Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Poldip2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7445 KiB  
Article
Old Passengers as New Drivers: Chromosomal Passenger Proteins Engage in Translesion Synthesis
by Katharina Falke, Elisabeth Schröder, Stefanie Mosel, Cansu N. Yürük, Sophie Feldmann, Désirée Gül, Paul Stahl, Roland H. Stauber and Shirley K. Knauer
Cells 2024, 13(21), 1804; https://doi.org/10.3390/cells13211804 - 31 Oct 2024
Viewed by 1298
Abstract
Survivin is known for its dual biological role in apoptosis inhibition and mitotic progression. In addition to its being part of the chromosomal passenger complex (CPC), recent findings suggest additional roles for Survivin in the DNA damage response, further contributing to therapy resistance. [...] Read more.
Survivin is known for its dual biological role in apoptosis inhibition and mitotic progression. In addition to its being part of the chromosomal passenger complex (CPC), recent findings suggest additional roles for Survivin in the DNA damage response, further contributing to therapy resistance. In this study, we investigated the role of Survivin and the CPC proteins in the cellular response to irradiation with a focus on DNA replication processes. As is known, ionizing radiation leads to an increased expression of Survivin and its accumulation in nuclear foci, which we now know to be specifically localized to centromeric heterochromatin. The depletion of Survivin and Aurora B increases the DNA damage marker γH2AX, indicative of an impaired repair capacity. The presence of Survivin and the CPC in nuclear foci that we already identified during the S phase co-localize with the proliferating cell nuclear antigen (PCNA), further implying a potential role during replication. Indeed, Survivin knockdown reduced replication fork speed as assessed via DNA fiber assays. Mechanistically, we identified a PIP-box motif in INCENP mediating the interaction with PCNA to assist in managing damage-induced replication stress. Survivin depletion forces cells to undergo unphysiological genome replication via mitotic DNA synthesis (MiDAS), resulting in chromosome breaks. Finally, we revealed that Aurora B kinase liberates Pol η by phosphorylating polymerase delta-interacting protein 2 (POLDIP2) to resume the replication of damaged sites via translesion synthesis. In this study, we assigned a direct function to the CPC in the transition from stalled replication forks to translesion synthesis, further emphasizing the ubiquitous overexpression of Survivin particularly in tumors. This study, for the first time, assigns a direct function to the chromosomal passenger complex, CPC, including Survivin, Aurora B kinase, Borealin, and INCENP, in the transition from stalled replication forks (involving PCNA binding) to translesion synthesis (liberating Pol η by phosphorylating POLDIP2), and thus in maintaining genomic integrity. Full article
Show Figures

Graphical abstract

10 pages, 1987 KiB  
Review
POLDIP3: At the Crossroad of RNA and DNA Metabolism
by Manrose Singh, Sufang Zhang, Alexis M. Perez, Ernest Y. C. Lee, Marietta Y. W. T. Lee and Dong Zhang
Genes 2022, 13(11), 1921; https://doi.org/10.3390/genes13111921 - 22 Oct 2022
Cited by 2 | Viewed by 2545
Abstract
POLDIP3 was initially identified as a DNA polymerase delta (Pol δ) interacting protein almost twenty years ago. Intriguingly, it also interacts with proteins involved in a variety of RNA related biological processes, such as transcription, pre-mRNA splicing, mRNA export, and translation. Studies in [...] Read more.
POLDIP3 was initially identified as a DNA polymerase delta (Pol δ) interacting protein almost twenty years ago. Intriguingly, it also interacts with proteins involved in a variety of RNA related biological processes, such as transcription, pre-mRNA splicing, mRNA export, and translation. Studies in recent years revealed that POLDIP3 also plays critical roles in disassembling genome wide R-loop formation and activating the DNA damage checkpoint in vivo. Here, we review the functions of POLDIP3 in various RNA and DNA related cellular processes. We then propose a unified model to illustrate how POLDIP3 plays such a versatile role at the crossroad of the RNA and DNA metabolism. Full article
(This article belongs to the Special Issue DNA Replication/Repair, and the DNA Damage Response in Human Disease)
Show Figures

Figure 1

30 pages, 2907 KiB  
Review
The Bacterial ClpXP-ClpB Family Is Enriched with RNA-Binding Protein Complexes
by Georg Auburger, Jana Key and Suzana Gispert
Cells 2022, 11(15), 2370; https://doi.org/10.3390/cells11152370 - 2 Aug 2022
Cited by 8 | Viewed by 4517
Abstract
In the matrix of bacteria/mitochondria/chloroplasts, Lon acts as the degradation machine for soluble proteins. In stress periods, however, proteostasis and survival depend on the strongly conserved Clp/Hsp100 family. Currently, the targets of ATP-powered unfoldases/disaggregases ClpB and ClpX and of peptidase ClpP heptameric rings [...] Read more.
In the matrix of bacteria/mitochondria/chloroplasts, Lon acts as the degradation machine for soluble proteins. In stress periods, however, proteostasis and survival depend on the strongly conserved Clp/Hsp100 family. Currently, the targets of ATP-powered unfoldases/disaggregases ClpB and ClpX and of peptidase ClpP heptameric rings are still unclear. Trapping experiments and proteome profiling in multiple organisms triggered confusion, so we analyzed the consistency of ClpP-trap targets in bacteria. We also provide meta-analyses of protein interactions in humans, to elucidate where Clp family members are enriched. Furthermore, meta-analyses of mouse complexomics are provided. Genotype–phenotype correlations confirmed our concept. Trapping, proteome, and complexome data retrieved consistent coaccumulation of CLPXP with GFM1 and TUFM orthologs. CLPX shows broad interaction selectivity encompassing mitochondrial translation elongation, RNA granules, and nucleoids. CLPB preferentially attaches to mitochondrial RNA granules and translation initiation components; CLPP is enriched with them all and associates with release/recycling factors. Mutations in CLPP cause Perrault syndrome, with phenotypes similar to defects in mtDNA/mtRNA. Thus, we propose that CLPB and CLPXP are crucial to counteract misfolded insoluble protein assemblies that contain nucleotides. This insight is relevant to improve ClpP-modulating drugs that block bacterial growth and for the treatment of human infertility, deafness, and neurodegeneration. Full article
Show Figures

Figure 1

15 pages, 4352 KiB  
Article
MicroRNA 148a Suppresses Tuberculous Fibrosis by Targeting NOX4 and POLDIP2
by Seong Ji Woo, Youngmi Kim, Harry Jung, Jae Jun Lee and Ji Young Hong
Int. J. Mol. Sci. 2022, 23(6), 2999; https://doi.org/10.3390/ijms23062999 - 10 Mar 2022
Cited by 7 | Viewed by 2675
Abstract
Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software [...] Read more.
Extracellular matrix production by pleural mesothelial cells in response to Mycobacterium tuberculosis contributes to tuberculous fibrosis. NOX4 is involved in the pathogenesis of tuberculous fibrosis. In this study, we evaluated whether NOX4 gene-targeting microRNAs showed protective effects in tuberculosis fibrosis. TargetScan prediction software was used to identify candidate microRNAs that bind the 3′ UTRs of NOX4, and microRNA-148a (miR-148a) was selected as the best miRNA candidate. A repressed and forced expression assay in Met5A cells was performed to investigate the causal relationship between miR-148a and NOX4. The role of miR-148a in tuberculous pleural fibrosis was studied using a murine model of Mycobacterium bovis bacillus Calmette–Guérin (BCG) pleural infection. Heat-killed M. tuberculosis (HKMT) induces NOX4 and POLDIP2 expression. We demonstrated the inhibitory effect of miR-148a on NOX4 and POLDIP2 expression. The increased expression of miR-148a suppressed HKMT-induced collagen-1A synthesis in PMC cells. In the BCG pleurisy model, miR-148a significantly reduced fibrogenesis and epithelial mesenchymal transition. High levels of miR-148a in tuberculous pleural effusion can be interpreted as a self-limiting homeostatic response. Our data indicate that miR-148a may protect against tuberculous pleural fibrosis by regulating NOX4 and POLDIP2. Full article
(This article belongs to the Special Issue Fibroblasts in Health and Disease)
Show Figures

Figure 1

29 pages, 31340 KiB  
Article
Inactivity of Peptidase ClpP Causes Primary Accumulation of Mitochondrial Disaggregase ClpX with Its Interacting Nucleoid Proteins, and of mtDNA
by Jana Key, Sylvia Torres-Odio, Nina C. Bach, Suzana Gispert, Gabriele Koepf, Marina Reichlmeir, A. Phillip West, Holger Prokisch, Peter Freisinger, William G. Newman, Stavit Shalev, Stephan A. Sieber, Ilka Wittig and Georg Auburger
Cells 2021, 10(12), 3354; https://doi.org/10.3390/cells10123354 - 29 Nov 2021
Cited by 10 | Viewed by 5409
Abstract
Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with progressive neurological deficits. Mouse models showed [...] Read more.
Biallelic pathogenic variants in CLPP, encoding mitochondrial matrix peptidase ClpP, cause a rare autosomal recessive condition, Perrault syndrome type 3 (PRLTS3). It is characterized by primary ovarian insufficiency and early sensorineural hearing loss, often associated with progressive neurological deficits. Mouse models showed that accumulations of (i) its main protein interactor, the substrate-selecting AAA+ ATPase ClpX, (ii) mitoribosomes, and (iii) mtDNA nucleoids are the main cellular consequences of ClpP absence. However, the sequence of these events and their validity in human remain unclear. Here, we studied global proteome profiles to define ClpP substrates among mitochondrial ClpX interactors, which accumulated consistently in ClpP-null mouse embryonal fibroblasts and brains. Validation work included novel ClpP-mutant patient fibroblast proteomics. ClpX co-accumulated in mitochondria with the nucleoid component POLDIP2, the mitochondrial poly(A) mRNA granule element LRPPRC, and tRNA processing factor GFM1 (in mouse, also GRSF1). Only in mouse did accumulated ClpX, GFM1, and GRSF1 appear in nuclear fractions. Mitoribosomal accumulation was minor. Consistent accumulations in murine and human fibroblasts also affected multimerizing factors not known as ClpX interactors, namely, OAT, ASS1, ACADVL, STOM, PRDX3, PC, MUT, ALDH2, PMPCB, UQCRC2, and ACADSB, but the impact on downstream metabolites was marginal. Our data demonstrate the primary impact of ClpXP on the assembly of proteins with nucleic acids and show nucleoid enlargement in human as a key consequence. Full article
(This article belongs to the Section Mitochondria)
Show Figures

Graphical abstract

20 pages, 4556 KiB  
Article
Mass Spectrometry-Based Proteomic Discovery of Prognostic Biomarkers in Adrenal Cortical Carcinoma
by Han Na Jang, Sun Joon Moon, Kyeong Cheon Jung, Sang Wan Kim, Hyeyoon Kim, Dohyun Han and Jung Hee Kim
Cancers 2021, 13(15), 3890; https://doi.org/10.3390/cancers13153890 - 2 Aug 2021
Cited by 20 | Viewed by 3626
Abstract
Adrenal cortical carcinoma (ACC) is an extremely rare disease with a variable prognosis. Current prognostic markers have limitations in identifying patients with a poor prognosis. Herein, we aimed to investigate the prognostic protein biomarkers of ACC using mass-spectrometry-based proteomics. We performed the liquid [...] Read more.
Adrenal cortical carcinoma (ACC) is an extremely rare disease with a variable prognosis. Current prognostic markers have limitations in identifying patients with a poor prognosis. Herein, we aimed to investigate the prognostic protein biomarkers of ACC using mass-spectrometry-based proteomics. We performed the liquid chromatography–tandem mass spectrometry (LC–MS/MS) using formalin-fixed paraffin-embedded (FFPE) tissues of 45 adrenal tumors. Then, we selected 117 differentially expressed proteins (DEPs) among tumors with different stages using the machine learning algorithm. Next, we conducted a survival analysis to assess whether the levels of DEPs were related to survival. Among 117 DEPs, HNRNPA1, C8A, CHMP6, LTBP4, SPR, NCEH1, MRPS23, POLDIP2, and WBSCR16 were significantly correlated with the survival of ACC. In age- and stage-adjusted Cox proportional hazard regression models, only HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 expression remained significant. These five proteins were also validated in TCGA data as the prognostic biomarkers. In this study, we found that HNRNPA1, LTBP4, MRPS23, POLDIP2, and WBSCR16 were protein biomarkers for predicting the prognosis of ACC. Full article
(This article belongs to the Special Issue Advanced Neuroendocrine Tumors)
Show Figures

Graphical abstract

14 pages, 4141 KiB  
Article
Human Polymerase δ-Interacting Protein 2 (PolDIP2) Inhibits the Formation of Human Tau Oligomers and Fibrils
by Kazutoshi Kasho, Lukas Krasauskas, Vytautas Smirnovas, Gorazd Stojkovič, Ludmilla A. Morozova-Roche and Sjoerd Wanrooij
Int. J. Mol. Sci. 2021, 22(11), 5768; https://doi.org/10.3390/ijms22115768 - 28 May 2021
Cited by 4 | Viewed by 3246
Abstract
A central characteristic of Alzheimer’s disease (AD) and other tauopathies is the accumulation of aggregated and misfolded Tau deposits in the brain. Tau-targeting therapies for AD have been unsuccessful in patients to date. Here we show that human polymerase δ-interacting protein 2 (PolDIP2) [...] Read more.
A central characteristic of Alzheimer’s disease (AD) and other tauopathies is the accumulation of aggregated and misfolded Tau deposits in the brain. Tau-targeting therapies for AD have been unsuccessful in patients to date. Here we show that human polymerase δ-interacting protein 2 (PolDIP2) interacts with Tau. With a set of complementary methods, including thioflavin-T-based aggregation kinetic assays, Tau oligomer-specific dot-blot analysis, and single oligomer/fibril analysis by atomic force microscopy, we demonstrate that PolDIP2 inhibits Tau aggregation and amyloid fibril growth in vitro. The identification of PolDIP2 as a potential regulator of cellular Tau aggregation should be considered for future Tau-targeting therapeutics. Full article
(This article belongs to the Special Issue Amyloid Hetero-Aggregation)
Show Figures

Figure 1

11 pages, 2470 KiB  
Article
Strand Displacement Activity of PrimPol
by Elizaveta O. Boldinova, Ekaterina A. Belousova, Diana I. Gagarinskaya, Ekaterina A. Maltseva, Svetlana N. Khodyreva, Olga I. Lavrik and Alena V. Makarova
Int. J. Mol. Sci. 2020, 21(23), 9027; https://doi.org/10.3390/ijms21239027 - 27 Nov 2020
Cited by 9 | Viewed by 3191
Abstract
Human PrimPol is a unique enzyme possessing DNA/RNA primase and DNA polymerase activities. In this work, we demonstrated that PrimPol efficiently fills a 5-nt gap and possesses the conditional strand displacement activity stimulated by Mn2+ ions and accessory replicative proteins RPA and [...] Read more.
Human PrimPol is a unique enzyme possessing DNA/RNA primase and DNA polymerase activities. In this work, we demonstrated that PrimPol efficiently fills a 5-nt gap and possesses the conditional strand displacement activity stimulated by Mn2+ ions and accessory replicative proteins RPA and PolDIP2. The DNA displacement activity of PrimPol was found to be more efficient than the RNA displacement activity and FEN1 processed the 5′-DNA flaps generated by PrimPol in vitro. Full article
(This article belongs to the Special Issue Ligand Binding in Enzyme Systems)
Show Figures

Figure 1

30 pages, 1980 KiB  
Review
Regulation and Modulation of Human DNA Polymerase δ Activity and Function
by Marietta Y. W. T. Lee, Xiaoxiao Wang, Sufang Zhang, Zhongtao Zhang and Ernest Y. C. Lee
Genes 2017, 8(7), 190; https://doi.org/10.3390/genes8070190 - 24 Jul 2017
Cited by 34 | Viewed by 10299
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the [...] Read more.
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4). Full article
(This article belongs to the Special Issue DNA Replication Controls)
Show Figures

Figure 1

Back to TopTop