Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = PhosFate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4432 KB  
Article
Impact of Land Use and Climate Change on Streamflow: An Assessment Using a Semi-Empirical Model in the Guishui Watershed of North China
by Chunni Gao, Mark Honti, Jinhua Cheng and Tao Wang
Land 2024, 13(6), 725; https://doi.org/10.3390/land13060725 - 22 May 2024
Viewed by 1326
Abstract
Land-use change may significantly influence streamflow. The semi-empirical model PhosFate was used to analyze the impact of land use and climate change on streamflow by choosing the Guishui watershed as a pilot site and then expanding, applying it to all of North China. [...] Read more.
Land-use change may significantly influence streamflow. The semi-empirical model PhosFate was used to analyze the impact of land use and climate change on streamflow by choosing the Guishui watershed as a pilot site and then expanding, applying it to all of North China. The Guishui watershed (North Beijing, China) has experienced a dramatic decline in its streamflow in recent decades. Parallel to this, significant land-use change has happened in this area; afforestation programs have increased forest cover from 41% (1980) to 59% (2013) and a similar increase in forest cover can also be observed in North China. Managing flow decline requires separating climatic and direct human-influenced effects. The results showed the following: (1) Afforestation is a major factor that decreased total flow in the Guishui watershed from 1996 to 2014; total flow increased by around 24% more than the actual dataset in the constant scenario (no afforestation) and decreased by 5% more than the actual dataset in the forest scenario (all agriculture land use transferred to forests). (2) When forest coverage increases, the Qinghai–Tibet Plateau and the Loess Plateau are the most sensitive areas regarding total flow in North China; the total flow change rate increased by up to 25% in these two areas when land use shifted from sparse vegetation to mixed forests. After analyzing the contributions of these two factors, we formulated recommendations on future afforestation practices for North China. In the central–north and northwest districts, the annual precipitation is under 520 mm and 790 mm, respectively, and the practice of afforestation should be more carefully planned to prevent severe damage to streams. This research also proved that the PhosFate model can be used in North China, which would be a practical tool for watershed management. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

22 pages, 6892 KB  
Article
3D Printing of Alginate-Natural Clay Hydrogel-Based Nanocomposites
by Rebeca Leu Alexa, Raluca Ianchis, Diana Savu, Mihaela Temelie, Bogdan Trica, Andrada Serafim, George Mihail Vlasceanu, Elvira Alexandrescu, Silviu Preda and Horia Iovu
Gels 2021, 7(4), 211; https://doi.org/10.3390/gels7040211 - 14 Nov 2021
Cited by 26 | Viewed by 5025
Abstract
Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. [...] Read more.
Biocompatibility, biodegradability, shear tinning behavior, quick gelation and an easy crosslinking process makes alginate one of the most studied polysaccharides in the field of regenerative medicine. The main purpose of this study was to obtain tissue-like materials suitable for use in bone regeneration. In this respect, alginate and several types of clay were investigated as components of 3D-printing, nanocomposite inks. Using the extrusion-based nozzle, the nanocomposites inks were printed to obtain 3D multilayered scaffolds. To observe the behavior induced by each type of clay on alginate-based inks, rheology studies were performed on composite inks. The structure of the nanocomposites samples was examined using Fourier Transform Infrared Spectrometry and X-ray Diffraction (XRD), while the morphology of the 3D-printed scaffolds was evaluated using Electron Microscopy (SEM, TEM) and Micro-Computed Tomography (Micro-CT). The swelling and dissolvability of each composite scaffold in phosfate buffer solution were followed as function of time. Biological studies indicated that the cells grew in the presence of the alginate sample containing unmodified clay, and were able to proliferate and generate calcium deposits in MG-63 cells in the absence of specific signaling molecules. This study provides novel information on potential manufacturing methods for obtaining nanocomposite hydrogels suitable for 3D printing processes, as well as valuable information on the clay type selection for enabling accurate 3D-printed constructs. Moreover, this study constitutes the first comprehensive report related to the screening of several natural clays for the additive manufacturing of 3D constructs designed for bone reconstruction therapy. Full article
(This article belongs to the Special Issue Gels for Bioprinting)
Show Figures

Figure 1

19 pages, 6632 KB  
Article
Assessing the Impact of Storm Drains at Road Embankments on Diffuse Particulate Phosphorus Emissions in Agricultural Catchments
by Gerold Hepp and Matthias Zessner
Water 2019, 11(10), 2161; https://doi.org/10.3390/w11102161 - 17 Oct 2019
Cited by 4 | Viewed by 4557
Abstract
This study presents a simple mapping key suitable for quick and systematic assessments of the types of agricultural and civil engineering structures present in a certain agricultural catchment as well as the impact they may have on the spatial distribution of critical source [...] Read more.
This study presents a simple mapping key suitable for quick and systematic assessments of the types of agricultural and civil engineering structures present in a certain agricultural catchment as well as the impact they may have on the spatial distribution of critical source areas. An application of this mapping key to three small sub-catchments of a case study catchment with an area of several hundred square kilometres (one-stage cluster sampling) in Austria clearly reveals that road embankments with subsurface drainage can exert a major influence on emissions and transport pathways of sediment-bound pollutants like particulate phosphorus (PP). Due to this, the semi-empirical, spatially distributed PhosFate model is extended to separately model PP emissions into surface waters via storm drains along road embankments. Furthermore, the overall share of road embankments with subsurface drainage on all road embankments in the case study catchment is inferred with the help of a Bayesian hierarchical model. The combination of the results of these two models shows that the share of storm drains at road embankments on total PP emissions ranges from about one fifth to one third in the investigated area. Full article
(This article belongs to the Special Issue Monitoring, Modelling and Management of Water Quality)
Show Figures

Figure 1

13 pages, 846 KB  
Article
Controlling River Eutrophication under Conflicts of Interests—A GIS Modeling Approach
by Mark Honti
Water 2015, 7(9), 5078-5090; https://doi.org/10.3390/w7095078 - 18 Sep 2015
Cited by 4 | Viewed by 4708
Abstract
Stream networks are highly complex systems, in which spatially complicated and temporally varying water quality patterns develop. River eutrophication is underlain by nutrient inputs across the entire stream network and is controlled by many interacting factors in an ever moving and renewing medium. [...] Read more.
Stream networks are highly complex systems, in which spatially complicated and temporally varying water quality patterns develop. River eutrophication is underlain by nutrient inputs across the entire stream network and is controlled by many interacting factors in an ever moving and renewing medium. These complex features must be perceived as a whole entity to control river eutrophication. The Szamos River is one of the largest tributaries of the Tisza River in Eastern Europe. It delivers high loads of nutrients and algal biomass and fundamentally influences the hydro-morphological, chemical and ecological status of the Tisza River. To improve the ecological status of the recipient river, nutrient and phytoplankton inputs from the tributary should be controlled, yet the two rivers belong to different countries, which are reluctant to harmonize management plans. This study aims at modeling trophic status of the tributary with the PhosFate nutrient emission model to outline a set of management measures that would satisfy both countries. Four management alternatives are analysed with altered landuse patterns, and management options. Each of these alternatives is evaluated against the present conditions. Full article
Show Figures

Figure 1

Back to TopTop