Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = Pd(II) and Au(III) complexes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2802 KB  
Communication
Investigation of the Cytotoxicity of Cu(II), Au(III), and Pd(II) Complexes with 2,4-Dithiouracil and 6-Propyl-2-thiouracil Derivatives
by Petya Marinova, Denica Blazheva, Aleksandar Slavchev and Petia Genova-Kalou
BioTech 2025, 14(3), 53; https://doi.org/10.3390/biotech14030053 - 1 Jul 2025
Viewed by 534
Abstract
This study investigates the cytotoxic properties of metal complexes incorporating thio-uracil derivatives, specifically 2,4-dithiouracil and 6-propyl-2-thiouracil. The research focuses on the cytotoxic effects of Cu(II) and Pd(II) complexes with 6-propyl-2-thiouracil, as well as mixed-ligand transition metal Cu(II) and Au(III) complexes of 2,4-dithiouracil with [...] Read more.
This study investigates the cytotoxic properties of metal complexes incorporating thio-uracil derivatives, specifically 2,4-dithiouracil and 6-propyl-2-thiouracil. The research focuses on the cytotoxic effects of Cu(II) and Pd(II) complexes with 6-propyl-2-thiouracil, as well as mixed-ligand transition metal Cu(II) and Au(III) complexes of 2,4-dithiouracil with 2-thiouracil and uracil. Cytotoxic activity was assessed against human cervical carcinoma cells (HeLa) and normal kidney cells from the African green monkey. The results demonstrated that incorporating Cu(II) and Au(III) into the compound structures significantly enhanced their cytotoxic effects. Notably, all tested complexes exhibited a stronger inhibitory effect on cancer cell proliferation compared to normal cells, with the palladium(II) complex of 6-propyl-2-thiouracil showing the lowest CD50 value against the tumor cell line (0.00064 mM), which were 149 times lower than that of the ligand (0.0955 mM). These findings suggest that thio-uracil-based metal complexes, particularly those containing palladium (II) and gold(III), hold significant potential for further development as anticancer agents. Full article
(This article belongs to the Section Medical Biotechnology)
Show Figures

Graphical abstract

81 pages, 50947 KB  
Review
Towards Completion of the “Periodic Table” of Di-2-Pyridyl Ketoxime
by Christina Stamou, Christina D. Polyzou, Zoi G. Lada, Konstantis F. Konidaris and Spyros P. Perlepes
Molecules 2025, 30(4), 791; https://doi.org/10.3390/molecules30040791 - 8 Feb 2025
Viewed by 1150
Abstract
The oxime group is important in organic and inorganic chemistry. In most cases, this group is part of an organic molecule possessing one or more donor sites capable of forming bonds to metal ions. One family of such compounds is the group of [...] Read more.
The oxime group is important in organic and inorganic chemistry. In most cases, this group is part of an organic molecule possessing one or more donor sites capable of forming bonds to metal ions. One family of such compounds is the group of 2-pyridyl (aldo)ketoximes. Metal complexes of 2-pyridyl oximes continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their interesting structures, physical and biological properties, and applications. A unique member of 2-pyridyl ketoximes is di-2-pyridyl ketoxime (dpkoxH), which contains two 2-pyridyl groups and an oxime functionality that can be easily deprotonated giving the deprotonated ligand (dpkox). The extra 2-pyridyl site confers a remarkable flexibility resulting in metal complexes with exciting structural and reactivity features. Our and other research groups have prepared and characterized many metal complexes of dpkoxH and dpkox over the past 30 years or so. This work is an attempt to build a “periodic table” of dpkoxH, which is near completion. The filled spaces of this “periodic table” contain metal ions whose dpkoxH/dpkox complexes have been structurally characterized. This work reviews comprehensively the to-date published coordination chemistry of dpkoxH with emphasis on the syntheses, reactivity, relationship to metallacrown chemistry, structures, and properties of the metal complexes; selected unpublished results from our group are also reported. The sixteen coordination modes adopted by dpkoxH and dpkox have provided access to monomeric and dimeric complexes, trinuclear, tetranuclear, pentanuclear, hexanuclear, heptanuclear, enneanuclear, and decanuclear clusters, as well as to a small number of 1D coordination polymers. With few exceptions ({MIILnIII2} and {NiII2MnIII2}; M = Ni, Cu, Pd, and Ln = lanthanoid), most complexes are homometallic. The metals whose ions have yielded complexes with dpkoxH and dpkox are Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Ag, Cd, Re, Os, Ir, Au, Hg, lanthanoids (mainly Pr and Nd), and U. Most metal complexes are homovalent, but some mixed-valence Mn, Fe, and Co compounds have been studied. Metal ion-assisted/promoted transformations of dpkoxH, i.e., reactivity patterns of the coordinated ligand, are also critically discussed. Some perspectives concerning the coordination chemistry of dpkoxH and research work for the future are outlined. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Figure 1

44 pages, 14415 KB  
Review
Towards Construction of the “Periodic Table” of 1-Methylbenzotriazole
by Christina Stamou, Zoi G. Lada, Sophia Paschalidou, Christos T. Chasapis and Spyros P. Perlepes
Inorganics 2024, 12(8), 208; https://doi.org/10.3390/inorganics12080208 - 30 Jul 2024
Cited by 1 | Viewed by 1505
Abstract
Metal complexes of benzotriazole-type ligands continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their aesthetically beautiful structures, physical properties and applications. 1-methylbenzotriazole (Mebta) is the N-substituted archetype of the parent [...] Read more.
Metal complexes of benzotriazole-type ligands continue to attract the intense interest of many inorganic chemistry groups around the world for a variety of reasons, including their aesthetically beautiful structures, physical properties and applications. 1-methylbenzotriazole (Mebta) is the N-substituted archetype of the parent 1H-benzotriazole. The first attempt to build a “periodic table” of Mebta, which includes its complexes with several metal ions, is described in this work. This, at first glance, trivial ligand has led to interesting results in terms of the chemistry, structures and properties of its metal complexes. This work reviews the to-date published coordination chemistry of Mebta with Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), Cu(II), Zn(II), Pd(II), Au(I) and {UVIO2}2+, with emphasis on their preparations, reactivity, structures and properties. Unpublished results from our group comprising other Co(II), Ni(II), Cu(II) and Zn(II) complexes, as well as Cd(II), Hg(II), Ag(I), In(III) and Sn(IV) ones are briefly reported. Mebta can also provide access to 1D and 3D heterometallic thiocyanato-bridged Co(II)/Hg(II) and Ni(II)/Hg(II) compounds. In almost all cases, Mebta behaves as a monodentate ligand with the nitrogen of position 3 of the azole ring as the donor atom. However, there are two copper complexes in which this molecule adopts a bidentate bridging coordination behavior. Our efforts to complete the “periodic table” of Mebta are continued. Full article
Show Figures

Figure 1

28 pages, 3165 KB  
Review
Survey of Main Group Metals and Metalloids in Cancer Treatment
by Irena Kostova
Inorganics 2024, 12(1), 29; https://doi.org/10.3390/inorganics12010029 - 12 Jan 2024
Cited by 3 | Viewed by 3324
Abstract
Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups [...] Read more.
Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity. Along with the main representatives as potential therapeutic agents, such as the complexes Pt(II)/Pt(IV), Pd(II), Ru(II)/Ru(III), Ag(I), Au(I)/Au(III), Ti(IV), V(IV) and Ga(III), many other transition metal and lanthanide complexes possessing antiproliferative activity are widely discussed in the literature. However, such drugs remain outside the scope of this review. The main purpose of the current study is to review the potential activity of main group metal- and metalloid-based complexes against the most common cancer cell types, such as carcinomas (lung, liver, breast, kidney, gastric, colorectal, bladder, ovarian, cervical, prostate, etc.); sarcomas; blastomas; lymphomas; multiple myeloma; and melanoma. Overcoming the long disregard of organometallic compounds of metals and metalloids from the main groups, a growing number of emerging anticancer agents remarkably prove this field offers an extensive variety of new options for the design of innovative unexplored chemopharmaceutics. Moreover, some of the metal complexes and organometallic compounds from these elements can exhibit entirely different, specific modes of action and biological targets. Obviously, exploitation of their distinct properties deserves more attention. Full article
(This article belongs to the Special Issue Rational Design of Pharmacologically Active Metal-Based Compounds)
Show Figures

Figure 1

18 pages, 4465 KB  
Article
Crystal Design, Antitumor Activity and Molecular Docking of Novel Palladium(II) and Gold(III) Complexes with a Thiosemicarbazone Ligand
by Carolane M. Almeida, Érica C. M. Nascimento, João B. L. Martins, Tales H. A. da Mota, Diêgo M. de Oliveira and Claudia C. Gatto
Int. J. Mol. Sci. 2023, 24(14), 11442; https://doi.org/10.3390/ijms241411442 - 14 Jul 2023
Cited by 6 | Viewed by 2150
Abstract
The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction [...] Read more.
The current research describes the synthesis and characterization of 2-acetylpyridine N(4)-cyclohexyl-thiosemicarbazone ligand (HL) and their two metal complexes, [Au(L)Cl][AuCl2] (1) and [Pd(L)Cl]·DMF (2). The molecular structures of the compounds were determined by physicochemical and spectroscopic methods. Single crystal X-ray diffraction was employed in the structural elucidation of the new complexes. The complexes showed a square planar geometry to the metal center Au(III) and Pd(II), coordinated with a thiosemicarbazone molecule by the NNS-donor system and a chloride ion. Complex (1) also shows the [AuCl2] counter-ion in the asymmetric unit, and complex (2) has one DMF solvent molecule. These molecules play a key role in the formation of supramolecular structures due to different interactions. Noncovalent interactions were investigated through the 3D Hirshfeld surface by the dnorm function and the 2D fingerprint plots. The biological activity of the compounds was evaluated in vitro against the human glioma U251 cells. The cytotoxicity results revealed great antitumor activity in complex (1) compared with complex (2) and the free ligand. Molecular docking simulations were used to predict interactions and properties with selected proteins and DNA of the synthesized compounds. Full article
(This article belongs to the Special Issue The Design, Synthesis and Study of Metal Complexes)
Show Figures

Figure 1

13 pages, 3650 KB  
Article
Advancement of Fluorescent and Structural Properties of Bovine Serum Albumin-Gold Bioconjugates in Normal and Heavy Water with pH Conditioning and Ageing
by Bence Fehér, Judith Mihály, Attila Demeter, László Almásy, András Wacha, Zoltán Varga, Imre Varga, Jan Skov Pedersen and Attila Bóta
Nanomaterials 2022, 12(3), 390; https://doi.org/10.3390/nano12030390 - 25 Jan 2022
Cited by 1 | Viewed by 2802
Abstract
The red-emitting fluorescent properties of bovine serum albumin (BSA)–gold conjugates are commonly attributed to gold nanoclusters formed by metallic and ionized gold atoms, stabilized by the protein. Others argue that red fluorescence originates from gold cation–protein complexes instead, not gold nanoclusters. Our fluorescence [...] Read more.
The red-emitting fluorescent properties of bovine serum albumin (BSA)–gold conjugates are commonly attributed to gold nanoclusters formed by metallic and ionized gold atoms, stabilized by the protein. Others argue that red fluorescence originates from gold cation–protein complexes instead, not gold nanoclusters. Our fluorescence and infrared spectroscopy, neutron, and X-ray small-angle scattering measurements show that the fluorescence and structural behavior of BSA–Au conjugates are different in normal and heavy water, strengthening the argument for the existence of loose ionic gold–protein complexes. The quantum yield for red-emitting luminescence is higher in heavy water (3.5%) than normal water (2.4%), emphasizing the impact of hydration effects. Changes in red luminescence are associated with the perturbations of BSA conformations and alterations to interatomic gold–sulfur and gold–oxygen interactions. The relative alignment of domains I and II, II and III, III and IV of BSA, determined from small-angle scattering measurements, indicate a loose (“expanded-like”) structure at pH 12 (pD ~12); by contrast, at pH 7 (pD ~7), a more regular formation appears with an increased distance between the I and II domains, suggesting the localization of gold atoms in these regions. Full article
Show Figures

Graphical abstract

22 pages, 7746 KB  
Article
Efficient Recovery of Noble Metal Ions (Pd2+, Ag+, Pt2+, and Au3+) from Aqueous Solutions Using N,N'-Bis(salicylidene)ethylenediamine (Salen) as an Extractant (Classic Solvent Extraction) and Carrier (Polymer Membranes)
by Katarzyna Witt, Małgorzata A. Kaczorowska, Daria Bożejewicz and Włodzimierz Urbaniak
Membranes 2021, 11(11), 863; https://doi.org/10.3390/membranes11110863 - 9 Nov 2021
Cited by 6 | Viewed by 2843
Abstract
This paper presents the results of the first application of N,N'-bis(salicylidene)ethylenediamine (salen) as an extractant in classical liquid–liquid extraction and as a carrier in membrane processes designed for the recovery of noble metal ions (Pd2+, Ag+, Pt2+ [...] Read more.
This paper presents the results of the first application of N,N'-bis(salicylidene)ethylenediamine (salen) as an extractant in classical liquid–liquid extraction and as a carrier in membrane processes designed for the recovery of noble metal ions (Pd2+, Ag+, Pt2+, and Au3+) from aqueous solutions. In the case of the utilization of membranes, both sorption and desorption were investigated. Salen has not been used so far in the sorption processes of precious metal ions. Recovery experiments were performed on single-component solutions (containing only one type of metal ions) and polymetallic solutions (containing ions of all four metals). The stability constants of the obtained complexes were determined spectrophotometrically. In contrast, electrospray ionization high-resolution mass spectrometry (ESI-HRMS) was applied to examine the elemental composition and charge of the generated complexes of chosen noble metal ions and salen molecules. The results show the great potential of N,N'-bis(salicylidene)ethylenediamine as both an extractant and a carrier. In the case of single-component solutions, the extraction percentage was over 99% for all noble metal ions (molar ratio M:L of 1:1), and in the case of a polymetallic solution, it was the lowest, but over 94% for platinum ions and the highest value (over 99%) for gold ions. The percentages of sorption (%Rs) of metal ions from single-component solutions using polymer membranes containing N,N'-bis(salicylidene)ethylenediamine as a carrier were highest after 24 h of the process (93.23% for silver(I) ions, 74.99% for gold(III) ions, 69.11% and 66.13% for palladium(II) and platinum(II) ions, respectively), similar to the values obtained for the membrane process conducted in multi-metal solutions (92.96%, 84.26%, 80.94%, and 48.36% for Pd(II), Au(III), Ag(I), and Pt(II) ions, respectively). The percentage of desorption (%Rdes) was very high for single-component solutions (the highest, i.e., 99%, for palladium solution and the lowest, i.e., 88%, for silver solution), while for polymetallic solutions, these values were slightly lower (for Pt(II), it was the lowest at 63.25%). Full article
(This article belongs to the Special Issue Advanced Membrane Technology for Resource Recovery)
Show Figures

Figure 1

13 pages, 17234 KB  
Article
The Application of 2,6-Bis(4-Methoxybenzoyl)-Diaminopyridine in Solvent Extraction and Polymer Membrane Separation for the Recovery of Au(III), Ag(I), Pd(II) and Pt(II) Ions from Aqueous Solutions
by Daria Bożejewicz, Katarzyna Witt, Małgorzata A. Kaczorowska, Włodzimierz Urbaniak and Borys Ośmiałowski
Int. J. Mol. Sci. 2021, 22(17), 9123; https://doi.org/10.3390/ijms22179123 - 24 Aug 2021
Cited by 10 | Viewed by 2890
Abstract
The work describes the results of the first application of 2,6-bis(4-methoxybenzoyl)-diaminopyridine (L) for the recovery of noble metal ions (Au(III), Ag(I), Pd(II), Pt(II)) from aqueous solutions using two different separation processes: dynamic (classic solvent extraction) and static (polymer membranes). The stability [...] Read more.
The work describes the results of the first application of 2,6-bis(4-methoxybenzoyl)-diaminopyridine (L) for the recovery of noble metal ions (Au(III), Ag(I), Pd(II), Pt(II)) from aqueous solutions using two different separation processes: dynamic (classic solvent extraction) and static (polymer membranes). The stability constants of the complexes formed by the L with noble metal ions were determined using the spectrophotometry method. The results of the performed experiments clearly show that 2,6-bis(4-methoxybenzoyl)-diaminopyridine is an excellent extractant, as the recovery was over 99% for all studied noble metal ions. The efficiency of 2,6-bis(4-methoxybenzoyl)-diaminopyridine as a carrier in polymer membranes after 24 h of sorption was lower; the percentage of metal ions removal from the solutions (%Rs) decreased in following order: Ag(I) (94.89%) > Au(III) (63.46%) > Pt(II) (38.99%) > Pd(II) (23.82%). The results of the desorption processes carried out showed that the highest percentage of recovery was observed for gold and silver ions (over 96%) after 48 h. The results presented in this study indicate the potential practical applicability of 2,6-bis(4-methoxybenzoyl)-diaminopyridine in the solvent extraction and polymer membrane separation of noble metal ions from aqueous solutions (e.g., obtained as a result of WEEE leaching or industrial wastewater). Full article
Show Figures

Figure 1

12 pages, 1794 KB  
Article
Separation and Recovery of Gold(III), Palladium(II) and Platinum(IV) by Solvent Extraction Using a New β-Diketone Derivative from Acidic Solutions
by Elzbieta Radzyminska-Lenarcik, Ilona Pyszka and Artur Kosciuszko
Materials 2021, 14(16), 4436; https://doi.org/10.3390/ma14164436 - 8 Aug 2021
Cited by 13 | Viewed by 3143
Abstract
This study indicates that a new amine derivative of β-diketone (EDAB-acac) can be successfully used in an acidic medium (HCl) to separate a mixture containing Au(III), Pd(II), and Pt(IV) ions using solvent extraction. The study was conducted in single and ternary model solutions. [...] Read more.
This study indicates that a new amine derivative of β-diketone (EDAB-acac) can be successfully used in an acidic medium (HCl) to separate a mixture containing Au(III), Pd(II), and Pt(IV) ions using solvent extraction. The study was conducted in single and ternary model solutions. The impact of acid concentration and the type of solvent (toluene, chloroform, methylene chloride, 2-ethylhexanol) on separation efficiency was discussed. It has been shown that increasing the HCl concentration in the aqueous phase does not favor extraction. In contrast, solvents with high donor numbers (methylene chloride, 2-ethylhexanol) increase both the extraction percentage of Pd and Au as well as the separation coefficients of Pd in relation to Au and Pt. The palladium(II) and gold(III) (which form 4-coordinated planar [MCl4]2− complexes) are extracted most efficiently, Pd(II) (87–93%) and Au(III) (56–62%). The stripping of Au(III), Pd(II), and Pt(IV) ions from the EDAB-acac-methylene chloride phase was also investigated using 0.5 M ammonia aq., mineral acid (5 M HCl, 5 M HNO3), 0.1 M thiourea in HCl and 0.5 M ammonium thiocyanate. A 3-step stripping process was proposed for the recovery of Pd(II), Au(III), and Pt(IV) from the Pd-Au-Pt mixture in the EDAB-acac-methylene chloride system. In the first stage, the aqueous phase is treated with 5 M HNO3 (Pt separation), followed by the application of 0.5 M ammonia (Pd separation) and, finally, 0.1 M thiourea in HCl (Au separation). The solvent extraction with EDAB-acac in acidic medium (HCl) can be used for separation of Pd(II) and Au(III) ions from e-waste leach solutions. Full article
(This article belongs to the Special Issue New Compounds, Materials and Extracting Systems )
Show Figures

Graphical abstract

19 pages, 3975 KB  
Article
Characterization and Structural Insights of the Reaction Products by Direct Leaching of the Noble Metals Au, Pd and Cu with N,N′-Dimethyl-piperazine-2,3-dithione/I2 Mixtures
by Angela Serpe, Luca Pilia, Davide Balestri, Luciano Marchiò and Paola Deplano
Molecules 2021, 26(16), 4721; https://doi.org/10.3390/molecules26164721 - 4 Aug 2021
Cited by 9 | Viewed by 2338
Abstract
In the context of new efficient and safe leaching agents for noble metals, this paper describes the capability of the Me2pipdt/I2 mixture (where Me2pipdt = N,N′-dimethyl-piperazine-2,3-dithione) in organic solutions to quantitatively dissolve Au, Pd, and Cu metal powders [...] Read more.
In the context of new efficient and safe leaching agents for noble metals, this paper describes the capability of the Me2pipdt/I2 mixture (where Me2pipdt = N,N′-dimethyl-piperazine-2,3-dithione) in organic solutions to quantitatively dissolve Au, Pd, and Cu metal powders in mild conditions (room temperature and pressure) and short times (within 1 h in the reported conditions). A focus on the structural insights of the obtained coordination compounds is shown, namely [AuI2(Me2pipdt)]I3 (1), [Pd(Me2pipdt)2]I2 (2a) and [Cu(Me2pipdt)2]I3 (3), where the metals are found, respectively, in 3+, 2+ and 1+ oxidation states, and of [Cu(Me2pipdt)2]BF4 (4) and [Cu(Me2dazdt)2]I3 (5) (Me2dazdt = N,N′-dimethyl-perhydrodizepine-2,3-dithione) compared with 3. Au(III) and Pd(II) (d8 configuration) form square–planar complexes, whereas Cu(I) (d10) forms tetrahedral complexes. Density functional theory calculations performed on the cationic species of 15 help to highlight the nature of the bonding in the different complexes. Finally, the valorization of the noble metals-rich leachates is assessed. Specifically, gold metal is quantitatively recovered from the solution besides the ligands, showing the potential of these systems to promote metal recycling processes. Full article
(This article belongs to the Special Issue Recovery and Optical Application of Noble Metals Compound)
Show Figures

Graphical abstract

13 pages, 6110 KB  
Article
Reactivity and Chemical Sintering of Carey Lea Silver Nanoparticles
by Sergey Vorobyev, Elena Vishnyakova, Maxim Likhatski, Alexander Romanchenko, Ivan Nemtsev and Yuri Mikhlin
Nanomaterials 2019, 9(11), 1525; https://doi.org/10.3390/nano9111525 - 26 Oct 2019
Cited by 14 | Viewed by 4287
Abstract
Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized [...] Read more.
Carey Lea silver hydrosol is a rare example of very concentrated colloidal solutions produced with citrate as only protective ligands, and prospective for a wide range of applications, whose properties have been insufficiently studied up to now. Herein, the reactivity of the immobilized silver nanoparticles toward oxidation, sulfidation, and sintering upon their interaction with hydrogen peroxide, sulfide ions, and chlorocomplexes of Au(III), Pd(II), and Pt(IV) was investigated using SEM and X-ray photoelectron spectroscopy (XPS). The reactions decreased the number of carboxylic groups of the citrate-derived capping and promoted coalescence of 7 nm Ag NPs into about 40 nm ones, excluding the interaction with hydrogen peroxide. The increased nanoparticles form loose submicrometer aggregates in the case of sulfide treatment, raspberry-like micrometer porous particles in the media containing Pd(II) chloride, and densely sintered particles in the reaction with inert H2PtCl6 complexes, probably via the formation of surface Ag-Pt alloys. The exposure of Ag NPs to HAuCl4 solution produced compact Ag films along with nanocrystals of Au metal and minor Ag and AgCl. The results are promising for chemical ambient temperature sintering and rendering silver-based nanomaterials, for example, for flexible electronics, catalysis, and other applications. Full article
Show Figures

Figure 1

Back to TopTop