Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Polarimetric Radio Occultations (PRO)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1750 KB  
Article
Evaluating the Polarimetric Radio Occultation Technique Using NEXRAD Weather Radars
by Antía Paz, Ramon Padullés and Estel Cardellach
Remote Sens. 2024, 16(7), 1118; https://doi.org/10.3390/rs16071118 - 22 Mar 2024
Cited by 1 | Viewed by 1585
Abstract
Currently, it remains a challenge to effectively monitor areas experiencing intense precipitation and the associated atmospheric conditions on a global scale. This challenge arises due to the limitations on both active and passive remote sensing methods. Apart from the lack of observations in [...] Read more.
Currently, it remains a challenge to effectively monitor areas experiencing intense precipitation and the associated atmospheric conditions on a global scale. This challenge arises due to the limitations on both active and passive remote sensing methods. Apart from the lack of observations in remote areas, the quality of some observations deteriorates when heavy precipitation is present, making it difficult to obtain highly accurate measurements of the thermodynamic parameters driving these weather events. However, there is a promising solution in the form of the Global Navigation Satellite System (GNSS) Polarimetric Radio Occultation (PRO) technique. This approach provides a way to assess the large-scale bulk-hydrometeor characteristics of regions with heavy precipitation and the meteorological conditions associated with them. PRO offers vertical profiles of atmospheric variables, including temperature, pressure, water vapor pressure, and information about hydrometeors, all in a single fine-vertical resolution observation. To continue validating the PRO technique, we make use of polarimetric weather data from Next Generation Weather Radars (NEXRAD), focusing on comparing specific differential phase shift (Kdp) structures to PRO observable differential phase shift (ΔΦ). We have seen that PAZ and NEXRAD exhibit a good agreement on the vertical structure of the observable ΔΦ and that their combination could be useful for enhancing our understanding of the microphysics underlying heavy precipitation events. Full article
Show Figures

Graphical abstract

26 pages, 2833 KB  
Article
Distinguishing Convective-Transition Moisture-Temperature Relationships with a Constellation of Polarimetric Radio Occultation Observations in and near Convection
by F. Joseph Turk, Ramon Padullés, David D. Morabito, Todd Emmenegger and J. David Neelin
Atmosphere 2022, 13(2), 259; https://doi.org/10.3390/atmos13020259 - 2 Feb 2022
Cited by 4 | Viewed by 2811
Abstract
Convective transition statistics serve as diagnostics for the parameterization of convection in climate and weather forecast models by characterizing the dependence of convection on the humidity-temperature environment. The observed strong pickup of precipitation as a function of layer-averaged water vapor and temperature is [...] Read more.
Convective transition statistics serve as diagnostics for the parameterization of convection in climate and weather forecast models by characterizing the dependence of convection on the humidity-temperature environment. The observed strong pickup of precipitation as a function of layer-averaged water vapor and temperature is captured in models with varying accuracy. For independent observational verification, a low-Earth orbiting satellite constellation of Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) measurements would be spaced such that adjacent RO would capture different profiles within and immediately adjacent to convection. Here, the number of profile observations needed to distinguish between convective transition relations by different tropospheric temperature ranges is determined, over different tropical oceanic basins. To obtain these, orbit simulations were performed by flying different satellite constellations over global precipitation from the Global Precipitation Measurement (GPM) mission, varying the numbers of satellites, orbit altitude, and inclination. A 45-degree orbit inclination was found to be a good tradeoff between maximizing the number of observations collected per day, and the desired 50–150-km spacing between individual RO ray paths. Assuming a set of reasonable assumptions for net data yield, three tropospheric temperatures can be distinguished by 1 K with a six-month on-orbit duration from a constellation of at least three satellites. Full article
(This article belongs to the Special Issue Advances in GNSS Radio Occultation Technique and Applications)
Show Figures

Figure 1

19 pages, 6117 KB  
Article
Benefits of a Closely-Spaced Satellite Constellation of Atmospheric Polarimetric Radio Occultation Measurements
by F. Joseph Turk, Ramon Padullés, Chi O. Ao, Manuel de la Torre Juárez, Kuo-Nung Wang, Garth W. Franklin, Stephen T. Lowe, Svetla M. Hristova-Veleva, Eric J. Fetzer, Estel Cardellach, Yi-Hung Kuo and J. David Neelin
Remote Sens. 2019, 11(20), 2399; https://doi.org/10.3390/rs11202399 - 16 Oct 2019
Cited by 13 | Viewed by 4061
Abstract
The climate and weather forecast predictive capability for precipitation intensity is limited by gaps in the understanding of basic cloud-convective processes. Currently, a better understanding of the cloud-convective process lacks observational constraints, due to the difficulty in obtaining accurate, vertically resolved pressure, temperature, [...] Read more.
The climate and weather forecast predictive capability for precipitation intensity is limited by gaps in the understanding of basic cloud-convective processes. Currently, a better understanding of the cloud-convective process lacks observational constraints, due to the difficulty in obtaining accurate, vertically resolved pressure, temperature, and water vapor structure inside and near convective clouds. This manuscript describes the potential advantages of collecting sequential radio occultation (RO) observations from a constellation of closely spaced low Earth-orbiting satellites. In this configuration, the RO tangent points tend to cluster together, such that successive RO ray paths are sampling independent air mass quantities as the ray paths lie “parallel” to one another. When the RO train orbits near a region of precipitation, there is a probability that one or more of the RO ray paths will intersect the region of heavy precipitation, and one or more would lie outside. The presence of heavy precipitation can be discerned by the use of the polarimetric RO (PRO) technique recently demonstrated by the Radio Occultations through Heavy Precipitation (ROHP) receiver onboard the Spanish PAZ spacecraft. This sampling strategy provides unique, near-simultaneous observations of the water vapor profile inside and in the environment surrounding heavy precipitation, which are not possible from current RO data. Full article
(This article belongs to the Special Issue GPS/GNSS for Earth Science and Applications)
Show Figures

Graphical abstract

25 pages, 3092 KB  
Article
The Potential for Discriminating Microphysical Processes in Numerical Weather Forecasts Using Airborne Polarimetric Radio Occultations
by Michael J. Murphy, Jennifer S. Haase, Ramon Padullés, Shu-Hua Chen and Margaret A. Morris
Remote Sens. 2019, 11(19), 2268; https://doi.org/10.3390/rs11192268 - 28 Sep 2019
Cited by 14 | Viewed by 4012
Abstract
Accurate representation of cloud microphysical processes in numerical weather and climate models has proven challenging, in part because of the highly specialized instrumentation required for diagnosing errors in simulated distributions of hydrometeors. Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a [...] Read more.
Accurate representation of cloud microphysical processes in numerical weather and climate models has proven challenging, in part because of the highly specialized instrumentation required for diagnosing errors in simulated distributions of hydrometeors. Global Navigation Satellite System (GNSS) polarimetric radio occultation (PRO) is a promising new technique that is sensitive to hydrometeors and has the potential to help address these challenges by providing microphysical observations that are relevant to larger spatial scales, especially if this type of observing system can be implemented on aircraft that can target heavy precipitation events. Two numerical experiments were run using a mesoscale model configured with two different microphysical parameterization schemes for a very intense atmospheric river (AR) event that was sampled by aircraft deploying dropsondes just before it made landfall in California, during the CalWater 2015 field campaign. The numerical experiments were used to simulate profiles of airborne polarimetric differential phase delay observations. The differential phase delay due to liquid water hydrometeors below the freezing level differed significantly in the two experiments, as well as the height of the maximum differential phase delay due to all hydrometeors combined. These results suggest that PRO observations from aircraft have the potential to contribute to validating and improving the representation of microphysical processes in numerical weather forecasts once these observations become available. Full article
(This article belongs to the Special Issue Radar Polarimetry—Applications in Remote Sensing of the Atmosphere)
Show Figures

Figure 1

Back to TopTop