Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = PDSI reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2839 KB  
Article
The Relationship Between Dry–Wet Change and the Manchu Rise in China
by Xiaodong Wang, Xiaoyun Xu, Long Fei, Xiaohui Liu and Lijie Yang
Quaternary 2025, 8(4), 61; https://doi.org/10.3390/quat8040061 - 28 Oct 2025
Viewed by 277
Abstract
Exploring the impact of dry–wet change on the Manchu rise has important implications for revealing the impact of climate change on ethnic dynamics. In this study, we used tree rings of Carya cathayensis and historical data to study this dynamic in Northeast Asia [...] Read more.
Exploring the impact of dry–wet change on the Manchu rise has important implications for revealing the impact of climate change on ethnic dynamics. In this study, we used tree rings of Carya cathayensis and historical data to study this dynamic in Northeast Asia using function fitting and step-by-step elimination analysis. The results show a mean reconstructed scPDSI4–10 of 0.822 from 1583 to 1644, which is 0.287 higher than the mean from 1548 to 2022 (0.535), and during 25 slightly wet years. This indicates that dry–wet change provided a favorable natural environment for the Manchu rise, under which the group’s area continued to expand and change shape in complex ways, and the population increased rapidly in the control region. However, in some years, the closer the scPDSI4–10 was to the multi-year mean (0.774) of the deviation from the mean (0.535) of the scPDSI4–10, the faster the control region expanded and the more the population increased. These results provide a reference for understanding the relationship between ethnic groups’ dynamics and climate change. Full article
Show Figures

Graphical abstract

22 pages, 7091 KB  
Article
Dendrochronological Reconstruction of January–September Precipitation Variability (1647–2015A.D) Using Pinus arizonica in Southwestern Chihuahua, Mexico
by Rosalinda Cervantes-Martínez, Julián Cerano-Paredes, José M. Iniguez, Víctor H. Cambrón-Sandoval, Gerardo Esquivel-Arriaga and José Villanueva-Díaz
Forests 2025, 16(11), 1639; https://doi.org/10.3390/f16111639 - 27 Oct 2025
Viewed by 291
Abstract
Climate projections suggest ecosystems could face drastic changes due to global climate change, including more severe and frequent droughts than those recorded in the last century. Paleoclimatic series provide more extensive information than that available with instrumental records, allowing for the analysis of [...] Read more.
Climate projections suggest ecosystems could face drastic changes due to global climate change, including more severe and frequent droughts than those recorded in the last century. Paleoclimatic series provide more extensive information than that available with instrumental records, allowing for the analysis of trends and recurrence of extreme events over a longer time periods. The objective of this research was to reconstruct the precipitation variability for southwestern Chihuahua, based on the tree-ring records of Pinus arizonica Engelm. and to assess the influence of ocean atmospheric circulations like El Niño Southern Oscillation (ENSO) and the North American Monsoon (NAM) on both low- and high-frequency climate variability. We developed three dendrochronological series covering 214 years (1802–2015), 265 years (1750–2014) and 369 years (1647–2015), for the Talayotes (TAL), Predio Particular Las Chinas (PPC) and El Cuervo (CUE) sites, respectively. The 369-year regional chronology was significantly related to cumulative precipitation variability between January and September. Recurring droughts were observed at approximately 50-year intervals. This regional climate variability was significantly related (p < 0.05) to Niño 3 SST and PDSI (JJA) indices. Maximum and minimum extreme events reconstructed in the last 369 years were synchronized with ENSO events, both in the El Niño warm phase and the La Niña cold phase. These results suggest that P. arizonica tree rings record shared a common response to the regional climate that was significantly modulated by ENSO and the NAM. This is the first dendroclimatic study to reconstruct summer precipitation patterns in northern Mexico, which is valuable given the importance of this seasonal precipitation on the regional economy. Full article
Show Figures

Figure 1

22 pages, 3227 KB  
Article
Age-Dependent Climate Sensitivity of Korean Pine (Pinus koraiensis) in the Southern Sikhote-Alin Mountains
by Alexander Mikhailowich Omelko, Olga Nikolaevna Ukhvatkina and Alexander Alexandrowich Zhmerenetsky
Forests 2025, 16(9), 1458; https://doi.org/10.3390/f16091458 - 12 Sep 2025
Viewed by 508
Abstract
Global climate change is driving profound transformations in forest ecosystems, particularly in monsoon-influenced regions of the Pacific coast of Asia, such as the Sikhote-Alin Mountains. Long-lived conifer species, notably Korean pine (Pinus koraiensis Siebold & Zucc.), play a central ecological role in [...] Read more.
Global climate change is driving profound transformations in forest ecosystems, particularly in monsoon-influenced regions of the Pacific coast of Asia, such as the Sikhote-Alin Mountains. Long-lived conifer species, notably Korean pine (Pinus koraiensis Siebold & Zucc.), play a central ecological role in mixed broadleaf–coniferous forests of the region. We examined how the radial growth response of Korean pine to climatic variability changes with tree age and ontogenetic stage, using 191 increment cores from trees ranging from early virginile to old generative stages. We employed two approaches: (i) a stage-based analysis, constructing tree-ring chronologies for each ontogenetic stage; (ii) an individual-tree analysis, applying correlation and regression directly to individual ring-width series. Climate–growth relationships were assessed using monthly temperature, precipitation, and drought indices (PDSI, SPEI). For the stage-based approach, radial growth was positively correlated with the mean August temperature of the previous year (up to r = 0.61), minimum November temperature (up to r = 0.50), and summer drought indices (up to r = 0.57). Age-related trends in climate sensitivity, assessed from regression models under both approaches, were significant for 9 of the 18 monthly climate variables examined. For stage-specific chronologies, simple regressions across six ontogenetic stages described up to 98% of the variance, whereas cambial-age-based relationships were much weaker (R2 = 0.03–0.14). These findings highlight the importance of accounting for ontogenetic structure in dendroclimatic analyses and climate reconstructions. Such insights are critical for understanding long-term forest dynamics and informing climate adaptation strategies in Korean pine-dominated ecosystems. Full article
(This article belongs to the Topic Responses of Trees and Forests to Climate Change)
Show Figures

Figure 1

13 pages, 921 KB  
Article
U.S. Precipitation Variability: Regional Disparities and Multiscale Features Since the 17th Century
by Qian Wang, Wupeng Du, Yang Xu, Maowei Wu and Mengxin Bai
Water 2025, 17(17), 2529; https://doi.org/10.3390/w17172529 - 25 Aug 2025
Viewed by 846
Abstract
Proxy data-based reconstructions provide an essential basis for understanding comprehensive precipitation variability at multiple time scales. This study compared the variation characteristics of reconstructed precipitation data across different regions in the U.S. and the differences at decadal/multidecadal scales. The reconstruction showed that multiple [...] Read more.
Proxy data-based reconstructions provide an essential basis for understanding comprehensive precipitation variability at multiple time scales. This study compared the variation characteristics of reconstructed precipitation data across different regions in the U.S. and the differences at decadal/multidecadal scales. The reconstruction showed that multiple scales of precipitation variability existed in each region and both multidecadal and decadal variability varied over time and across region. There was weaker multidecadal variability in the latter half of the 18th century and during the mid-19th century to mid-20th century east of the Rocky Mountains (RM); however, multidecadal variability appears to have increased since the 20th century in most regions. Decadal variability was weaker west of the RM except in the Southwest U.S. in the latter half of the 18th century. While decadal variability became stronger in the early 20th century, it shifted from a stronger phase to a weaker phase east of the RM. Then, we compared the spatiotemporal differences between the reconstructed Palmer Drought Severity Index (PDSI) and reconstructed precipitation in this study. The reconstructed annual precipitation mostly remains consistent with the existing PDSI dataset, but there are inconsistencies in the severe dry/wet intensities in some regions. Multiscale analysis of regional precipitation data holds great importance for understanding the relationship between precipitation in different regions and the climate system, while also providing a scientific theoretical basis for precipitation prediction. Full article
(This article belongs to the Special Issue Advance in Hydrology and Hydraulics of the River System Research 2025)
Show Figures

Figure 1

14 pages, 1855 KB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Cited by 1 | Viewed by 579
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

14 pages, 7591 KB  
Article
A Paleo-Perspective of 21st Century Drought in the Hron River (Slovakia)
by Igor Leščešen, Abel Andrés Ramírez Molina and Glenn Tootle
Hydrology 2025, 12(7), 169; https://doi.org/10.3390/hydrology12070169 - 28 Jun 2025
Viewed by 1167
Abstract
The Hron River is a vital waterway in central Slovakia. In evaluating observed streamflow records for the past ~90 years, the Hron River displayed historically low hydrologic summer (April–May–June–July–August–September (AMJJAS)) streamflow for the 10-, 20-, and 30-year periods ending in 2020. When using [...] Read more.
The Hron River is a vital waterway in central Slovakia. In evaluating observed streamflow records for the past ~90 years, the Hron River displayed historically low hydrologic summer (April–May–June–July–August–September (AMJJAS)) streamflow for the 10-, 20-, and 30-year periods ending in 2020. When using self-calibrated Palmer Drought Severity Index (scPDSI) proxies developed from tree-ring records, skillful regression-based reconstructions of AMJJAS streamflow were developed for two gauges (Banská Bystrica and Brehy) on the Hron River. The recent observed droughts were compared to these reconstructions and revealed the Hron River experienced extreme drought in the 21st century. A further comparison of observed wet (pluvial) periods revealed that the most extreme robust streamflow periods in the observed record were frequently exceeded in the reconstructed (paleo) record. The Hron River has recently been experiencing decline, and we hypothesize that this decline may be associated with anthropogenic influences, the natural climatic cycle, or the changing climate. Full article
Show Figures

Figure 1

15 pages, 3429 KB  
Article
Hydrological Dynamics and Climate Variability in the Sava River Basin: Streamflow Reconstructions Using Tree-Ring-Based Paleo Proxies
by Abel Andrés Ramírez Molina, Igor Leščešen, Glenn Tootle, Jiaqi Gong and Milan Josić
Water 2025, 17(3), 417; https://doi.org/10.3390/w17030417 - 2 Feb 2025
Cited by 1 | Viewed by 2455
Abstract
This study reconstructs historical streamflow in the Sava River Basin (SRB), focusing on hydrological variability over extended timescales. Using a combination of Machine Learning (ML) and Deep Learning (DL) models, streamflow patterns were reconstructed from self-calibrated Palmer Drought Severity Index (scPDSI) proxies. The [...] Read more.
This study reconstructs historical streamflow in the Sava River Basin (SRB), focusing on hydrological variability over extended timescales. Using a combination of Machine Learning (ML) and Deep Learning (DL) models, streamflow patterns were reconstructed from self-calibrated Palmer Drought Severity Index (scPDSI) proxies. The analysis included nine ML models and two DL architectures, with a post-prediction bias correction applied uniformly using the RQUANT method. Results indicate that ensemble methods, such as Random Forest and Gradient Boosted Tree, along with a six-layer DL model, effectively captured streamflow dynamics. Bias correction improved predictive consistency, particularly for models exhibiting greater initial variability, aligning predictions more closely with observed data. The findings reveal that the 2000–2022 period ranks as the lowest 23-year flow interval in the observed record and one of the driest over the past ~500 years, offering historical context for prolonged low-flow events in the region. This study demonstrates the value of integrating advanced computational methods with bias correction techniques to extend hydrological records and enhance the reliability of reconstructions. By addressing data limitations, this approach provides a foundation for supporting evidence-based water resource management in Southeastern Europe under changing climatic conditions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

24 pages, 42565 KB  
Article
Reconstructing a Fine Resolution Landscape of Annual Gross Primary Product (1895–2013) with Tree-Ring Indices
by Hang Li, James H. Speer, Collins C. Malubeni and Emma Wilson
Remote Sens. 2024, 16(19), 3744; https://doi.org/10.3390/rs16193744 - 9 Oct 2024
Cited by 2 | Viewed by 1380
Abstract
Low carbon management and policies should refer to local long-term inter-annual carbon uptake. However, most previous research has only focused on the quantity and spatial distribution of gross primary product (GPP) for the past 50 years because most satellite launches, the main GPP [...] Read more.
Low carbon management and policies should refer to local long-term inter-annual carbon uptake. However, most previous research has only focused on the quantity and spatial distribution of gross primary product (GPP) for the past 50 years because most satellite launches, the main GPP data source, were no earlier than 1980. We identified a close relationship between the tree-ring index (TRI) and vegetation carbon dioxide uptake (as measured by GPP) and then developed a nested TRI-GPP model to reconstruct spatially explicit GPP values since 1895 from seven tree-ring chronologies. The model performance in both phases was acceptable: We chose general regression neural network regression and random forest regression in Phase 1 (1895–1937) and Phase 2 (1938–1985). With the simulated and real GPP maps, we observed that the GPP for grassland and overall GPP were increasing. The GPP landscape patterns were stable, but in recent years, the GPP’s increasing rate surpassed any other period in the past 130 years. The main local climate driver was the Palmer Drought Severity Index (PDSI), and GPP had a significant positive correlation with PDSI in the growing season (June, July, and August). With the GPP maps derived from the nested TRI-GPP model, we can create fine-scale GPP maps to understand vegetation change and carbon uptake over the past century. Full article
Show Figures

Figure 1

15 pages, 2883 KB  
Article
Unstable State of Hydrologic Regime and Grain Yields in Northern Kazakhstan Estimated with Tree-Ring Proxies
by Irina P. Panyushkina, Altyn Shayakhmetova, Sergey Pashkov and Leonid I. Agafonov
Agriculture 2024, 14(6), 790; https://doi.org/10.3390/agriculture14060790 - 21 May 2024
Cited by 2 | Viewed by 1950
Abstract
Changes in the hydrologic regime impose great challenges for grain production. We investigated the impact of dry and wet extremes on the recent losses of crops in Severo-Kazakhstanskaya Oblast (SKO), where 25% of Kazakhstan’s wheat is produced. We reconstructed the Palmer Drought Severity [...] Read more.
Changes in the hydrologic regime impose great challenges for grain production. We investigated the impact of dry and wet extremes on the recent losses of crops in Severo-Kazakhstanskaya Oblast (SKO), where 25% of Kazakhstan’s wheat is produced. We reconstructed the Palmer Drought Severity Index (June–August PDSI) and average grain yields (with an explained variance of 48% and 44%, respectively) using five tree ring width chronologies. The extended history of the moisture variability and yields of spring wheat, oats, and barley shows the strong impact of hydrology, rather than the heat, on the grain production. We defined three distinctive hydrologic regimes in SKO: (1) 1886–1942, (2) 1943–1977, (3) 1978–2023. The early regime had fewer drought events, including some that covered a single year. Their duration increased up to 3 years in the second period. The latest regime is an extreme mode of hydrologic variability with events abruptly switching from extremely dry to extremely wet conditions (called “whiplash”). The 21st century regime signifies that the intensified and prolonged decade-long drought transitioned into pluvial condition. The new regime created sizable instability for grain producers. This crop yield reconstruction denotes the potential of the tree-ring proxy for understanding the impact of climate change on the agriculture and food security of Central Asia. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

15 pages, 7289 KB  
Article
Tree-Ring Inferred Drought Variations in the Source Region of the Yangtze, Yellow, and Mekong Rivers over the Past Five Centuries
by Pei Xing, Mengxin Bai, Qi-Bin Zhang and Lixin Lyu
Water 2024, 16(8), 1186; https://doi.org/10.3390/w16081186 - 22 Apr 2024
Cited by 1 | Viewed by 1727
Abstract
The climate in the source region of the Yangtze River, Yellow River, and Mekong River is of great research interest because of its sensitivity to global change and its importance in regulating water resources to densely populated and vast areas downstream. A five-century [...] Read more.
The climate in the source region of the Yangtze River, Yellow River, and Mekong River is of great research interest because of its sensitivity to global change and its importance in regulating water resources to densely populated and vast areas downstream. A five-century long record of spring (May–June) for the Palmer Drought Severity Index (PDSI) was reconstructed for this region using tree-ring width chronologies of Qilian juniper (Juniperus przewalskii Kom.) from five high-elevation sites. The reconstruction explained 46% variance in the PDSI during the instrumental period 1955–2005. The reconstructed PDSI showed that the occurrence of dry extremes became frequent during the last century relative to the previous four centuries. The standard deviation of the reconstructed PDSI in the 100-year window showed that the recent century held apparent high values of standard deviation in the long-term context. Sustained droughts occurred in periods 1582–1631, 1737–1757, 1772–1791, 1869–1891, 1916–1939, and 1952–1982, whereas relatively wet intervals were observed in 1505–1527, 1543–1564, 1712–1736, 1792–1816, 1852–1868, 1892–1915, and 1983–2008. Notably, in the context of the past five centuries, the study region showed an increased inter-annual variability in the recent century, suggesting an intensified hydroclimatic activity possibly associated with global warming. Moreover, through diagnostic analysis of atmospheric circulation, we found that the negative phase East Asian–Pacific teleconnection pattern may be likely to trigger drought in the study region. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

16 pages, 5110 KB  
Article
Drought Variations in the Yili Basin, Northwest China since AD 1673 Based on Tree-Ring Width
by Yifan Wu, Yu Liu, Qiang Li, Qiufang Cai, Meng Ren, Huiming Song, Changfeng Sun, Tongwen Zhang and Mao Ye
Forests 2023, 14(11), 2127; https://doi.org/10.3390/f14112127 - 25 Oct 2023
Cited by 3 | Viewed by 2158
Abstract
The Yili Basin represents a typical region influenced by the Westerlies, and as a result of the substantial precipitation delivered by these winds, it has emerged as a significant hub for agricultural and animal husbandry activities in Central Asia. This study established a [...] Read more.
The Yili Basin represents a typical region influenced by the Westerlies, and as a result of the substantial precipitation delivered by these winds, it has emerged as a significant hub for agricultural and animal husbandry activities in Central Asia. This study established a 419-year tree-ring width chronology, utilizing living Picea schrenkiana samples from two sampling sites in the Yili Basin. Correlation analysis showed that the standard tree-ring width chronology had the best correlation with the Palmer Drought Severity Index from the previous August to the current May (PDSIP8C5) (r = 0.614, n = 59, p < 0.001). Therefore, we reconstructed PDSIP8C5 variations from 1673 to 2018. The reconstruction results reveal eight wet and seven dry periods during the past 346 years. In the reconstructed series, droughts are particularly pronounced around 1770 and 1920, and the PDSI shows a significant long-term wetting trend since the 1980s. The solar activity, North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO) jointly influenced the regional moisture variation. Full article
Show Figures

Figure 1

12 pages, 2890 KB  
Article
Streamflow Reconstructions Using Tree-Ring-Based Paleo Proxies for the Sava River Basin (Slovenia)
by Glenn Tootle, Abdoul Oubeidillah, Emily Elliott, Giuseppe Formetta and Nejc Bezak
Hydrology 2023, 10(7), 138; https://doi.org/10.3390/hydrology10070138 - 28 Jun 2023
Cited by 11 | Viewed by 2714
Abstract
The Sava River Basin (SRB) extends across six countries (Slovenia, Croatia, Bosnia and Herzegovina, Serbia, Albania, and Montenegro) and is a major tributary of the Danube River (DR). The Sava River (SR) originates in the alpine region of Slovenia, and, in support of [...] Read more.
The Sava River Basin (SRB) extends across six countries (Slovenia, Croatia, Bosnia and Herzegovina, Serbia, Albania, and Montenegro) and is a major tributary of the Danube River (DR). The Sava River (SR) originates in the alpine region of Slovenia, and, in support of a Slovenian government initiative to increase clean, sustainable energy, multiple hydropower facilities have been constructed within the past ~20 years. Given the importance of this river system for varying demands, including energy production, information about past (paleo) drought and pluvial periods would provide important information to water managers and planners. Seasonal (April–May–June–July–August–September—AMJJAS) streamflow data were obtained for two SRB gauges (Jesenice and Catez) in Slovenia. The Jesenice gauge is in the extreme headwaters of the SR, upstream of any major water control structures, and is considered an unimpaired (minimal anthropogenic influence) gauge. The Catez gauge is located on the SR near the Slovenia–Croatia border, thus providing an estimate of streamflow leaving Slovenia (entering Croatia). The Old World Drought Atlas (OWDA) provides an annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) derived from 106 tree-ring chronologies for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, this dataset was used as a proxy to reconstruct (for ~2000 years) seasonal streamflow. Prescreening methods included the correlation and temporal stability of seasonal streamflow and scPDSI cells. The retained scPDSI cells were then used as predictors (independent variables) to reconstruct streamflow (predictive and/or dependent variables) in regression-based models. This resulted in highly skillful reconstructions of SRB seasonal streamflow from 0 to 2012 AD. The reconstructions were evaluated, and both low flow (i.e., drought) and high flow (i.e., pluvial) periods were identified for various filters (5-year to 30-year). When evaluating the most recent ~20 years (2000 to present), multiple low-flow (drought) periods were identified. For various filters (5-year to 15-year), the 2003 end-year consistently ranked as one of the lowest periods, while the 21-year period ending in 2012 was the lowest flow period in the ~2000-year reconstructed-observed-historic period of record. The ~30-year period ending in 2020 was the lowest flow period since the early 6th century. A decrease in pluvial (wet) periods was identified in the observed-historic record when compared to the paleo record, again confirming an apparent decline in streamflow. Given the increased activities (construction of water control structures) impacting the Sava River, the results provide important information to water managers and planners. Full article
Show Figures

Figure 1

13 pages, 3267 KB  
Article
Hydroclimate Variations across North-Central China during the Past 530 Years and Their Relationships with Atmospheric Oscillations
by Shuyuan Kang, Jingjing Liu and Jianglin Wang
Forests 2023, 14(3), 640; https://doi.org/10.3390/f14030640 - 21 Mar 2023
Cited by 2 | Viewed by 2091
Abstract
Detailed study of historical drought events in North-Central China (NCC) is important to understand current hydroclimate variability in the background of global warming. Here, we combined 12 published tree-ring chronologies and 12 dryness/wetness indices (DWI) to reconstruct dry and wet climate variability across [...] Read more.
Detailed study of historical drought events in North-Central China (NCC) is important to understand current hydroclimate variability in the background of global warming. Here, we combined 12 published tree-ring chronologies and 12 dryness/wetness indices (DWI) to reconstruct dry and wet climate variability across NCC. These 24 proxy records showed similarly significant responses to warm season (May–June–July–August–September, MJJAS) moisture signals. A new 530-year-long reconstruction of self-calibrating Palmer Drought Severity Index (scPDSI) values for the warm season in NCC was determined using a nested principal component regression (PCR) approach. The new reconstruction shows significant correlations with the instrumental MJJAS scPDSI data across NCC during the period AD 1901–2012. The reconstructed MJJAS scPDSI revealed seven severe dry/wet events from AD 1470 to 2012. The periods AD 1701–1727 and AD 1985–2011 represent the longest dry periods, and the drought during the 1920s is identified as the most severe one over the past 530 years. Our reconstruction shows significant interannual spectral peaks at the frequency domain of 2–7 years, together with relatively weaker decadal frequencies of 16, 24, and 78 years. The results of superposed epoch analysis (SEA) show that extreme North Atlantic Oscillation (NAO) years may modulate drought variability in NCC. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

15 pages, 5253 KB  
Article
Impact of Fire History on the Structure of a Temperate Forest in Northern Mexico
by José M. Zúñiga-Vásquez, José Villanueva-Díaz, Julián Cerano-Paredes and Gerónimo Quiñonez-Barraza
Fire 2023, 6(1), 19; https://doi.org/10.3390/fire6010019 - 7 Jan 2023
Cited by 3 | Viewed by 2696
Abstract
Understanding the ecological role of fire in forests is essential for proper management and conservation programs. The objectives of this study were: (1) to reconstruct the history of fires in a temperate forest in Sierra Madre Occidental; and (2) to interpret the impacts [...] Read more.
Understanding the ecological role of fire in forests is essential for proper management and conservation programs. The objectives of this study were: (1) to reconstruct the history of fires in a temperate forest in Sierra Madre Occidental; and (2) to interpret the impacts of fire and climate on forest structure. Sixty tree cross-sections with fire scars were analyzed, and descriptive statistics of fire history were generated. Additionally, growth cores were analyzed, and the ages of trees of different diameter categories were calculated. The synchrony between fire history and tree establishment was determined, and precipitation and Palmer Drought Severity Index (PDSI) values were correlated with the number of trees established per year. The presence of 137 fire scars was determined, which allowed the reconstruction of 41 fire events over the period 1855–2019; however, only the period 1940–2015 was used to compare tree recruitment, as tree establishment was detected in this period. The mean fire interval (MFI) was 2.28 years in general, and 12.17 years for extensive fires. As regards vegetation, a continuous recruitment pattern was observed, typical of a frequent low-intensity fire regime, although peak regeneration occurred after extensive fires. The correlation analysis showed that the number of trees established per year was influenced by the wet conditions that occurred in December of the previous year and the dry conditions in September and October of the previous year. This finding demonstrates the historical influence of fire and climate on the structure of the current stand in the study area. Therefore, the present study highlights the importance of including fire in forest management programs, considering the natural fire regime to which the species in this ecosystem are already adapted. Full article
(This article belongs to the Special Issue Fire Regimes and Ecosystem Resilience)
Show Figures

Figure 1

11 pages, 1777 KB  
Article
Regional Reconstruction of Po River Basin (Italy) Streamflow
by Giuseppe Formetta, Glenn Tootle and Matthew Therrell
Hydrology 2022, 9(10), 163; https://doi.org/10.3390/hydrology9100163 - 20 Sep 2022
Cited by 16 | Viewed by 5239
Abstract
The Po River Basin (PRB) is Italy’s largest river system and provides a vital water supply source for varying demands, including agriculture, energy (hydropower), and water supply. The current (2022) drought has been associated with low winter–early spring (2021–2022) snow accumulation in higher [...] Read more.
The Po River Basin (PRB) is Italy’s largest river system and provides a vital water supply source for varying demands, including agriculture, energy (hydropower), and water supply. The current (2022) drought has been associated with low winter–early spring (2021–2022) snow accumulation in higher elevations (European Alps) and a lack of late spring–early summer (2022) precipitation, resulting in deficit PRB streamflow. Many local scientists are now estimating a 50- to 100-year (return period) drought for 2022. Given the importance of this river system, information about past (paleo) drought and pluvial periods would provide important information to water managers and planners. Annual streamflow data were obtained for thirteen gauges that were spatially located across the PRB. The Old World Drought Atlas (OWDA) provides annual June–July–August (JJA) self-calibrating Palmer Drought Severity Index (scPDSI) data for 5414 grid points across Europe from 0 to 2012 AD. In lieu of tree-ring chronologies, this dataset was used as a proxy to reconstruct PRB regional streamflow. Singular value decomposition (SVD) was applied to PRB streamflow gauges and gridded scPDSI data for two periods of record, referred to as the short period of record (SPOR), 1980 to 2012 (33 years), and the long period of record (LPOR), 1967 to 2012 (46 years). SVD serves as both a data reduction technique, identifying significant scPDSI grid points within the selected 450 km search radius, and develops a single vector that represents the regional PRB streamflow variability. Due to the high intercorrelations of PRB streamflow gauges, the SVD-generated PRB regional streamflow vector was used as the dependent variable in regression models for both the SPOR and LPOR, while the significant scPDSI grid points (cells) identified by SVD were used as the independent variables. This resulted in two highly skillful regional reconstructions of PRB streamflow from 0 to 2012. Multiple drought and pluvial periods were identified in the paleo record that exceed those observed in the recent historical record, and several of these droughts aligned with paleo streamflow reconstructions of neighboring European watersheds. Future research will utilize the PRB reconstructions to quantify the current (2022) drought, providing a first-time paleo-perspective of drought frequency in the watershed. Full article
Show Figures

Figure 1

Back to TopTop