Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (67)

Search Parameters:
Keywords = PRNG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6382 KB  
Article
Dynamic Analysis of a Novel Chaotic Map Based on a Non-Locally Active Memristor and a Locally Active Memristor and Its STM32 Implementation
by Haiwei Sang, Qiao Wang, Kunshuai Li, Yuling Chen and Zongyun Yang
Electronics 2025, 14(17), 3374; https://doi.org/10.3390/electronics14173374 - 25 Aug 2025
Viewed by 324
Abstract
The highly complex memristive chaotic map provides an excellent alternative for engineering applications. To design a memristive chaotic map with high complexity, this paper proposes a new three-dimensional memristive chaotic map (named MLM) by cascading and coupling a non-locally active memristor with a [...] Read more.
The highly complex memristive chaotic map provides an excellent alternative for engineering applications. To design a memristive chaotic map with high complexity, this paper proposes a new three-dimensional memristive chaotic map (named MLM) by cascading and coupling a non-locally active memristor with a locally active memristor. The dynamical behaviors of MLM are revealed through phase diagrams, Lyapunov exponent spectra, bifurcation diagrams, and dynamic distribution diagrams. Notably, the internal frequency of MLM exhibits unique LE-controlled behavior and shows an extension of the chaotic parameter range. The high complexity of MLM is validated through the use of Spectral entropy (SE) and C0, and Permutation Entropy (PE) complexity algorithms. Subsequently, a pseudorandom number generator (PRNG) based on MLM is designed. NIST test results validate the high randomness of the PRNG. Finally, the STM32 hardware platform is used to implement MLM, and attractors under different parameters are measured by an oscilloscope, verifying the numerical analysis results. Full article
Show Figures

Figure 1

23 pages, 4588 KB  
Article
Discrete Memristor-Based Hyperchaotic Map and Its Analog Circuit Implementation
by Haiwei Sang, Zongyun Yang, Xianzhou Liu, Qiao Wang and Xiong Yu
Symmetry 2025, 17(8), 1358; https://doi.org/10.3390/sym17081358 - 19 Aug 2025
Viewed by 429
Abstract
In this paper, control parameters are incorporated into the absolute discrete memristor (A-DM) map proposed by Bao, and its dynamic characteristics are analyzed. Subsequently, the A-DM is introduced into the traditional sine map via parallel coupling to construct a new sine A-DM hyperchaotic [...] Read more.
In this paper, control parameters are incorporated into the absolute discrete memristor (A-DM) map proposed by Bao, and its dynamic characteristics are analyzed. Subsequently, the A-DM is introduced into the traditional sine map via parallel coupling to construct a new sine A-DM hyperchaotic map (SAHM). The dynamics of SAHM are investigated using Lyapunov exponent spectra and bifurcation diagrams, with additional analysis on its multi-stability and symmetry properties. Circuit simulations successfully realize the attractors corresponding to SAHM under typical parameters. Evaluations of SAHM’s complexity, performance comparisons, and its application to pseudorandom number generators (PRNG) demonstrate that SAHM is well-suited for secure encryption scenarios. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Chaos Theory and Application)
Show Figures

Figure 1

19 pages, 279 KB  
Article
NTRU-MCF: A Chaos-Enhanced Multidimensional Lattice Signature Scheme for Post-Quantum Cryptography
by Rong Wang, Bo Yuan, Minfu Yuan and Yin Li
Sensors 2025, 25(11), 3423; https://doi.org/10.3390/s25113423 - 29 May 2025
Viewed by 774
Abstract
To address the growing threat of quantum computing to classical cryptographic primitives, this study introduces NTRU-MCF, a novel lattice-based signature scheme that integrates multidimensional lattice structures with fractional-order chaotic systems. By extending the NTRU framework to multidimensional polynomial rings, NTRU-MCF exponentially expands the [...] Read more.
To address the growing threat of quantum computing to classical cryptographic primitives, this study introduces NTRU-MCF, a novel lattice-based signature scheme that integrates multidimensional lattice structures with fractional-order chaotic systems. By extending the NTRU framework to multidimensional polynomial rings, NTRU-MCF exponentially expands the private key search space, achieving a key space size 2256 for dimensions m2 and rendering brute-force attacks infeasible. By incorporating fractional-order chaotic masks generated via a hyperchaotic Lü system, the scheme introduces nonlinear randomness and robust resistance to physical attacks. Fractional-order chaotic masks, generated via a hyperchaotic Lü system validated through NIST SP 800-22 randomness tests, replace conventional pseudorandom number generators (PRNGs). The sensitivity to initial conditions ensures cryptographic unpredictability, while the use of a fractional-order L hyperchaotic system—instead of conventional pseudorandom number generators (PRNGs)—leverages multiple Lyapunov exponents and initial value sensitivity to embed physically unclonable properties into key generation, effectively mitigating side-channel analysis. Theoretical analysis shows that NTRU-MCF’s security reduces to the Ring Learning with Errors (RLWE) problem, offering superior quantum resistance compared to existing NTRU variants. While its computational and storage complexity suits high-security applications like military and financial systems, it is less suitable for resource-constrained devices. NTRU-MCF provides robust quantum resistance and side-channel defense, advancing PQC for classical computing environments. Full article
19 pages, 2429 KB  
Article
Spin-Wheel: A Fast and Secure Chaotic Encryption System with Data Integrity Detection
by Luis D. Espino-Mandujano and Rogelio Hasimoto-Beltran
Mathematics 2025, 13(11), 1712; https://doi.org/10.3390/math13111712 - 23 May 2025
Viewed by 478
Abstract
The increasing demand for real-time multimedia communications has driven the need for highly secure and computationally efficient encryption schemes. In this work, we present a novel chaos-based encryption system that provides remarkable levels of security and performance. It leverages the benefits of applying [...] Read more.
The increasing demand for real-time multimedia communications has driven the need for highly secure and computationally efficient encryption schemes. In this work, we present a novel chaos-based encryption system that provides remarkable levels of security and performance. It leverages the benefits of applying fast-to-evaluate chaotic maps, along with a 2-Dimensional Look-Up Table approach (2D-LUT), and simple but powerful periodic perturbations. The foundation of our encryption system is a Pseudo-Random Number Generator (PRNG) that consists of a fully connected random graph with M vertices representing chaotic maps that populate the 2D-LUT. In every iteration of the system, one of the M chaotic maps in the graph and the corresponding trajectories are randomly selected from the 2D-LUT using an emulated spin-wheel picker game. This approach exacerbates the complexity in the event of an attack, since the trajectories may come from the same or totally different maps in a non-sequential time order. We additionally perform two levels of perturbation, at the map and trajectory level. The first perturbation (map level) produces new trajectories that are retrieved from the 2D-LUT in non-sequential order and with different initial conditions. The second perturbation applies a p-point crossover scheme to combine a pair of trajectories retrieved from the 2D-LUT and used in the ciphering process, providing higher levels of security. As a final process in our methodology, we implemented a simple packet-based data integrity scheme that detects with high probability if the received information has been modified (for example, by a man-in-the-middle attack). Our results show that our proposed encryption scheme is robust to common cryptanalysis attacks, providing high levels of security and confidentiality while supporting high processing speeds on the order of gigabits per second. To the best of our knowledge, our chaotic cipher implementation is the fastest reported in the literature. Full article
(This article belongs to the Special Issue Chaos-Based Secure Communication and Cryptography, 2nd Edition)
Show Figures

Figure 1

19 pages, 6692 KB  
Article
Design and Hardware Implementation of a Highly Flexible PRNG System for NIST-Validated Pseudorandom Sequences
by María de Lourdes Rivas Becerra, Juan José Raygoza Panduro, Edwin Christian Becerra Alvarez, Susana Ortega Cisneros and José Luis González Vidal
Chips 2025, 4(2), 23; https://doi.org/10.3390/chips4020023 - 7 May 2025
Viewed by 1238
Abstract
This work presents the design of a system of a highly flexible pseudorandom number generator system (PRNG) incorporating both conventional and neuro-generators. The system integrates four internal generators with different conditions to produce new output sequences with adequate bits distribution and complexity. Two [...] Read more.
This work presents the design of a system of a highly flexible pseudorandom number generator system (PRNG) incorporating both conventional and neuro-generators. The system integrates four internal generators with different conditions to produce new output sequences with adequate bits distribution and complexity. Two generators function at a frequency of 100 MHz with adjustable frequency settings, while two neuro-generators employ impulse neurons with distinct behaviours at 4 kHz, also modifiable. The proposed system meets 12 statistical randomness standards based on NIST’s (National Institute of Standards and Technology of U. S.) test suite, including the Frequency test, Binary Matrix Rank test, Linear Complexity test, and Random Excursion test, among others. Each resulted in a P-value greater than 0.01, confirming the pseudo-randomness of the generated sequences. The system is implemented on a reconfigurable device FPGA (Field Programmable Gate Array), with a low occupancy percentage, demonstrating its feasibility for various applications. Full article
Show Figures

Figure 1

17 pages, 3936 KB  
Article
Developing Quantum Trusted Platform Module (QTPM) to Advance IoT Security
by Guobin Xu, Oluwole Adetifa, Jianzhou Mao, Eric Sakk and Shuangbao Wang
Future Internet 2025, 17(5), 193; https://doi.org/10.3390/fi17050193 - 26 Apr 2025
Viewed by 660
Abstract
Randomness is integral to computer security, influencing fields such as cryptography and machine learning. In the context of cybersecurity, particularly for the Internet of Things (IoT), high levels of randomness are essential to secure cryptographic protocols. Quantum computing introduces significant risks to traditional [...] Read more.
Randomness is integral to computer security, influencing fields such as cryptography and machine learning. In the context of cybersecurity, particularly for the Internet of Things (IoT), high levels of randomness are essential to secure cryptographic protocols. Quantum computing introduces significant risks to traditional encryption methods. To address these challenges, we propose investigating a quantum-safe solution for IoT-trusted computing. Specifically, we implement the first lightweight, practical integration of a quantum random number generator (QRNG) with a software-based trusted platform module (TPM) to create a deployable quantum trusted platform module (QTPM) prototype for IoT systems to improve cryptographic capabilities. The proposed quantum entropy as a service (QEaaS) framework further extends quantum entropy access to legacy and resource-constrained devices. Through the evaluation, we compare the performance of QRNG with traditional Pseudo-random Number Generators (PRNGs), demonstrating the effectiveness of the quantum TPM. Our paper highlights the transformative potential of integrating quantum technology to bolster IoT security. Full article
Show Figures

Figure 1

25 pages, 37855 KB  
Article
Hyperchaotic System-Based PRNG and S-Box Design for a Novel Secure Image Encryption
by Erman Özpolat, Vedat Çelik and Arif Gülten
Entropy 2025, 27(3), 299; https://doi.org/10.3390/e27030299 - 13 Mar 2025
Cited by 1 | Viewed by 1056
Abstract
A hyperchaotic system was analyzed in this study, and its hyperchaotic behavior was confirmed through dynamic analysis. The system was utilized to develop a pseudo-random number generator (PRNG), whose statistical reliability was validated through NIST SP800-22 tests, demonstrating its suitability for cryptographic applications. [...] Read more.
A hyperchaotic system was analyzed in this study, and its hyperchaotic behavior was confirmed through dynamic analysis. The system was utilized to develop a pseudo-random number generator (PRNG), whose statistical reliability was validated through NIST SP800-22 tests, demonstrating its suitability for cryptographic applications. Additionally, a 16 × 16 S-box was constructed based on the hyperchaotic system, ensuring high nonlinearity and strong cryptographic performance. A comparative analysis revealed that the proposed S-box structure outperforms existing designs in terms of security and efficiency. A new image encryption algorithm was designed using the PRNG and S-box, and its performance was evaluated on 512 × 512 grayscale images, including the commonly used baboon and pepper images. The decryption process successfully restored the original images, confirming the encryption scheme’s reliability. Security evaluations, including histogram analysis, entropy measurement, correlation analysis, and resistance to differential and noise attacks, were conducted. The findings showed that the suggested encryption algorithm outperforms current techniques in terms of security and efficiency. This study contributes to the advancement of robust PRNG generation, secure S-box design, and efficient image encryption algorithms using hyperchaotic systems, offering a promising approach for secure communication and data protection. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

12 pages, 3410 KB  
Article
Multi-Objective Optimization of a Fractional-Order Lorenz System
by Luis Gerardo de la Fraga
Fractal Fract. 2025, 9(3), 171; https://doi.org/10.3390/fractalfract9030171 - 12 Mar 2025
Viewed by 619
Abstract
A fractional-order Lorenz system is optimized to maximize its maximum Lyapunov exponent and Kaplan-York dimension using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm. The fractional-order Lorenz system is integrated with a recent process called the “modified two-stage Runge-Kutta” (M2sFRK) method, which is [...] Read more.
A fractional-order Lorenz system is optimized to maximize its maximum Lyapunov exponent and Kaplan-York dimension using the Non-dominated Sorting Genetic Algorithm II (NSGA-II) algorithm. The fractional-order Lorenz system is integrated with a recent process called the “modified two-stage Runge-Kutta” (M2sFRK) method, which is very fast and efficient. A Pseudo-Random Number Generator (PRNG) was built using one of the optimized systems that was obtained. The M2sFRK method allows for obtaining a very fast optimization time and also designing a very efficient PRNG with linear complexity, O(n). The designed PRNG generates 24 random bits at each iteration step, and the random sequences pass all the National Institute of Standards and Technology (NIST) and TestU01 statistical tests, making the PRNG suitable for cryptographic applications. The presented methodology could be extended to any other chaotic system. Full article
(This article belongs to the Special Issue Design, Optimization and Applications for Fractional Chaotic System)
Show Figures

Figure 1

30 pages, 6901 KB  
Article
EPRNG: Effective Pseudo-Random Number Generator on the Internet of Vehicles Using Deep Convolution Generative Adversarial Network
by Chenyang Fei, Xiaomei Zhang, Dayu Wang, Haomin Hu, Rong Huang and Zejie Wang
Information 2025, 16(1), 21; https://doi.org/10.3390/info16010021 - 3 Jan 2025
Cited by 1 | Viewed by 1452
Abstract
With the increasing connectivity and automation on the Internet of Vehicles, safety, security, and privacy have become stringent challenges. In the last decade, several cryptography-based protocols have been proposed as intuitive solutions to protect vehicles from information leakage and intrusions. Before generating the [...] Read more.
With the increasing connectivity and automation on the Internet of Vehicles, safety, security, and privacy have become stringent challenges. In the last decade, several cryptography-based protocols have been proposed as intuitive solutions to protect vehicles from information leakage and intrusions. Before generating the encryption keys, a random number generator (RNG) plays an important component in cybersecurity. Several deep learning-based RNGs have been deployed to train the initial value and generate pseudo-random numbers. However, interference from actual unpredictable driving environments renders the system unreliable for its low-randomness outputs. Furthermore, dynamics in the training process make these methods subject to training instability and pattern collapse by overfitting. In this paper, we propose an Effective Pseudo-Random Number Generator (EPRNG) which exploits a deep convolution generative adversarial network (DCGAN)-based approach using our processed vehicle datasets and entropy-driven stopping method-based training processes for the generation of pseudo-random numbers. Our model starts from the vehicle data source to stitch images and add noise to enhance the entropy of the images and then inputs them into our network. In addition, we design an entropy-driven stopping method that enables our model training to stop at the optimal epoch so as to prevent overfitting. The results of the evaluation indicate that our entropy-driven stopping method can effectively generate pseudo-random numbers in a DCGAN. Our numerical experiments on famous test suites (NIST, ENT) demonstrate the effectiveness of the developed approach in high-quality random number generation for the IoV. Furthermore, the PRNGs are successfully applied to image encryption, and the performance metrics of the encryption are close to ideal values. Full article
Show Figures

Graphical abstract

27 pages, 71201 KB  
Article
Enhanced Chaotic Pseudorandom Number Generation Using Multiple Bernoulli Maps with Field Programmable Gate Array Optimizations
by Leonardo Palacios-Luengas, Reyna Carolina Medina-Ramírez, Ricardo Marcelín-Jiménez, Enrique Rodriguez-Colina, Francisco R. Castillo-Soria and Rubén Vázquez-Medina
Information 2024, 15(11), 667; https://doi.org/10.3390/info15110667 - 23 Oct 2024
Cited by 1 | Viewed by 1557
Abstract
Certain methods for implementing chaotic maps can lead to dynamic degradation of the generated number sequences. To solve such a problem, we develop a method for generating pseudorandom number sequences based on multiple one-dimensional chaotic maps. In particular, we introduce a Bernoulli chaotic [...] Read more.
Certain methods for implementing chaotic maps can lead to dynamic degradation of the generated number sequences. To solve such a problem, we develop a method for generating pseudorandom number sequences based on multiple one-dimensional chaotic maps. In particular, we introduce a Bernoulli chaotic map that utilizes function transformations and constraints on its control parameter, covering complementary regions of the phase space. This approach allows the generation of chaotic number sequences with a wide coverage of phase space, thereby increasing the uncertainty in the number sequence generation process. Moreover, by incorporating a scaling factor and a sine function, we develop a robust chaotic map, called the Sine-Multiple Modified Bernoulli Chaotic Map (SM-MBCM), which ensures a high degree of randomness, validated through statistical mechanics analysis tools. Using the SM-MBCM, we propose a chaotic PRNG (CPRNG) and evaluate its quality through correlation coefficient analysis, key sensitivity tests, statistical and entropy analysis, key space evaluation, linear complexity analysis, and performance tests. Furthermore, we present an FPGA-based implementation scheme that leverages equivalent MBCM variants to optimize the electronic implementation process. Finally, we compare the proposed system with existing designs in terms of throughput and key space. Full article
(This article belongs to the Section Information and Communications Technology)
Show Figures

Figure 1

17 pages, 9539 KB  
Article
A Chaos-Based Encryption Algorithm to Protect the Security of Digital Artwork Images
by Li Shi, Xiangjun Li, Bingxue Jin and Yingjie Li
Mathematics 2024, 12(20), 3162; https://doi.org/10.3390/math12203162 - 10 Oct 2024
Cited by 7 | Viewed by 1194
Abstract
Due to the security weaknesses of chaos-based pseudorandom number generators, in this paper, a new pseudorandom number generator (PRNG) based on mixing three-dimensional variables of a cat chaotic map is proposed. A uniformly distributed chaotic sequence by a logistic map is used in [...] Read more.
Due to the security weaknesses of chaos-based pseudorandom number generators, in this paper, a new pseudorandom number generator (PRNG) based on mixing three-dimensional variables of a cat chaotic map is proposed. A uniformly distributed chaotic sequence by a logistic map is used in the mixing step. Both statistical tests and a security analysis indicate that our PRNG has good randomness and is more complex than any one-dimensional variable of a cat map. Furthermore, a new image encryption algorithm based on the chaotic PRNG is provided to protect the content of artwork images. The core of the algorithm is to use the sequence generated by the pseudorandom number generator to achieve the process of disruption and diffusion of the image pixels, so as to achieve the effect of obfuscation and encryption of the image content. Several security tests demonstrate that this image encryption algorithm has a high security level. Full article
(This article belongs to the Special Issue Chaos-Based Secure Communication and Cryptography, 2nd Edition)
Show Figures

Figure 1

18 pages, 22304 KB  
Article
A High-Performance FPGA PRNG Based on Multiple Deep-Dynamic Transformations
by Shouliang Li, Zichen Lin, Yi Yang and Ruixuan Ning
Entropy 2024, 26(8), 671; https://doi.org/10.3390/e26080671 - 7 Aug 2024
Cited by 2 | Viewed by 1944
Abstract
Pseudo-random number generators (PRNGs) are important cornerstones of many fields, such as statistical analysis and cryptography, and the need for PRNGs for information security (in fields such as blockchain, big data, and artificial intelligence) is becoming increasingly prominent, resulting in a steadily growing [...] Read more.
Pseudo-random number generators (PRNGs) are important cornerstones of many fields, such as statistical analysis and cryptography, and the need for PRNGs for information security (in fields such as blockchain, big data, and artificial intelligence) is becoming increasingly prominent, resulting in a steadily growing demand for high-speed, high-quality random number generators. To meet this demand, the multiple deep-dynamic transformation (MDDT) algorithm is innovatively developed. This algorithm is incorporated into the skewed tent map, endowing it with more complex dynamical properties. The improved one-dimensional discrete chaotic mapping method is effectively realized on a field-programmable gate array (FPGA), specifically the Xilinx xc7k325tffg900-2 model. The proposed pseudo-random number generator (PRNG) successfully passes all evaluations of the National Institute of Standards and Technology (NIST) SP800-22, diehard, and TestU01 test suites. Additional experimental results show that the PRNG, possessing high novelty performance, operates efficiently at a clock frequency of 150 MHz, achieving a maximum throughput of 14.4 Gbps. This performance not only surpasses that of most related studies but also makes it exceptionally suitable for embedded applications. Full article
(This article belongs to the Section Multidisciplinary Applications)
Show Figures

Figure 1

17 pages, 53744 KB  
Article
Fractal Tent Map with Application to Surrogate Testing
by Ekaterina Kopets, Vyacheslav Rybin, Oleg Vasilchenko, Denis Butusov, Petr Fedoseev and Artur Karimov
Fractal Fract. 2024, 8(6), 344; https://doi.org/10.3390/fractalfract8060344 - 7 Jun 2024
Cited by 8 | Viewed by 1959
Abstract
Discrete chaotic maps are a mathematical basis for many useful applications. One of the most common is chaos-based pseudorandom number generators (PRNGs), which should be computationally cheap and controllable and possess necessary statistical properties, such as mixing and diffusion. However, chaotic PRNGs have [...] Read more.
Discrete chaotic maps are a mathematical basis for many useful applications. One of the most common is chaos-based pseudorandom number generators (PRNGs), which should be computationally cheap and controllable and possess necessary statistical properties, such as mixing and diffusion. However, chaotic PRNGs have several known shortcomings, e.g., being prone to chaos degeneration, falling in short periods, and having a relatively narrow parameter range. Therefore, it is reasonable to design novel simple chaotic maps to overcome these drawbacks. In this study, we propose a novel fractal chaotic tent map, which is a generalization of the well-known tent map with a fractal function introduced into the right-hand side. We construct and investigate a PRNG based on the proposed map, showing its high level of randomness by applying the NIST statistical test suite. The application of the proposed PRNG to the task of generating surrogate data and a surrogate testing procedure is shown. The experimental results demonstrate that our approach possesses superior accuracy in surrogate testing across three distinct signal types—linear, chaotic, and biological signals—compared to the MATLAB built-in randn() function and PRNGs based on the logistic map and the conventional tent map. Along with surrogate testing, the proposed fractal tent map can be efficiently used in chaos-based communications and data encryption tasks. Full article
(This article belongs to the Topic Recent Trends in Nonlinear, Chaotic and Complex Systems)
Show Figures

Figure 1

20 pages, 10289 KB  
Article
Design of a New Neuro-Generator with a Neuronal Module to Produce Pseudorandom and Perfectly Pseudorandom Sequences
by María de Lourdes Rivas Becerra, Juan José Raygoza Panduro, Susana Ortega Cisneros, Edwin Christian Becerra Álvarez and Jaime David Rios Arrañaga
Electronics 2024, 13(10), 1955; https://doi.org/10.3390/electronics13101955 - 16 May 2024
Cited by 1 | Viewed by 1350
Abstract
This paper presents the design of a new neuro-generator of pseudorandom number type PRNG Pseudorandom Number Generator, which produces complex sequences with an adequate bit distribution. The circuit is connected to a neuronal module with six impulse neurons with different behaviors: spike [...] Read more.
This paper presents the design of a new neuro-generator of pseudorandom number type PRNG Pseudorandom Number Generator, which produces complex sequences with an adequate bit distribution. The circuit is connected to a neuronal module with six impulse neurons with different behaviors: spike frequency adaptation, phasic spiking, mixed mode, phasic bursting, tonic bursting and tonic spiking. This module aims to generate a non-periodic signal that becomes the clock signal for one of the LFSRs Linear Feedback Shift Register that the neuro-generator has. To verify its correct operation, the neuro-generator was subjected to a series of tests where the frequencies of the impulse neurons were modified. This modification allows the generation of a greater number of pulses at the output of the neuronal module, to obtain sequences with different characteristics that pass different NIST statistical tests (National Institute of Standards and Technology of U.S.). The results show that the new neuro-generator maintains pseudo-randomness in the sequences obtained with different frequencies and it can be implemented on a reconfigurable FPGA Field Programmable Gate Array Virtex 7 xc7vx485t-2ffg1761 device. Therefore, it can be used for applications such as biological systems. Full article
Show Figures

Figure 1

20 pages, 2757 KB  
Article
Modification of Intertwining Logistic Map and a Novel Pseudo Random Number Generator
by Wenbo Zhao and Caochuan Ma
Symmetry 2024, 16(2), 169; https://doi.org/10.3390/sym16020169 - 31 Jan 2024
Cited by 4 | Viewed by 1996
Abstract
Chaotic maps have been widely studied in the field of cryptography for their complex dynamics. However, chaos-based cryptosystems have not been widely used in practice. One important reason is that the following requirements of practical engineering applications are not taken into account: computational [...] Read more.
Chaotic maps have been widely studied in the field of cryptography for their complex dynamics. However, chaos-based cryptosystems have not been widely used in practice. One important reason is that the following requirements of practical engineering applications are not taken into account: computational complexity and difficulty of hardware implementation. In this paper, based on the demand for information security applications, we modify the local structure of the three-dimensional Intertwining Logistic chaotic map to improve the efficiency of software calculation and reduce the cost of hardware implementation while maintaining the complex dynamic behavior of the original map. To achieve the goal by reducing the number of floating point operations, we design a mechanism that can be decomposed into two processes. One process is that the input parameters value of the original system is fixed to 2k by Scale index analysis. The other process is that the transcendental function of the original system is replaced by a nonlinear polynomial. We named the new map as “Simple intertwining logistic”. The basic chaotic dynamic behavior of the new system for controlling parameter is qualitatively analyzed by bifurcation diagram and Lyapunov exponent; the non-periodicity of the sequence generated by the new system is quantitatively evaluated by using Scale index technique based on continuous wavelet change. Fuzzy entropy (FuzzyEn) is used to evaluate the randomness of the new system in different finite precision digital systems. The analysis and evaluation results show that the optimized map could achieve the designed target. Then, a novel scheme for generating pseudo-random numbers is proposed based on new map. To ensure its usability in cryptographic applications, a series of analysis are carried out. They mainly include key space analysis, recurrence plots analysis, correlation analysis, information entropy, statistical complexity measure, and performance speed. The statistical properties of the proposed pseudo random number generator (PRNG) are tested with NIST SP800-22 and DIEHARD. The obtained results of analyzing and statistical software testing shows that, the proposed PRNG passed all these tests and have good randomness. In particular, the speed of generating random numbers is extremely rapid compared with existing chaotic PRNGs. Compared to the original chaotic map (using the same scheme of random number generation), the speed is increased by 1.5 times. Thus, the proposed PRNG can be used in the information security. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

Back to TopTop