated the survival of encapsulated and free probiotic strains (Lacticaseibacillus paracasei Shirota and Lacticaseibacillus rhamnosus GG) in orange juice during storage and in simulated gastrointestinal tract (GIT) conditions and their effect on the survival of Salmonella enterica. Samples were [...] Read more.
This study evaluated the survival of encapsulated and free probiotic strains (Lacticaseibacillus paracasei Shirota and Lacticaseibacillus rhamnosus GG) in orange juice during storage and in simulated gastrointestinal tract (GIT) conditions and their effect on the survival of Salmonella enterica. Samples were inoculated with free or encapsulated probiotics in whey protein isolate–gum Arabic matrix in 9.00 log CFU/mL population level and were stored at 4 °C and 12 °C for five days. Additionally, samples were co-inoculated with S. enterica 3-strain cocktail at 1.70 log CFU/mL. Samples were withdrawn daily, and microbiological analysis, pH, and sensory evaluation were conducted. Survival of probiotics and the pathogen were further assessed under GIT simulation conditions. Results demonstrated that both free and encapsulated probiotics maintained high population levels (9.00 log CFU/mL) during storage. During GIT simulation, free probiotic population reduced to 3.80 log CFU/mL, in contrast to the encapsulated cells that remained at 6.80–7.00 log CFU/mL after 2 h of the intestinal phase, confirming the protective role of microencapsulation. S. enterica population survived in control and when co-cultured with encapsulated probiotics until the end of storage in populations of 1.7 ± 0.06 log CFU/mL; however, it was reduced to 0.80 log CFU/mL when co-cultured with free probiotics. Salmonella survived during GIT simulation, in control samples, whereas the pathogen co-cultured with probiotics lead to complete S. enterica elimination. Notably, during the intestinal phase, the encapsulated probiotics effectively eliminated S. enterica, maintaining their viability in high population levels. These results highlight that encapsulating probiotics can improve both the functional and sensory characteristics of probiotic fruit juices while supporting high probiotic viability and thus suppression of pathogenic microorganisms in the intestinal environment. Full article
(This article belongs to the Special Issue Innovations in Natural Products and Functional Foods)
22 pages, 360 KB  
Article
Joint Discrete Approximation by the Riemann and Hurwitz Zeta Functions in Short Intervals
by Antanas Laurinčikas and Darius Šiaučiūnas
Symmetry 2025, 17(10), 1662; https://doi.org/10.3390/sym17101662 (registering DOI) - 5 Oct 2025
Abstract
In this paper, we prove the theorems on the simultaneous approximation of a pair of analytic functions by discrete shifts (ζ(s+ikh1),ζ(s+ikh2,α)) [...] Read more.
In this paper, we prove the theorems on the simultaneous approximation of a pair of analytic functions by discrete shifts (ζ(s+ikh1),ζ(s+ikh2,α)), h1>0, h2>0 of the Riemann zeta function ζ(s) and Hurwitz zeta function ζ(s,α). The lower density and density of the above approximating shifts are considered in short intervals [N,N+M] as N with M=o(N). If the set {(h1logp:pP),(h2log(m+α):mN0),2π} is linearly independent over Q, the class of approximated pairs is explicitly given. If α and h1, h2 are arbitrary, then it is known that the set of approximated pairs is a certain non-empty closed subset of H2(Δ), where H(Δ) is the space of analytic functions on the strip Δ={sC:1/2<Res<1}. For the proof, limit theorems on weakly convergent probability measures in the space H2(Δ) are applied. Full article
(This article belongs to the Section Mathematics)
Back to TopTop