Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,102)

Search Parameters:
Keywords = PbII

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10742 KB  
Article
Polymer Films of 2-(Azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole: Surface Characterization and Electrochemical Sensing of Heavy Metals
by Cornelia Musina (Borsaru), Mihaela Cristea, Raluca Gavrilă, Oana Brincoveanu, Florin Constantin Comănescu, Veronica Anăstăsoaie, Gabriela Stanciu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(19), 3959; https://doi.org/10.3390/molecules30193959 - 2 Oct 2025
Abstract
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through [...] Read more.
This work introduces 2-(azulen-1-yldiazenyl)-5-(thiophen-2-yl)-1,3,4-thiadiazole (L) as a functional monomer capable of forming stable, redox-active films with high affinity for lead in aqueous solutions. L was synthesized and characterized using physical chemical methods and electrochemistry. Polymer films of L were prepared through oxidative electro polymerization on glassy carbon electrodes in L solutions in 0.1 M TBAP in acetonitrile. They were characterized through electrochemistry. The surface of chemically modified electrodes (CMEs) prepared through controlled potential electrolysis (CPE) at variable concentrations, potentials, and electric charges was characterized through scanning electron spectroscopy, atomic force microscopy, and Raman spectroscopy, which confirmed the films’ formation. Electrochemical sensing of the films deposited on these CMEs was tested with respect to heavy metal (HM) ion analysis in aqueous solutions to obtain sensors for HMs. The obtained CMEs presented the best characteristics for the recognition of Pb among the investigated HMs (Cd, Pb, Cu, and Hg). Calibration curves were obtained for the analysis of Pb(II) in aqueous solutions, which allowed for the estimation of a good detection limit of this cation (<10−8 M) for non-optimized CMEs. The resulting CMEs show promise for deployment in portable environmental monitoring systems, with implications for public health protection and environmental safety. Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Applied Chemistry)
Show Figures

Figure 1

22 pages, 6902 KB  
Article
Hydrothermal Carbonization of Sugarcane Tip (Saccharum officinarum L.) for Pb (II) Removal: Synthesis, Characterization, and Adsorption Equilibrium
by Dulce Carolina Acosta-Pintor, Candy Carranza-Álvarez, Habacuc Lorenzo-Márquez, Cynthia Wong-Arguelles and Cuitláhuac Mojica-Mesinas
AppliedChem 2025, 5(4), 24; https://doi.org/10.3390/appliedchem5040024 - 29 Sep 2025
Abstract
Water contamination by heavy metals, particularly lead, derived from industrialization, climate change, and urbanization, represents a critical risk to human health and the environment. Several agricultural biomass residues have demonstrated efficacy as contaminant adsorbents. In this context, the study aimed to evaluate the [...] Read more.
Water contamination by heavy metals, particularly lead, derived from industrialization, climate change, and urbanization, represents a critical risk to human health and the environment. Several agricultural biomass residues have demonstrated efficacy as contaminant adsorbents. In this context, the study aimed to evaluate the potential of sugarcane tip (ST) waste biomass treated by hydrothermal carbonization (HTC) to produce hydrochar as an adsorbent material for Pb2+ in aqueous solutions. Samples were synthesized from the waste biomass at temperatures of 180 °C, 215 °C, and 250 °C, with a constant pressure of 6 MPa. Aqueous solutions of Pb2+ were prepared at concentrations of 10, 25, 50, 75, and 100 mg/L. Each solution was stirred at 1 g of hydrochar at 150 rpm, 25 °C, and pH 5 for 15 to 120 min. The solutions were filtered and stored at 4 °C for flame atomic absorption spectrophotometry analysis. In all cases, equilibrium was reached rapidly—within 15 min or less—as indicated by the stabilization of qt values over time. At an initial concentration of 100 mg L−1, the highest equilibrium uptake was observed for the hydrochar synthesized at ST HTC 180 °C (4.90 mg g−1), followed by 4.58 mg g−1 and 4.52 mg g−1 for ST HTC 215 °C and ST HTC 250 °C, respectively. For the ST HTC 180 °C, the Sips model provided the best correlation with the experimental data, exhibiting a high maximum capacity (qmax = 240.8 mg g−1; Ks = 0.007; n = 1.09; R2 = 0.975), which reinforces the heterogeneous nature of the material’s surface. Hydrothermal synthesis increased the amount of acidic active sites in the ST HTC 180 °C material from 1.3950 to 3.8543 meq g−1, which may influence the electrical charge of the Pb2+ adsorption process. HTC-treated sugarcane tip biomass represents a promising alternative for the synthesis of adsorbent materials, contributing to water remediation and promoting the circular economy by sustainably utilizing agricultural waste. Full article
Show Figures

Figure 1

19 pages, 3897 KB  
Article
Enhanced Adsorption of Pb(II) and Cd(II) by Activated Carbon Derived from Peach Stones for Efficient Water Decontamination
by Guilherme Medina Cameu, Leandro Almeida, Ana Paula Oliveira, Andrei Igansi, Débora Pez Jaeschke, Nauro Silveira, Rafael Paes, Daiane Dias, Luiz Antonio de Almeida Pinto and Tito Roberto Sant’Anna Cadaval
Processes 2025, 13(10), 3064; https://doi.org/10.3390/pr13103064 - 25 Sep 2025
Abstract
This work employed peach stones as the precursor material for producing activated carbon (AC-PS). AC-PS was impregnated with H3PO4 and carbonized using a pyrolysis reactor under a reducing atmosphere. The surface area, average pore size, and total pore volume of [...] Read more.
This work employed peach stones as the precursor material for producing activated carbon (AC-PS). AC-PS was impregnated with H3PO4 and carbonized using a pyrolysis reactor under a reducing atmosphere. The surface area, average pore size, and total pore volume of AC-PS were determined using the BET method. Morphological characteristics of AC-PS were observed through scanning electron microscopy (SEM), the surface composition was identified by energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD) analyses were conducted to determine the crystalline structure of carbon. The thermal stability of AC-PS and its interactions with lead and cadmium were analyzed by thermogravimetric analyses (TGA/DTG) and infrared spectra (FTIR), respectively. The Elovich model described the adsorption kinetics of both lead and cadmium, and the Weber and Morris model indicated intraparticle diffusion as the controlling mechanism of the adsorption process. The equilibrium study showed that the Freundlich model was adequate for both ions, with adsorption capacities increasing with temperature, reaching around 150 mg g−1 for lead and 80 mg g−1 for cadmium at 45 °C. Economic analysis indicated costs of $0.25 g−1 and $0.51 g−1 for the removal of lead and cadmium from the contaminated water, respectively. Full article
Show Figures

Figure 1

26 pages, 6089 KB  
Article
Petrogenesis of Transitional Kimberlite: A Case Study of the Hypabyssal Wafangdian Kimberlite in the North China Craton
by Renzhi Zhu, Pei Ni, Yan Li and Fanglai Wan
Minerals 2025, 15(10), 1009; https://doi.org/10.3390/min15101009 - 24 Sep 2025
Viewed by 53
Abstract
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite [...] Read more.
Kimberlite has attracted considerable interest among geologists as the primary source of natural gem-quality diamonds. The term “transitional kimberlite” was previously introduced to categorize rocks that exhibit bulk geochemical and Sr–Nd isotopic characteristics intermediate between those of archetypal kimberlite (formerly Group-I) and orangeite (formerly Group-II). Nevertheless, the petrogenesis of transitional diamond-bearing kimberlites remains poorly understood due to limited research. The diamondiferous transitional Wafangdian kimberlite in the North China Craton (NCC) thus provides a valuable opportunity for a detailed case study. We investigated fresh hypabyssal transitional Wafangdian kimberlites using bulk-rock major and trace element geochemistry to constrain near-primary parental magma compositions and decipher their petrogenesis. Geochemical compositions identify samples affected by crustal contamination based on elevated SiO2, Pb, heavy rare earth element (HREE) concentrations, and Sr isotopic ratios. Compositional variations among macrocrystic samples (MgO: 29.7–31.5 wt.%; SiO2: 30.6–34.7 wt.%; CaO: 3.9–7.5 wt.%; Mg# [atomic Mg/(Mg + Fe2+) × 100]: 85–88) result from substantial entrainment and partial assimilation of peridotite xenoliths (up to 35%). In contrast, variations within aphanitic samples (MgO: 24.0–29.7 wt.%; SiO2: 27.7–30.9 wt.%; CaO: 6.0–11.8 wt.%; Mg#: 81–85) are attributed to fractional crystallization of olivine and phlogopite (~1–32%). Based on these constraints, the near-primary parental magma composition for the Wafangdian kimberlite is estimated as ~29.7 wt.% SiO2, ~29.7 wt.% MgO, and Mg# 85. Trace element concentrations in the transitional Wafangdian kimberlites resemble those of archetypal kimberlites globally (e.g., Nb/U > 26, La/Nb < 1.4, Ba/Nb < 16, Th/Nb < 0.25), indicating a shared convective mantle source. However, the Wafangdian kimberlites exhibit distinct characteristics: εNd(t) values ranging from −3.44 to −1.77, higher Al2O3 and K2O contents, and lower Ce/Pb ratios (10–20) compared to archetypal kimberlites. These features suggest the mantle source region was profoundly influenced by deeply subducted oceanic material. Full article
(This article belongs to the Special Issue Formation Study of Gem Deposits)
Show Figures

Figure 1

14 pages, 2152 KB  
Article
Sustainable Solid-Phase Extractant Based on Spent Coffee Waste-Derived Activated Carbon Functionalized with 1,10-Phenanthroline-5-Amine for Trace Metals from Groundwater Samples
by Awadh O. AlSuhaimi
Sustainability 2025, 17(18), 8404; https://doi.org/10.3390/su17188404 - 19 Sep 2025
Viewed by 283
Abstract
In this work, spent coffee grounds, an abundant agro-waste, were transformed into activated carbon, providing a sustainable substrate for immobilizing 1,10-phenanthroline-5-amine chelating agent, to develop a solid-phase extractant for trace metals. ATR-IR, TGA, and XPS analyses confirmed successful functionalization and revealed the material’s [...] Read more.
In this work, spent coffee grounds, an abundant agro-waste, were transformed into activated carbon, providing a sustainable substrate for immobilizing 1,10-phenanthroline-5-amine chelating agent, to develop a solid-phase extractant for trace metals. ATR-IR, TGA, and XPS analyses confirmed successful functionalization and revealed the material’s physicochemical properties. Sorption studies showed optimal uptake at pH 6.0–6.5, enabling rapid extraction of Mn(II), Cd(II), Ni(II), and Pb(II) within 30 min, with capacities of 13.5, 8.4, 13.3, and 8.5 mg g−1, respectively. The prepared chelator was employed as a packed sorbent in standard SPE cartridges operated with a conventional SPE apparatus, achieving efficient extraction and preconcentration of the studied ions from both certified reference material (BCR-609) and real groundwater. The results obtained closely matched certified values, while spiked recoveries ranged from 96.00% to 106.80%. These findings highlight the effective valorization of agricultural waste into a reusable, high-performance SPE sorbent with strong potential for water purification and trace metal recovery. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

27 pages, 3998 KB  
Article
Geochemical Features and Mobility of Trace Elements in Technosols from Historical Mining and Metallurgical Sites, Tatra Mountains, Poland
by Magdalena Tarnawczyk, Łukasz Uzarowicz, Wojciech Kwasowski, Artur Pędziwiatr and Francisco José Martín-Peinado
Minerals 2025, 15(9), 988; https://doi.org/10.3390/min15090988 - 17 Sep 2025
Cited by 1 | Viewed by 198
Abstract
Ore mining and smelting are often related to environmental pollution. This study provides information about the geochemical features of Technosols at historical mining and metallurgical sites in the Tatra Mountains, southern Poland, evaluating the contents of potentially toxic trace elements (PTTE) and their [...] Read more.
Ore mining and smelting are often related to environmental pollution. This study provides information about the geochemical features of Technosols at historical mining and metallurgical sites in the Tatra Mountains, southern Poland, evaluating the contents of potentially toxic trace elements (PTTE) and their behaviours in soils, as well as the influence of soil properties on PTTE mobility. Thirteen soil profiles were studied in eight abandoned mining and smelting sites. PTTE concentrations, including rare earth elements (REE), were measured using ICP-MS and ICP-OES. Selected elements (Cu, Zn, Pb, Cd, As, Sb, Ba, Sr, Co, Ni, Mn and Cr) were fractionated using the modified European Community Bureau of Reference (BCR) four-step sequential extraction. Contamination of soils with PTTE was compared against Polish regulatory limits, which were exceeded for Cu, Zn, Pb, Mo, Hg, As, Co, Ni and Ba, with concentrations exceeding limits by 16, 18, 34 and 160 times for Cu, Hg, As and Ba, respectively, in some profiles. Based on geochemical features depending on parent material properties, the soils examined were divided into three groups. Group I Technosols (near-neutral soils developed from Fe/Mn-ore and carbonate-bearing mining waste) were particularly enriched in Co, Ni, Mn and REE. Group II Technosols (acidic soils developed from polymetallic ore-bearing aluminosilicate mining waste) contained elevated concentrations of Cu, Zn, Hg, As, Sb, Bi, Co, Ag, Ba, Sr, U and Th; they contained lower contents of REE than Group I Technosols. Group III Technosols (soils developed in smelting-affected areas and containing metallurgical waste) were rich in Cu, As, Sb, Ba, Hg, Co and Ag and contained the lowest REE contents among the studied soils. Sequential BCR extraction revealed that PTTE mobility varied strongly according to soil group, with higher mobility of Mn, Cu and Zn in acidic polymetallic ore-derived soils (Group II), while carbonate-rich soils (Group I) showed mainly immobile forms. Metallurgical slag-derived soils (Group III) exhibited complex PTTE behaviour controlled by organic matter and Fe/Mn oxides. Soil properties (pH, carbonates and TOC) seem to control PTTE mobility. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

17 pages, 5739 KB  
Article
Electrochemical and Optical Experiments and DFT Calculations of 1,4,6,8-Tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene
by Cornelia Musina (Borsaru), Alina-Giorgiana Brotea, Mihaela Cristea, Gabriela Stanciu, Amalia Stefaniu and Eleonora-Mihaela Ungureanu
Molecules 2025, 30(18), 3762; https://doi.org/10.3390/molecules30183762 - 16 Sep 2025
Viewed by 317
Abstract
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and [...] Read more.
Due to its conjugated structure, 1,4,6,8-tetrakis((E)-2-(thiophen-2-yl)vinyl)azulene (L) has a high potential for nonlinear optics and coloring. This compound was studied electrochemically using cyclic voltammetry, pulse differential voltammetry and rotating disk voltammetry in organic electrolytes. The main processes occurring during oxidation and reduction scans were highlighted and characterized. Density functional theory (DFT) calculations were conducted to assess the chemical reactivity of this compound. UV-Vis studies of L were performed in acetonitrile to establish the optical parameters in this solvent and its complexing power towards heavy metal (HM) ions. Chemically modified electrodes (CMEs) based on L were prepared by electrooxidation of L in organic electrolytes. To evaluate the electrochemical behavior of the CMEs, they were characterized with a ferrocene redox probe. They were also tested for the analysis of synthetic samples of heavy metal ions (HM): Cd(II), Pb(II), Cu(II) and Hg(II) by anodic stripping. Specific responses were obtained for Pb(II) and Cd(II) ions. The preparation conditions have an influence on the electrochemical responses. This study is relevant for the design and further development of advanced materials based on this azulene for the analysis of HMs in water samples. Electrochemical experiments and DFT calculations recommended L as a new ligand for modifying the electrode surface for the analysis of HMs. Full article
Show Figures

Figure 1

17 pages, 406 KB  
Article
Partition by Exhaustification and Polar Questions in Vietnamese
by Tue Trinh
Languages 2025, 10(9), 233; https://doi.org/10.3390/languages10090233 - 15 Sep 2025
Cited by 1 | Viewed by 269
Abstract
This note presents a series of contrasts pertaining to Vietnamese polar questions: (i) The subject can be definite but not quantificational; (ii) the subject can be plain but not only-focused; (iii) the modal adverb chắc chắn (‘certainly’) can follow but not precede [...] Read more.
This note presents a series of contrasts pertaining to Vietnamese polar questions: (i) The subject can be definite but not quantificational; (ii) the subject can be plain but not only-focused; (iii) the modal adverb chắc chắn (‘certainly’) can follow but not precede verum focus. I argue that a monoclausal analysis, advocated in several previous works, will have difficulties accounting for these contrasts and propose a bi-clausal analysis that explains them in a natural way. The explanation relies on the assumption of a general condition on questions, Partition by Exhaustification (PbE), in conjunction with some other independently motivated semantic and pragmatic constraints. Full article
(This article belongs to the Special Issue Current Issues in Vietnamese Linguistics)
14 pages, 2284 KB  
Article
Multi-Aspect Analysis of Wildfire Aerosols from the 2023 Hongseong Case: Physical, Optical, Chemical, and Source Characteristics
by Jun-Oh Bu, Hee-Jung Ko, Hee-Jung Yoo and Sang-Min Oh
Atmosphere 2025, 16(9), 1074; https://doi.org/10.3390/atmos16091074 - 11 Sep 2025
Viewed by 291
Abstract
This study characterized the aerosol changes during the April 2023 Hongseong wildfire in Chungcheongnam-do, Korea, using physical, optical, and chemical data from the Anmyeon-do Global Atmosphere Watch station. The observation period was divided into three distinct phases: immediately after the wildfire (Period I), [...] Read more.
This study characterized the aerosol changes during the April 2023 Hongseong wildfire in Chungcheongnam-do, Korea, using physical, optical, and chemical data from the Anmyeon-do Global Atmosphere Watch station. The observation period was divided into three distinct phases: immediately after the wildfire (Period I), during precipitation (Period II), and the re-entry of wildfire smoke after precipitation (Period III). During Periods I and III, the PM10 mass concentrations were 75.7 ± 31.2 and 98.2 ± 55.6 µg/m3, respectively, which were approximately 2.4 and 3.1 times higher than the 2023 annual average (31.8 µg/m3) at the Anmyeon-do site. Aerosol scattering coefficients increased by factors of 4.0 and 6.9, and absorption coefficients by 5.5 and 4.2, respectively. Source apportionment using real-time data from a Monitor for Aerosols and Gases in ambient Air (MARGA) instrument combined with PCA demonstrated that aerosol emissions during Periods I and III were predominantly influenced by biomass burning sources. Analysis of PM10 and PM2.5 filter samples showed biomass burning markers, such as K+ and C2O42−, increased by 5.5–31.4 times compared with those in Period II. Elevated levels of combustion-related elements, including S, K, V, and Pb, further confirmed the influence of wildfire smoke on air quality during the affected periods. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

18 pages, 6073 KB  
Article
Harnessing Polyaminal Porous Networks for Sustainable Environmental Applications Using Ultrafine Silver Nanoparticles
by Bedour Almalki, Maymounah A. Alrayyani, Effat A. Bahaidarah, Maha M. Alotaibi, Shaista Taimur, Dalal Alezi, Fatmah M. Alshareef and Nazeeha S. Alkayal
Polymers 2025, 17(18), 2443; https://doi.org/10.3390/polym17182443 - 9 Sep 2025
Viewed by 408
Abstract
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil [...] Read more.
Environmental contamination is a critical global concern, primarily due to detrimental greenhouse gas (GHG) emissions, especially carbon dioxide (CO2), which significantly contribute to climate change. Moreover, the presence of harmful heavy metals like Ni, Cd, Cu, Hg, and Pb in soil and water ecosystems has led to poor water quality. Noble metal nanoparticles (MNPs), for instance, Pd, Ag, Pt, and Au, have emerged as promising solutions for addressing environmental pollution. However, the practical utilization of MNPs faces challenges as they tend to aggregate and lose stability. To overcome this issue, the reverse double-solvent method (RDSM) was utilized to synthesis melamine-based porous polyaminals (POPs) as a supportive material for the in situ growing of silver nanoparticles (Ag NPs). The porous structure of melamine-based porous polyaminals, featuring aminal-linked (-HN-C-NH-) and triazine groups, provides excellent binding sites for capturing Ag+ ions, thereby improving the dispersion and stability of the nanoparticles. The resulting material exhibited ultrafine particle sizes for Ag NPs, and the incorporation of Ag NPs within the porous polyaminals demonstrated a high surface area (~279 m2/g) and total pore volume (1.21 cm3/g), encompassing micropores and mesopores. Additionally, the Ag NPs@POPs showcased significant capacity for CO2 capture (2.99 mmol/g at 273 K and 1 bar) and effectively removed Cu (II), with a remarkable removal efficiency of 99.04%. The nitrogen-rich porous polyaminals offer promising prospects for immobilizing and encapsulating Ag nanoparticles, making them outstanding adsorbents for selectively capturing carbon dioxide and removing metal ions. Pursuing this approach holds immense potential for various environmental applications. Full article
(This article belongs to the Collection Progress in Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 3431 KB  
Article
Synergistic Adsorption–Membrane Distillation for Heavy Metal Extraction and Water Reclamation from Saline Waste Streams
by Jie Xu, Jinxin Liu, Mei-Ling Liu, Guangze Nie and Dong Zou
Membranes 2025, 15(9), 271; https://doi.org/10.3390/membranes15090271 - 8 Sep 2025
Viewed by 626
Abstract
Membrane distillation demonstrates ideal separation performance towards saline water; however, it fails to accomplish the classification and recovery of multiple components from complex saline solutions (i.e., heavy metal ion-laden saline water in process industries). Herein, an adsorption–membrane distillation (MD) coupling process was proposed, [...] Read more.
Membrane distillation demonstrates ideal separation performance towards saline water; however, it fails to accomplish the classification and recovery of multiple components from complex saline solutions (i.e., heavy metal ion-laden saline water in process industries). Herein, an adsorption–membrane distillation (MD) coupling process was proposed, as an example of a Pb(II)/NaCl mixed solution, in which the prepared adsorption membrane was firstly employed to adsorb heavy metal ions in the mixed solution and then the brine was concentrated by the MD process to realize water source recovery and utilization. Firstly, an FeOOH@PVDF adsorptive membrane was fabricated to adsorb Pb(II) ions. It was demonstrated that chemical adsorption was identified as the dominant mechanism, and the composite membrane showed excellent selective adsorption for Pb(II). Following this, the omniphobic membrane was then employed to concentrate the Pb(II)-removed saline solution, maintaining a water flux of 16.12 kg·m−2·h−1 at a concentration factor of 7.7, demonstrating excellent MD concentration performance. Through this coupled process, the saline wastewater containing heavy metal ions was successfully separated into purified water and concentrated brine without heavy metal ions, providing a novel approach for the treatment and recycling of complex saline wastewater. Full article
(This article belongs to the Special Issue Membrane Processes for Water Recovery in Food Processing Industries)
Show Figures

Figure 1

1 pages, 120 KB  
Retraction
RETRACTED: Tang et al. Adsorption Capability and Mechanism of Pb(II) Using MgO Nanomaterials Synthesized by Ultrasonic Electrodeposition. Coatings 2024, 14, 891
by Dan Tang, Quanqing Zhang, Guanglei Tan, Lijie He and Fafeng Xia
Coatings 2025, 15(9), 1048; https://doi.org/10.3390/coatings15091048 - 8 Sep 2025
Viewed by 271
Abstract
The Journal retracts the article “Adsorption capability and mechanism of MgO nanomaterials synthesized by ultrasonic electrodeposition for Pb(II)” [...] Full article
23 pages, 4824 KB  
Article
Effects of Pyrolysis Temperatures and Modified Methods on Rice Husk-Derived Biochar Characteristics and Heavy Metal Adsorption
by Zhaoqin Huang, Qin Wang, Yufeng Zhang, Buyun Du, Jun Zhou and Dongliang Ji
Molecules 2025, 30(17), 3616; https://doi.org/10.3390/molecules30173616 - 4 Sep 2025
Viewed by 1151
Abstract
Biochars were prepared from rice husk at different pyrolysis temperatures (300, 400, and 500 °C) and then modified by nitric acid (HNO3) and potassium hydroxide (KOH). The chemical and physical properties were characterized, and the adsorption ability of biochars for the [...] Read more.
Biochars were prepared from rice husk at different pyrolysis temperatures (300, 400, and 500 °C) and then modified by nitric acid (HNO3) and potassium hydroxide (KOH). The chemical and physical properties were characterized, and the adsorption ability of biochars for the removal of Cd (II) and Pb (II) was investigated. The results showed that with increasing pyrolysis temperature, the aromaticity of rice husk biochar increased while its polarity decreased and both specific surface area and total pore volume significantly increased. Both HNO3 and KOH modification significantly changed the oxygen-containing functional groups in biochar, especially biochars prepared at lower pyrolysis temperatures. HNO3 modification introduced nitro and carboxyl groups on the surface of HNO3-BC300, increasing the ether bond functional groups, while KOH modification increased the content of hydroxyl groups on KOH-BC300 and reduced the ether bond groups. At the same time, the modification of rice husk-derived biochar greatly enhanced the ability to absorb Cd (II) and Pb (II) from aqueous solution. Notably, KOH-BC300 exhibited the highest adsorption capacities, reaching 72.14 mg·g−1 for Cd (II) and 170.84 mg·g−1 for Pb (II). These results demonstrate that KOH modification was more effective than HNO3 modification at enhancing the adsorption of Cd (II) and Pb (II) onto rice husk-derived biochar. In addition, the specific surface area and total pore volume of biochar increased significantly after HNO3 and KOH modification. It was concluded that biochar’s adsorption performance might be greatly improved by increasing its oxygen-containing functional groups and specific surface area, but the effect of oxygen-containing functional groups was greater than that of specific surface area. Thus, KOH-modified biochar (KOH-BC300) can be used as an effective sorbent for heavy metal removal from wastewater. Full article
Show Figures

Figure 1

17 pages, 13988 KB  
Article
Efficient Removal of Pb(II) Ions from Aqueous Solutions Using an HFO-PVDF Composite Adsorption Membrane
by Shuhang Lu, Qianhui Xu, Mei-Ling Liu, Dong Zou and Guangze Nie
Membranes 2025, 15(9), 264; https://doi.org/10.3390/membranes15090264 - 1 Sep 2025
Viewed by 616
Abstract
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. [...] Read more.
The efficient purification of Pb(II)-containing wastewater is essential for safeguarding public health and maintaining the aquatic environment. In this study, novel hydrous ferric oxide (HFO) nanoparticle-embedded poly(vinylidene fluoride) (PVDF) composite adsorption membranes were developed through a simple blending method for efficient Pb(II) removal. This composite membrane (denoted as HFO-PVDF) combines the excellent selectivity of HFO nanoparticles for Pb(II) with the membrane’s advantage of easy scalability. The optimized HFO-PVDF(1.5) membrane achieved adsorption equilibrium within 20 h and exhibited excellent adsorption capacity. Moreover, adsorption capacity markedly enhanced with increasing temperature, confirming the endothermic nature of the process. The developed HFO-PVDF membranes demonstrate significant potential for real-world wastewater treatment applications, exhibiting exceptional selectivity for Pb(II) in complex ionic matrices and could be effectively regenerated via a relatively straightforward process. Furthermore, filtration and dynamic regeneration tests demonstrated that at an initial Pb(II) concentration of 5 mg/L, the membrane operated continuously for 10–13 h before regeneration, treating up to 200 L/m2 of wastewater before breakthrough, highlighting potential for cost-effective industrial wastewater treatment. This study not only demonstrates the high efficiency of the HFO-PVDF membrane for heavy metal ion removal but also provides a theoretical foundation and technical support for its practical application in water treatment. Full article
Show Figures

Figure 1

18 pages, 6684 KB  
Article
Poly(hexamethylene guanidine): An Effective Compound in Tackling Persistent Bacterial Subpopulations
by Weilin Liu, Jiang Zhang and Liang Chen
Microorganisms 2025, 13(9), 2002; https://doi.org/10.3390/microorganisms13092002 - 27 Aug 2025
Viewed by 477
Abstract
Persistent bacteria (PB) are a subpopulation of dormant cells that tolerate high antibiotic concentrations and cause chronic, hard-to-treat infections, posing a serious global health threat. In this study, the antibacterial efficacy of six cationic polymers, poly(hexamethylene guanidine) (PHMG), polyethyleneimines of different molecular weights, [...] Read more.
Persistent bacteria (PB) are a subpopulation of dormant cells that tolerate high antibiotic concentrations and cause chronic, hard-to-treat infections, posing a serious global health threat. In this study, the antibacterial efficacy of six cationic polymers, poly(hexamethylene guanidine) (PHMG), polyethyleneimines of different molecular weights, α-polylysine, ε-polylysine, and polyacrylamide, against persistent bacteria was systematically evaluated. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of these cationic polymers against susceptible and persistent methicillin-susceptible Staphylococcus aureus (MSSA), methicillin-resistant S. aureus (MRSA), and Escherichia coli (E. coli) were determined using a microbroth dilution method, while cytotoxicity to mouse fibroblast (L929) cells was assessed via MTT assay. PHMG demonstrated superior antibacterial activity, with MBC values as low as 2 μg/mL against persistent MSSA, markedly outperforming the other polymers tested. The key novelties of this work are (i) the first establishment of a cationic polymer library with diverse structural parameters for persistent bacteria clearance, offering a potential strategy for treating recalcitrant infections; and (ii) the elucidation of quantitative correlations between polymer charge density and hydrophobic chain segments with antimicrobial efficacy through structure–activity relationship analysis, providing a theoretical basis for the rational design of anti-persistent materials. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

Back to TopTop