Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (458)

Search Parameters:
Keywords = PET brain imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2759 KB  
Article
Clinical Utility of Amino Acid PET-MRI in Children with CNS Neoplasms: A Territory-Wide Study from Hong Kong
by Evelyn R. Lu, Pui Wai Cheng, Sherman S. M. Lo, Chloe W. Y. Siu, Eric C. H. Fu, Jeffrey P. W. Yau, Anselm C. W. Lee, Kwok Chun Wong, Elaine Y. L. Kan, Sarah S. N. Lau, Wilson W. S. Ho, Kevin K. F. Cheng, Emily K. Y. Chan, Ho Keung Ng, Amanda N. C. Kan, Godfrey C. F. Chan, Dennis T. L. Ku, Matthew M. K. Shing, Anthony P. Y. Liu and Deyond Y. W. Siu
Cancers 2025, 17(19), 3233; https://doi.org/10.3390/cancers17193233 (registering DOI) - 4 Oct 2025
Abstract
Background: Amino acid tracer positron emission tomography–magnetic resonance imaging (PET-MRI) was shown to be superior to MRI alone for evaluating central nervous system (CNS) tumours in adults. This study aimed to investigate the utility of amino acid PET-MRI in children with CNS [...] Read more.
Background: Amino acid tracer positron emission tomography–magnetic resonance imaging (PET-MRI) was shown to be superior to MRI alone for evaluating central nervous system (CNS) tumours in adults. This study aimed to investigate the utility of amino acid PET-MRI in children with CNS tumours. Methods: We reviewed the amino acid PET-MRI findings of children with suspected or confirmed CNS neoplasms managed in a territory-wide referral centre in Hong Kong from 2022 to 2025. Maximal standardized uptake values (SUVmax) were captured, and tumour-to-background SUVmax ratios (TBRmax) were measured with reference to adjacent or contralateral normal brain structures. Comparisons were made among patients with clinical high-grade and low-grade/non-neoplastic lesions. Results: Thirty-seven patients were included, with 63 PET-MRIs performed. PET-MRI was performed as part of initial diagnostics in 41% of the cases, for response assessment in 48%, and evaluation of residual/relapsed disease in 11%. High-grade lesions had a significantly higher SUVmax and TBRmax compared to low-grade/non-malignant lesions (median SUVmax 3.7 vs. 1.6, p = 0.00006; median TBRmax 2.06 vs. 0.91, p = 0.00002). Optimal SUVmax and TBRmax cut-offs by ROC analysis were 2.38 and 1.62, respectively. Similar performance was reproduced by focusing on the subset of patients with suspected CNS germ cell tumours (CNS-GCT). The impact of amino acid PET availability is considerable, as clinical management was modified in 65% of patients. Conclusions: Our study demonstrates the performance and clinical utility of amino acid PET-MRI in the management of children with CNS pathologies. Amino acid PET-MRI contributes to the diagnosis, monitoring, and treatment guidance of these patients, providing crucial information for decision-making. Full article
(This article belongs to the Special Issue Molecular Pathology of Brain Tumors)
Show Figures

Figure 1

53 pages, 4230 KB  
Review
Alzheimer’s Disease: From Molecular Mechanisms to Promising Therapeutic Strategies
by Anna V. Ivanova, Alexandra D. Kutuzova, Ilia A. Kuzmichev and Maxim A. Abakumov
Int. J. Mol. Sci. 2025, 26(19), 9444; https://doi.org/10.3390/ijms26199444 - 26 Sep 2025
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and there are still no strategies to slow or prevent its clinical progression. Significant financial and research resources have been invested into studying the pathology of AD. However, its pathogenesis is not [...] Read more.
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and there are still no strategies to slow or prevent its clinical progression. Significant financial and research resources have been invested into studying the pathology of AD. However, its pathogenesis is not fully understood. This review provides a comprehensive analysis of current understanding of AD pathogenesis, including classical hypotheses (amyloid cascade, tau pathology, neuroinflammation, oxidative stress), emerging mechanisms (cellular senescence, endoplasmic reticulum stress, ubiquitin-proteasome system dysfunction), and alternative mechanisms (cholinergic dysfunction, glutamate excitotoxicity, disruption of the microbiota–gut–brain axis, and autophagy). Schematic illustrations summarize the relationships between the hypotheses and their role in the pathogenesis of AD. Particular attention is paid to the systematization of promising biological targets and the analysis of modern ligands of various nature, including small molecules, peptides, antibodies and their fragments, natural compounds, as well as innovative hybrid and multifunctional structures. A separate section is devoted to radiopharmaceuticals for PET imaging (Florbetaben, Flortaucipir, etc.) and promising therapeutic agents. Thus, in this review we (1) systematize modern concepts of AD pathogenesis, including classical, emerging mechanisms and alternative hypotheses; (2) conduct a comparative analysis of ligand classes (small molecules, peptides, antibodies, etc.) and their therapeutic potential; and (3) discuss the clinical prospects of radiopharmaceuticals for PET imaging and targeted therapy. The work provides a comprehensive analysis of modern approaches, which can help in the development of more effective drugs against AD. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

12 pages, 830 KB  
Article
Can PSMA-Targeting Radiopharmaceuticals Be Useful for Detecting Brain Metastasis of Various Tumors Using Positron Emission Tomography?
by Esra Arslan, Nurhan Ergül, Rahime Şahin, Ediz Beyhan, Özge Erol Fenercioğlu, Yeşim Karagöz, Arzu Algün Gedik, Yakup Bozkaya and Tevfik Fikret Çermik
Cancers 2025, 17(18), 3088; https://doi.org/10.3390/cancers17183088 - 22 Sep 2025
Viewed by 169
Abstract
Objective: The high expression of prostate-specific membrane antigen (PSMA) associated with neovascularization in non-prostatic malignant tumors and metastatic lesions has been documented in many studies. By taking advantage of the absence of PSMA-related background activity in brain tissue, in recent years, PSMA has [...] Read more.
Objective: The high expression of prostate-specific membrane antigen (PSMA) associated with neovascularization in non-prostatic malignant tumors and metastatic lesions has been documented in many studies. By taking advantage of the absence of PSMA-related background activity in brain tissue, in recent years, PSMA has been used for the imaging of glial tumors, especially for postoperative follow-up. The aim of this prospective study was to investigate the diagnostic value of 68Ga-PSMA-11 PET/CT by comparing 68Ga-PSMA-11 PET/CT, 18F-FDG PET/CT, and MRI findings in patients with brain metastases (BM). Materials and Method: In this prospective study, 27 cases, 11 female and 16 male, with a mean age of 59.48 ± 12.21 years, were included. Patients diagnosed with BM on 18F-FDG PET/CT or CT/MRI at initial diagnosis or in the follow-up period were included in the study. PET findings of BM lesions obtained from 18F-FDG and 68Ga-PSMA-11 PET/CT imaging, demographic characteristics, histopathological data of the primary foci, and other clinical features were evaluated together. Results: Twenty-four (89%) patients were included in the study for restaging, two (7%) patients for local recurrence assessment, and one (4%) patient for local recurrence and suspicion of additional lesions. The indications for 18F-FDG PET/CT were breast carcinoma for 37% (n:10), followed by lung carcinoma for 26% (n:7), colorectal adenocarcinoma for 14% (n:4), squamous cell larynx carcinoma for 7% (n:2), gastric signet ring cell carcinoma for 4% (n:1), pancreatic NET3 for 4% (n:1), thyroid papillary carcinoma for 4% (n:1), and malignant melanoma for 4% (n:1). In total, 26/27 included patients had PSMA-positive brain metastases but only one patient had PSMA-negative brain metastases with 68Ga-PSMA-11 PET/CT imaging. This patient was followed with a diagnosis of primary larynx squamous carcinoma and had a mass suspected of brain metastases. Further tests and an MRI revealed that the lesion in this patient was a hemorrhagic metastasis. The smallest metastatic focus on 68Ga-PSMA-11 PET/CT imaging was 0.22 cm, also confirmed by MRI (range: 0.22–2.81 cm). The mean ± SD SUVmax of the BM lesions was 17.9 ± 8.6 and 6.8 ± 5.2 on 18F-FDG PET/CT and 68Ga-PSMA-11 PET/CT imaging, respectively. Metastatic foci that could not be detected by 18F-FDG PET/CT imaging were successfully detected with 68Ga-PSMA-11 PET/CT imaging in 11 cases (42%). The distribution and number of metastatic lesions observed on cranial MRI and 68Ga-PSMA-11 PET/CT were compatible with each other for all patients. Immunohistochemical staining was performed in the primary tumor of 10 (38%) cases, and positive IHC staining with PSMA was detected in 5 patients. In addition, positive IHC staining with PSMA was detected in all of the four surgically excised brain metastatic tumor foci. Conclusions: In this study,68Ga-PSMA-11 PET/CT appears to be superior to 18F-FDG in detecting BM from various tumors, largely due to its high expression associated with neovascularization and the absence of PSMA expression in normal brain parenchyma. This lack of physiological uptake in healthy brain tissue provides excellent tumor-to-background contrast, further supporting the advantage of 68Ga-PSMA-11 over 18F-FDG for BM imaging. However, larger studies are required to confirm these findings, particularly through comparisons across tumor types and histopathological subgroups, integrating PSMA immunohistochemistry (IHC) scores with 68Ga-PSMA-11 uptake levels. Beyond its diagnostic potential, our results may also inform PSMA-targeted therapeutic strategies, offering new perspectives for the management of patients with brain metastases from diverse primary tumors. Full article
Show Figures

Figure 1

16 pages, 501 KB  
Review
Radiopharmaceuticals in Malignant Melanoma: A Comprehensive Review of Diagnostic, Therapeutic, and Immune-Related Applications by PET/CT, SPECT/CT, and PET/MRI
by Irina Pirsan and Doina Piciu
Diagnostics 2025, 15(18), 2305; https://doi.org/10.3390/diagnostics15182305 - 11 Sep 2025
Viewed by 460
Abstract
Background: Malignant melanoma remains an oncological challenge, with advanced-stage five-year survival rates under 20%. Precise molecular imaging has become indispensable for accurate staging, selection of targeted or immunotherapies, treatment response assessment, and early detection of immune-related adverse events. This review examines the roles [...] Read more.
Background: Malignant melanoma remains an oncological challenge, with advanced-stage five-year survival rates under 20%. Precise molecular imaging has become indispensable for accurate staging, selection of targeted or immunotherapies, treatment response assessment, and early detection of immune-related adverse events. This review examines the roles of PET/CT, PET/MRI, and SPECT/CT radiopharmaceuticals in melanoma management and highlights novel tracers and theranostic strategies poised to enhance precision nuclear medicine in this disease. Methods: We performed a review of English-language literature from January 2000 through June 2025, querying PubMed, Scopus, and clinical-trial registries for original research articles, meta-analyses, clinical guidelines, and illustrative case reports. Eligible studies investigated PET/CT, PET/MRI, or SPECT/CT applications in melanoma diagnosis, nodal and distant staging, therapy monitoring, irAE (immune-related adverse events) detection, and the development of emerging radiotracers or theranostic radiopharmaceutical pairs. Results:18F-FDG PET/CT demonstrated a high detection rate for distant metastases, outperforming conventional CT and MRI in advanced disease, despite limited resolution for infracentimetric nodal deposits. PET/MRI offers comparable diagnostic accuracy with superior soft-tissue contrast and improved brain lesion detection, while SPECT/CT enhanced sentinel lymph node localization prior to surgical biopsy. Also, FDG PET/CT identified visceral irAEs with great sensitivities, revealing asymptomatic toxicities in up to one-third of patients. Emerging radiotracers targeting melanin, fibroblast activation protein, PD-1 (programmed cell death protein 1)/PD-L1 (programmed cell death-ligand 1), and CD8+ T cells have demonstrated enhanced tumor specificity and are on their way to forming novel theranostic pairs. Conclusions: While 18F-FDG PET/CT remains the cornerstone of melanoma imaging, complementary advantages of PET/MRI and SPECT/CT imaging refine melanoma management. The advent of highly specific radiotracers and integrated theranostic approaches heralds a new era of tailored nuclear-medicine strategies, promising improved patient stratification, therapy guidance, and clinical outcomes in melanoma. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

27 pages, 415 KB  
Review
Radiotherapy in Glioblastoma Multiforme: Evolution, Limitations, and Molecularly Guided Future
by Castalia Fernández, Raquel Ciérvide, Ana Díaz, Isabel Garrido and Felipe Couñago
Biomedicines 2025, 13(9), 2136; https://doi.org/10.3390/biomedicines13092136 - 1 Sep 2025
Viewed by 1185
Abstract
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) [...] Read more.
Glioblastoma multiforme (GBM), the most aggressive primary brain tumor in adults, has a poor prognosis due to rapid recurrence and treatment resistance. This review examines the evolution of radiotherapy (RT) for GBM management, from whole-brain RT to modern techniques like intensity-modulated RT (IMRT) and volumetric modulated arc therapy (VMAT), guided by 2023 European Society for Radiotherapy and Oncology (ESTRO)-European Association of Neuro-Oncology (EANO) and 2025 American Society for Radiation Oncology (ASTRO) recommendations. The standard Stupp protocol (60 Gy/30 fractions with temozolomide [TMZ]) improves overall survival (OS) to 14.6 months, with greater benefits in O6-methylguanine-DNA methyltransferase (MGMT)-methylated tumors (21.7 months). Tumor Treating Fields (TTFields) extend median overall survival (mOS) to 31.6 months in MGMT-methylated patients and 20.9 months overall in supratentorial GBM (EF-14 trial). However, 80–90% of recurrences occur within 2 cm of the irradiated field due to tumor infiltration and radioresistance driven by epidermal growth factor receptor (EGFR) amplification, phosphatase and tensin homolog (PTEN) mutations, cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletions, tumor hypoxia, and tumor stem cells. Pseudoprogression, distinguished using Response Assessment in Neuro-Oncology (RANO) criteria and positron emission tomography (PET), complicates response evaluation. Targeted therapies (e.g., bevacizumab; PARP inhibitors) and immunotherapies (e.g., pembrolizumab; oncolytic viruses), alongside advanced imaging (multiparametric magnetic resonance imaging [MRI], amino acid PET), support personalized RT. Ongoing trials evaluating reirradiation, hypofractionation, stereotactic radiosurgery, neoadjuvant therapies, proton therapy (PT), boron neutron capture therapy (BNCT), and AI-driven planning aim to enhance efficacy for GBM IDH-wildtype, but phase III trials are needed to improve survival and quality of life. Full article
(This article belongs to the Special Issue Glioblastoma: From Pathophysiology to Novel Therapeutic Approaches)
24 pages, 6086 KB  
Article
Design of a Mobile and Electromagnetic Emissions-Compliant Brain Positron Emission Tomography (PET) Scanner
by Cristian Fuentes, Marina Béguin, Volker Commichau, Judith Flock, Anthony J. Lomax, Shubhangi Makkar, Keegan McNamara, John O. Prior, Christian Ritzer, Carla Winterhalter and Günther Dissertori
Sensors 2025, 25(17), 5344; https://doi.org/10.3390/s25175344 - 28 Aug 2025
Cited by 1 | Viewed by 601
Abstract
This paper presents the development of two mobile brain Positron Emission Tomography (PET) scanners under the PETITION project, designed for Intensive Care Units (ICUs) and Proton Beam Therapy (PBT) applications. The ICU scanner facilitates bedside imaging for critically ill patients, while the PBT [...] Read more.
This paper presents the development of two mobile brain Positron Emission Tomography (PET) scanners under the PETITION project, designed for Intensive Care Units (ICUs) and Proton Beam Therapy (PBT) applications. The ICU scanner facilitates bedside imaging for critically ill patients, while the PBT scanner enables undisturbed proton beam irradiation during imaging. Key aspects of the hardware design, including modular detectors and electromagnetic interference considerations, are discussed along with preliminary performance evaluations. Operational testing, employing a 22Na source and a hot-rod phantom, was conducted to determine the timing resolution (548 ps), energy resolution (11.4%) and a qualitative spatial resolution (around 2.2 mm). Our study presents findings on the ICU PET scanner’s electromagnetic emissions measured in a controlled EMC testing facility, where all the emissions tests performed comply with the standard EN 60601-1-2 (radiated emissions 15 dB below regulatory limits in the frequency range of 30 MHz to 1 GHz). Full article
(This article belongs to the Collection Biomedical Imaging & Instrumentation)
Show Figures

Figure 1

17 pages, 3805 KB  
Systematic Review
The Genetics of Amyloid Deposition: A Systematic Review of Genome-Wide Association Studies Using Amyloid PET Imaging in Alzheimer’s Disease
by Amir A. Amanullah, Melika Mirbod, Aarti Pandey, Shashi B. Singh, Om H. Gandhi and Cyrus Ayubcha
J. Imaging 2025, 11(8), 280; https://doi.org/10.3390/jimaging11080280 - 19 Aug 2025
Viewed by 824
Abstract
Positron emission tomography (PET) has become a powerful tool in Alzheimer’s disease (AD) research by enabling in vivo visualization of pathological biomarkers. Recent efforts have aimed to integrate PET-derived imaging phenotypes with genome-wide association studies (GWASs) to better elucidate the genetic architecture underlying [...] Read more.
Positron emission tomography (PET) has become a powerful tool in Alzheimer’s disease (AD) research by enabling in vivo visualization of pathological biomarkers. Recent efforts have aimed to integrate PET-derived imaging phenotypes with genome-wide association studies (GWASs) to better elucidate the genetic architecture underlying AD. This systematic review examines studies that leverage PET imaging in the context of GWASs (PET-GWASs) to identify genetic variants associated with disease risk, progression, and brain region-specific pathology. A comprehensive search of PubMed and Embase databases was performed on 18 February 2025, yielding 210 articles, of which 10 met pre-defined inclusion criteria and were included in the final synthesis. Studies were eligible if they included AD populations, employed PET imaging alongside GWASs, and reported original full-text findings in English. No formal protocol was registered, and the risk of bias was not independently assessed. The included studies consistently identified APOE as the strongest genetic determinant of amyloid burden, while revealing additional significant loci including ABCA7 (involved in lipid metabolism and amyloid clearance), FERMT2 (cell adhesion), CR1 (immune response), TOMM40 (mitochondrial function), and FGL2 (protective against amyloid deposition in Korean populations). The included studies suggest that PET-GWAS approaches can uncover genetic loci involved in processes such as lipid metabolism, immune response, and synaptic regulation. Despite limitations including modest cohort sizes and methodological variability, this integrated approach offers valuable insight into the biological pathways driving AD pathology. Expanding PET-genomic datasets, improving study power, and applying advanced computational tools may further clarify genetic mechanisms and contribute to precision medicine efforts in AD. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

14 pages, 1054 KB  
Article
Comparison of Amyloid-PET Analysis Software Using 18F-Florbetaben PET in Patients with Cognitive Impairment
by Miju Cheon, Hyunkyung Yi, Sang-Won Ha, Min Ju Kang, Da-Eun Jeong, Yasser G. Abdelhafez and Lorenzo Nardo
Diagnostics 2025, 15(16), 2028; https://doi.org/10.3390/diagnostics15162028 - 13 Aug 2025
Viewed by 629
Abstract
Background/Objectives: Quantitative analysis of amyloid PET imaging plays a crucial role in diagnosing Alzheimer’s disease (AD), particularly in cases where visual interpretation is equivocal. Multiple commercial software tools are available for this purpose, yet differences in their quantification and diagnostic performance remain [...] Read more.
Background/Objectives: Quantitative analysis of amyloid PET imaging plays a crucial role in diagnosing Alzheimer’s disease (AD), particularly in cases where visual interpretation is equivocal. Multiple commercial software tools are available for this purpose, yet differences in their quantification and diagnostic performance remain understudied, especially for Neurophet SCALE PET. Methods: We retrospectively analyzed 18F-florbetaben PET/CT scans from 129 patients with cognitive impairment, comprising 39 patients with AD and 90 with non-AD diagnoses, using three software tools: MIMneuro, CortexID Suite, and Neurophet SCALE PET. Standardized uptake value ratios (SUVRs) were obtained for six brain regions known for amyloid accumulation. Diagnostic accuracy was evaluated using ROC curve analysis, while inter-software correlations and reliability were assessed via Pearson correlation coefficients and intraclass correlation coefficients (ICC). Results: All three software programs significantly distinguished AD from non-AD patients in most brain regions. MIMneuro and Neurophet SCALE PET demonstrated the highest diagnostic performance, with MIMneuro achieving an AUC of 1.000 in the anterior cingulate gyrus. While MIMneuro and Neurophet SCALE PET showed moderate-to-strong SUVR correlations (r = 0.715–0.865), CortexID Suite showed limited correlation with the other tools. Inter-software reliability was moderate only in selected regions (ICC ≈ 0.5), indicating potential variability in SUVR measurements across platforms. Conclusions: MIMneuro, CortexID Suite, and Neurophet SCALE PET are effective for the semi-quantitative analysis of amyloid PET and can aid in the diagnosis of AD. However, clinicians should be cautious when interpreting SUVRs across different software tools due to limited inter-software consistency. Standardization efforts or consistent use of a single platform are recommended to avoid diagnostic discrepancies. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

16 pages, 1002 KB  
Article
A Targeted Radiotheranostic Agent for Glioblastoma: [64Cu]Cu-NOTA-TP-c(RGDfK)
by Alireza Mirzaei, Samia Ait-Mohand, Prenitha Mercy Ignatius Arokia Doss, Étienne Rousseau and Brigitte Guérin
Brain Sci. 2025, 15(8), 844; https://doi.org/10.3390/brainsci15080844 - 7 Aug 2025
Viewed by 667
Abstract
Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis and limited therapeutic options. Background/Objectives: Integrin αvβ3, a cell surface receptor overexpressed in GBM, specifically binds to cyclic arginine-glycine-aspartate-D-phenylalanine-lysine (c(RGDfK)) motif, making [...] Read more.
Glioblastoma multiforme (GBM) remains one of the most aggressive and treatment-resistant brain tumors, with poor prognosis and limited therapeutic options. Background/Objectives: Integrin αvβ3, a cell surface receptor overexpressed in GBM, specifically binds to cyclic arginine-glycine-aspartate-D-phenylalanine-lysine (c(RGDfK)) motif, making it a valuable target for tumor-specific delivery and PET imaging. This study explores a novel radiotheranostic agent, [64Cu]Cu-NOTA-TP-c(RGDfK), which combines the imaging and therapeutic capabilities of copper-64 (64Cu) and the cytotoxic activity of a terpyridine-platinum (TP) complex, conjugated to c(RGDfK). Methods: A robust protocol was developed for the small-scale preparation of NOTA-TP-c(RGDfK). Comparative cellular studies were conducted using U87 MG glioblastoma (GBM) cells and SVG p12 human astrocytes to evaluate the performance of [64Cu]Cu-NOTA-TP-c(RGDfK) relative to [64Cu]Cu-NOTA-c(RGDfK), [64Cu]Cu-NOTA-TP, natCu-NOTA-TP-c(RGDfK), cisplatin, and temozolomide. Results: 64Cu-radiolabeling of NOTA-TP-c(RGDfK) was achieved with >99% radiochemical purity, and competition assays confirmed high binding affinity to integrin αvβ3 (IC50 = 16 ± 8 nM). Cellular uptake, internalization, and retention studies demonstrated significantly higher accumulation of [64Cu]Cu-NOTA-TP-c(RGDfK) in U87 MG cells compared to control compounds, with 38.8 ± 1.8% uptake and 28.0 ± 1.0% internalization at 24 h. Nuclear localization (6.0 ± 0.5%) and stable intracellular retention further support its therapeutic potential for inducing localized DNA damage. Importantly, [64Cu]Cu-NOTA-TP-c(RGDfK) exhibited the highest cytotoxicity in U87 MG cells (IC50 = 10 ± 2 nM at 48 h), while maintaining minimal toxicity in normal SVG p12 astrocytes. Conclusions: These results highlight [64Cu]Cu-NOTA-TP-c(RGDfK) as a promising targeted radiotheranostic agent for GBM, warranting further preclinical development Full article
Show Figures

Figure 1

17 pages, 2539 KB  
Article
Auxiliary Value of [18F]F-Fluorocholine PET/CT in Evaluating Post-Stereotactic Radiosurgery Recurrence of Lung Cancer Brain Metastases: A Comparative Analysis with Contrast-Enhanced MRI
by Yafei Zhang, Mimi Xu, Shuye Yang, Lili Lin, Huatao Wang, Kui Zhao, Hong Yang and Xinhui Su
Cancers 2025, 17(15), 2591; https://doi.org/10.3390/cancers17152591 - 7 Aug 2025
Viewed by 646
Abstract
Background/Objectives: This study aims to evaluate the additional value of [18F]F-fluorocholine ([18F]F-FCH) PET/CT over contrast-enhanced magnetic resonance imaging (CE-MRI) in detecting the recurrence of brain metastases (BMs) after stereotactic radiosurgery (SRS) in patients with lung cancer brain metastases (LCBMs). [...] Read more.
Background/Objectives: This study aims to evaluate the additional value of [18F]F-fluorocholine ([18F]F-FCH) PET/CT over contrast-enhanced magnetic resonance imaging (CE-MRI) in detecting the recurrence of brain metastases (BMs) after stereotactic radiosurgery (SRS) in patients with lung cancer brain metastases (LCBMs). Methods: Thirty-one patients with suspected recurrence of BM in LCBM after SRS were enrolled in this retrospective study. They underwent both [18F]F-FCH PET/CT and CE-MRI within 2 weeks. The tumor imaging parameters and clinical features were analyzed. The results of histopathology or radiographic follow-up served as the reference standard for the final diagnosis. Results: In these 31 patients, there were 54 lesions, of which 27 lesions were proven to be BM recurrence, while 27 lesions were non-recurrence. [18F]F-FCH PET/CT showed high radiotracer uptake in recurrent lesions of BM and identified 24 positive lesions (88.89% of sensitivity), while CE-MRI indicated 23 positive lesions (85.19% of sensitivity). [18F]F-FCH PET/CT indicated higher specificity (81.48%) and accuracy (85.19%) in detecting recurrence of BM than CE-MRI (40.74% and 62.96%, both p < 0.05), particularly in frontal lobes and cerebella. For lesion sizes, the accuracy of [18F]F-FCH PET/CT in detecting recurrent lesions was higher than that of CE-MRI for lesions over 1.0 cm but below 2.0 cm (p = 0.016). The detective performance of [18F]F-FCH PET/CT combined with CE-MRI was higher than [18F]F-FCH PET/CT or CE-MRI alone (all p < 0.05). Interestingly, TLC (≥4.11) was significantly correlated with poor intracranial PFS (iPFS), meaning it was a significant prognostic factor for iPFS. Conclusions: This study identified that compared with CE-MRI, [18F]F-FCH PET/CT demonstrated higher specificity and accuracy in diagnosing recurrence of BM in LCBM after SRS. Combining [18F]F-FCH PET/CT with CE-MRI has the potential to improve diagnostic performance for recurrence of BM and management of patient treatment. TLC was an independent risk factor for iPFS. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

13 pages, 1283 KB  
Communication
Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results
by Oreste Bagni, Roberta Danieli, Francesco Bianconi, Barbara Palumbo and Luca Filippi
Biomedicines 2025, 13(8), 1887; https://doi.org/10.3390/biomedicines13081887 - 3 Aug 2025
Viewed by 549
Abstract
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but [...] Read more.
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups. Full article
Show Figures

Figure 1

29 pages, 28078 KB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 - 1 Aug 2025
Viewed by 835
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

19 pages, 950 KB  
Review
A Narrative Review of Theranostics in Neuro-Oncology: Advancing Brain Tumor Diagnosis and Treatment Through Nuclear Medicine and Artificial Intelligence
by Rafail C. Christodoulou, Platon S. Papageorgiou, Rafael Pitsillos, Amanda Woodward, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Int. J. Mol. Sci. 2025, 26(15), 7396; https://doi.org/10.3390/ijms26157396 - 31 Jul 2025
Viewed by 2858
Abstract
This narrative review explores the integration of theranostics and artificial intelligence (AI) in neuro-oncology, addressing the urgent need for improved diagnostic and treatment strategies for brain tumors, including gliomas, meningiomas, and pediatric central nervous system neoplasms. A comprehensive literature search was conducted through [...] Read more.
This narrative review explores the integration of theranostics and artificial intelligence (AI) in neuro-oncology, addressing the urgent need for improved diagnostic and treatment strategies for brain tumors, including gliomas, meningiomas, and pediatric central nervous system neoplasms. A comprehensive literature search was conducted through PubMed, Scopus, and Embase for articles published between January 2020 and May 2025, focusing on recent clinical and preclinical advancements in personalized neuro-oncology. The review synthesizes evidence on novel theranostic agents—such as Lu-177-based radiopharmaceuticals, CXCR4-targeted PET tracers, and multifunctional nanoparticles—and highlights the role of AI in enhancing tumor detection, segmentation, and treatment planning through advanced imaging analysis, radiogenomics, and predictive modeling. Key findings include the emergence of nanotheranostics for targeted drug delivery and real-time monitoring, the application of AI-driven algorithms for improved image interpretation and therapy guidance, and the identification of current limitations such as data standardization, regulatory challenges, and limited multicenter validation. The review concludes that the convergence of AI and theranostic technologies holds significant promise for advancing precision medicine in neuro-oncology, but emphasizes the need for collaborative, multidisciplinary research to overcome existing barriers and enable widespread clinical adoption. Full article
(This article belongs to the Special Issue Biomarker Discovery and Validation for Precision Oncology)
Show Figures

Figure 1

11 pages, 5560 KB  
Article
Pilot Study of [11C]HY-2-15: A Mixed Alpha-Synuclein and Tau PET Radiotracer
by Chia-Ju Hsieh, Dinahlee Saturnino Guarino, Anthony J. Young, Andrew D. Siderowf, Ilya Nasrallah, Alexander Schmitz, Carol Garcia, Ho Young Kim, Erin K. Schubert, Hsiaoju Lee, Joel S. Perlmutter and Robert H. Mach
Cells 2025, 14(15), 1157; https://doi.org/10.3390/cells14151157 - 26 Jul 2025
Viewed by 702
Abstract
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [ [...] Read more.
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [3H]HY-2-15 has the capability to bind to aggregated alpha-synuclein in multiple system atrophy brain and tau aggregations in progressive supranuclear palsy and corticobasal degeneration brain tissues via in vitro autoradiography study. A first-in-human pilot multicenter clinical study recruited a total of 10 subjects including healthy controls and patients with Parkinson’s disease, multiple system atrophy, or progressive supranuclear palsy. The study revealed that [11C]HY-2-15 has a relatively higher specific uptake in the pallidum and midbrain of patients with progressive supranuclear palsy. Total-body scans performed on the PennPET Explorer showed the radiotracer was cleared by renal excretion. However, the rapid metabolism and low brain uptake resulted in a limited signal of [11C]HY-2-15 in brain. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

23 pages, 19687 KB  
Article
Intranasal Mitochondrial Transplantation Restores Mitochondrial Function and Modulates Glial–Neuronal Interactions in a Genetic Parkinson’s Disease Model of UQCRC1 Mutation
by Jui-Chih Chang, Chin-Hsien Lin, Cheng-Yi Yeh, Mei-Fang Cheng, Yi-Chieh Chen, Chi-Han Wu, Hui-Ju Chang and Chin-San Liu
Cells 2025, 14(15), 1148; https://doi.org/10.3390/cells14151148 - 25 Jul 2025
Viewed by 1334
Abstract
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in [...] Read more.
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in mice, and a cellular model, this study validated the transplantation of mitochondria with or without cyclosporin A (CsA) preloading as a method to treat mitochondrial dysfunction and improve disease progression through intranasal delivery. Liver-derived mitochondria were labeled with bromodeoxyuridine (BrdU), incubated with CsA to inhibit mPTP opening, and were administered weekly via the nasal route to 6-month-old mice for six months. Both treatment groups showed significant locomotor improvements in open-field tests. PET imaging showed increased striatal tracer uptake, indicating enhanced dopamine synthesis capacity. The immunohistochemical analysis revealed increased neuron survival in the dentate gyrus, a higher number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) and striatum (ST), and a thicker granule cell layer. In SN neurons, the function of mitochondrial complex III was reinstated. Additionally, the CsA-accumulated mitochondria reduced more proinflammatory cytokine levels, yet their therapeutic effectiveness was similar to that of unmodified mitochondria. External mitochondria were detected in multiple brain areas through BrdU tracking, showing a 3.6-fold increase in the ST compared to the SN. In the ST, about 47% of TH-positive neurons incorporated exogenous mitochondria compared to 8% in the SN. Notably, GFAP-labeled striatal astrocytes (ASTs) also displayed external mitochondria, while MBP-labeled striatal oligodendrocytes (OLs) did not. On the other hand, fewer ASTs and increased OLs were noted, along with lower S100β levels, indicating reduced reactive gliosis and a more supportive environment for OLs. Intranasally, mitochondrial transplantation showed neuroprotective effects in genetic PD, validating a noninvasive therapeutic approach. This supports mitochondrial recovery and is linked to anti-inflammatory responses and glial modulation. Full article
Show Figures

Graphical abstract

Back to TopTop