Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,410)

Search Parameters:
Keywords = RGB-D

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4650 KB  
Article
Rapid Discrimination of Platycodonis radix Geographical Origins Using Hyperspectral Imaging and Deep Learning
by Weihang Xing, Xuquan Wang, Zhiyuan Ma, Yujie Xing, Xiong Dun and Xinbin Cheng
Optics 2025, 6(4), 52; https://doi.org/10.3390/opt6040052 (registering DOI) - 13 Oct 2025
Abstract
Platycodonis radix is a commonly used traditional Chinese medicine (TCM) material. Its bioactive compounds and medicinal value are closely related to its geographical origin. The internal components of Platycodonis radix from different origins are different due to the influence of environmental factors such [...] Read more.
Platycodonis radix is a commonly used traditional Chinese medicine (TCM) material. Its bioactive compounds and medicinal value are closely related to its geographical origin. The internal components of Platycodonis radix from different origins are different due to the influence of environmental factors such as soil and climate. These differences can affect the medicinal value. Therefore, accurate identification of Platycodonis radix origin is crucial for drug safety and scientific research. Traditional methods of identification of TCM materials, such as morphological identification and physicochemical analysis, cannot meet the efficiency requirements. Although emerging technologies such as computer vision and spectroscopy can achieve rapid detection, their accuracy in identifying the origin of Platycodonis radix is limited when relying solely on RGB images or spectral features. To solve this problem, we aim to develop a rapid, non-destructive, and accurate method for origin identification of Platycodonis radix using hyperspectral imaging (HSI) combined with deep learning. We captured hyperspectral images of Platycodonis radix slices in 400–1000 nm range, and proposed a deep learning classification model based on these images. Our model uses one-dimensional (1D) convolution kernels to extract spectral features and two-dimensional (2D) convolution kernels to extract spatial features, fully utilizing the hyperspectral data. The average accuracy has reached 96.2%, significantly better than that of 49.0% based on RGB images and 81.8% based on spectral features in 400–1000 nm range. Furthermore, based on hyperspectral images, our model’s accuracy is 14.6%, 8.4%, and 9.6% higher than the variants of VGG, ResNet, and GoogLeNet, respectively. These results not only demonstrate the advantages of HSI in identifying the origin of Platycodonis radix, but also demonstrate the advantages of combining 1D convolution and 2D convolution in hyperspectral image classification. Full article
Show Figures

Figure 1

22 pages, 4807 KB  
Article
Adapting Gated Axial Attention for Microscopic Hyperspectral Cholangiocarcinoma Image Segmentation
by Jianxia Xue, Xiaojing Chen and Soo-Hyung Kim
Electronics 2025, 14(20), 3979; https://doi.org/10.3390/electronics14203979 (registering DOI) - 11 Oct 2025
Viewed by 42
Abstract
Accurate segmentation of medical images is essential for clinical diagnosis and treatment planning. Hyperspectral imaging (HSI), with its rich spectral information, enables improved tissue characterization and structural localization compared with traditional grayscale or RGB imaging. However, the effective modeling of both spatial and [...] Read more.
Accurate segmentation of medical images is essential for clinical diagnosis and treatment planning. Hyperspectral imaging (HSI), with its rich spectral information, enables improved tissue characterization and structural localization compared with traditional grayscale or RGB imaging. However, the effective modeling of both spatial and spectral dependencies remains a significant challenge, particularly in small-scale medical datasets. In this study, we propose GSA-Net, a 3D segmentation framework that integrates Gated Spectral-Axial Attention (GSA) to capture long-range interband dependencies and enhance spectral feature discrimination. The GSA module incorporates multilayer perceptrons (MLPs) and adaptive LayerScale mechanisms to enable the fine-grained modulation of spectral attention across feature channels. We evaluated GSA-Net on a hyperspectral cholangiocarcinoma (CCA) dataset, achieving an average Intersection over Union (IoU) of 60.64 ± 14.48%, Dice coefficient of 74.44 ± 11.83%, and Hausdorff Distance of 76.82 ± 42.77 px. It outperformed state-of-the-art baselines. Further spectral analysis revealed that informative spectral bands are widely distributed rather than concentrated, and full-spectrum input consistently outperforms aggressive band selection, underscoring the importance of adaptive spectral attention for robust hyperspectral medical image segmentation. Full article
(This article belongs to the Special Issue Image Segmentation, 2nd Edition)
Show Figures

Figure 1

24 pages, 17690 KB  
Article
Power-Compensated White Laser Underwater Imaging Applications Based on Transmission Distance
by Weiyu Cai, Guangwang Ding, Xiaomei Liu, Xiang Li, Houjie Chen, Xiaojuan Ma and Hua Liu
Optics 2025, 6(4), 51; https://doi.org/10.3390/opt6040051 - 10 Oct 2025
Viewed by 170
Abstract
The complex aquatic environment attenuates light transmission, thereby limiting the detection range of underwater laser systems. To address the challenges of limited operational distance and significant light energy attenuation, this study investigates optimized underwater lighting and imaging applications using a combined tricolor RGB [...] Read more.
The complex aquatic environment attenuates light transmission, thereby limiting the detection range of underwater laser systems. To address the challenges of limited operational distance and significant light energy attenuation, this study investigates optimized underwater lighting and imaging applications using a combined tricolor RGB (RED-GREEN-BLUE) white laser source. First, accounting for the attenuation characteristics of water, we propose a power-compensated white laser system based on transmission distance and underwater imaging theory. Second, underwater experiments are conducted utilizing both standard D65 white lasers and the proposed power-compensated white lasers, respectively. Finally, the theory is validated by assessing image quality metrics of the captured underwater imagery. The results demonstrate that a low-power (0.518 W) power-compensated white laser achieves a transmission distance of 5 m, meeting the requirements for a long-range, low-power imaging light source. Its capability for independent adjustment of the three-color power output fulfills the lighting demands for specific long-distance transmission scenarios. These findings confirm the advantages of power-compensated white lasers in long-range underwater detection and refine the characterization of white light for underwater illumination. Full article
Show Figures

Figure 1

38 pages, 1548 KB  
Perspective
RGB-D Cameras and Brain–Computer Interfaces for Human Activity Recognition: An Overview
by Grazia Iadarola, Alessandro Mengarelli, Sabrina Iarlori, Andrea Monteriù and Susanna Spinsante
Sensors 2025, 25(20), 6286; https://doi.org/10.3390/s25206286 - 10 Oct 2025
Viewed by 293
Abstract
This paper provides a perspective on the use of RGB-D cameras and non-invasive brain–computer interfaces (BCIs) for human activity recognition (HAR). Then, it explores the potential of integrating both the technologies for active and assisted living. RGB-D cameras can offer monitoring of users [...] Read more.
This paper provides a perspective on the use of RGB-D cameras and non-invasive brain–computer interfaces (BCIs) for human activity recognition (HAR). Then, it explores the potential of integrating both the technologies for active and assisted living. RGB-D cameras can offer monitoring of users in their living environments, preserving their privacy in human activity recognition through depth images and skeleton tracking. Concurrently, non-invasive BCIs can provide access to intent and control of users by decoding neural signals. The synergy between these technologies may allow holistic understanding of both physical context and cognitive state of users, to enhance personalized assistance inside smart homes. The successful deployment in integrating the two technologies needs addressing critical technical hurdles, including computational demands for real-time multi-modal data processing, and user acceptance challenges related to data privacy, security, and BCI illiteracy. Continued interdisciplinary research is essential to realize the full potential of RGB-D cameras and BCIs as AAL solutions, in order to improve the quality of life for independent or impaired people. Full article
(This article belongs to the Special Issue Computer Vision-Based Human Activity Recognition)
Show Figures

Figure 1

19 pages, 762 KB  
Article
TMRGBT-D2D: A Temporal Misaligned RGB-Thermal Dataset for Drone-to-Drone Target Detection
by Hexiang Hao, Yueping Peng, Zecong Ye, Baixuan Han, Wei Tang, Wenchao Kang, Xuekai Zhang, Qilong Li and Wenchao Liu
Drones 2025, 9(10), 694; https://doi.org/10.3390/drones9100694 (registering DOI) - 10 Oct 2025
Viewed by 96
Abstract
In the field of drone-to-drone detection tasks, the issue of fusing temporal information with infrared and visible light data for detection has been rarely studied. This paper presents the first temporal misaligned rgb-thermal dataset for drone-to-drone target detection, named TMRGBT-D2D. The dataset covers [...] Read more.
In the field of drone-to-drone detection tasks, the issue of fusing temporal information with infrared and visible light data for detection has been rarely studied. This paper presents the first temporal misaligned rgb-thermal dataset for drone-to-drone target detection, named TMRGBT-D2D. The dataset covers various lighting conditions (i.e., high-light scenes captured during the day, medium-light and low-light scenes captured at night, with night scenes accounting for 38.8% of all data), different scenes (sky, forests, buildings, construction sites, playgrounds, roads, etc.), different seasons, and different locations, consisting of a total of 42,624 images organized into sequential frames extracted from 19 RGB-T video pairs. Each frame in the dataset has been meticulously annotated, with a total of 94,323 annotations. Except for drones that cannot be identified under extreme conditions, infrared and visible light annotations are one-to-one corresponding. This dataset presents various challenges, including small object detection (the average size of objects in visible light images is approximately 0.02% of the image area), motion blur caused by fast movement, and detection issues arising from imaging differences between different modalities. To our knowledge, this is the first temporal misaligned rgb-thermal dataset for drone-to-drone target detection, providing convenience for research into rgb-thermal image fusion and the development of drone target detection. Full article
(This article belongs to the Special Issue Detection, Identification and Tracking of UAVs and Drones)
Show Figures

Figure 1

19 pages, 8850 KB  
Article
Intelligent Defect Recognition of Glazed Components in Ancient Buildings Based on Binocular Vision
by Youshan Zhao, Xiaolan Zhang, Ming Guo, Haoyu Han, Jiayi Wang, Yaofeng Wang, Xiaoxu Li and Ming Huang
Buildings 2025, 15(20), 3641; https://doi.org/10.3390/buildings15203641 (registering DOI) - 10 Oct 2025
Viewed by 75
Abstract
Glazed components in ancient Chinese architecture hold profound historical and cultural value. However, over time, environmental erosion, physical impacts, and human disturbances gradually lead to various forms of damage, severely impacting the durability and stability of the buildings. Therefore, preventive protection of glazed [...] Read more.
Glazed components in ancient Chinese architecture hold profound historical and cultural value. However, over time, environmental erosion, physical impacts, and human disturbances gradually lead to various forms of damage, severely impacting the durability and stability of the buildings. Therefore, preventive protection of glazed components is crucial. The key to preventive protection lies in the early detection and repair of damage, thereby extending the component’s service life and preventing significant structural damage. To address this challenge, this study proposes a Restoration-Scale Identification (RSI) method that integrates depth information. By combining RGB-D images acquired from a depth camera with intrinsic camera parameters, and embedding a Convolutional Block Attention Module (CBAM) into the backbone network, the method dynamically enhances critical feature regions. It then employs a scale restoration strategy to accurately identify damage areas and recover the physical dimensions of glazed components from a global perspective. In addition, we constructed a dedicated semantic segmentation dataset for glazed tile damage, focusing on cracks and spalling. Both qualitative and quantitative evaluation results demonstrate that, compared with various high-performance semantic segmentation methods, our approach significantly improves the accuracy and robustness of damage detection in glazed components. The achieved accuracy deviates by only ±10 mm from high-precision laser scanning, a level of precision that is essential for reliably identifying and assessing subtle damages in complex glazed architectural elements. By integrating depth information, real scale information can be effectively obtained during the intelligent recognition process, thereby efficiently and accurately identifying the type of damage and size information of glazed components, and realizing the conversion from two-dimensional (2D) pixel coordinates to local three-dimensional (3D) coordinates, providing a scientific basis for the protection and restoration of ancient buildings, and ensuring the long-term stability of cultural heritage and the inheritance of historical value. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

24 pages, 6407 KB  
Article
Lightweight SCC-YOLO for Winter Jujube Detection and 3D Localization with Cross-Platform Deployment Evaluation
by Meng Zhou, Yaohua Hu, Anxiang Huang, Yiwen Chen, Xing Tong, Mengfei Liu and Yunxiao Pan
Agriculture 2025, 15(19), 2092; https://doi.org/10.3390/agriculture15192092 - 8 Oct 2025
Viewed by 170
Abstract
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this [...] Read more.
Harvesting winter jujubes is a key step in production, yet traditional manual approaches are labor-intensive and inefficient. To overcome these challenges, we propose SCC-YOLO, a lightweight method for winter jujube detection, 3D localization, and cross-platform deployment, aiming to support intelligent harvesting. In this study, RGB-D cameras were integrated with an improved YOLOv11 network optimized by ShuffleNetV2, CBAM, and a redesigned C2f_WTConv module, which enables joint spatial–frequency feature modeling and enhances small-object detection in complex orchard conditions. The model was trained on a diversified dataset with extensive augmentation to ensure robustness. In addition, the original localization loss was replaced with DIoU to improve bounding box regression accuracy. A robotic harvesting system was developed, and an Eye-to-Hand calibration-based 3D localization pipeline was implemented to map fruit coordinates to the robot workspace for accurate picking. To validate engineering applicability, the SCC-YOLO model was deployed on both desktop (PyTorch and ONNX Runtime) and mobile (NCNN with Vulkan+FP16) platforms, and FPS, latency, and stability were comparatively analyzed. Experimental results showed that SCC-YOLO improved mAP by 5.6% over YOLOv11, significantly enhanced detection precision and robustness, and achieved real-time performance on mobile devices while maintaining peak throughput on high-performance desktops. Field and laboratory tests confirmed the system’s effectiveness for detection, localization, and harvesting efficiency, demonstrating its adaptability to diverse deployment environments and its potential for broader agricultural applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 1858 KB  
Article
Color Space Comparison of Isolated Cervix Cells for Morphology Classification
by Irari Jiménez-López, José E. Valdez-Rodríguez and Marco A. Moreno-Armendáriz
AI 2025, 6(10), 261; https://doi.org/10.3390/ai6100261 - 7 Oct 2025
Viewed by 243
Abstract
Cervical cytology processing involves the morphological analysis of cervical cells to detect abnormalities. In recent years, machine learning and deep learning algorithms have been explored to automate this process. This study investigates the use of color space transformations as a preprocessing technique to [...] Read more.
Cervical cytology processing involves the morphological analysis of cervical cells to detect abnormalities. In recent years, machine learning and deep learning algorithms have been explored to automate this process. This study investigates the use of color space transformations as a preprocessing technique to reorganize visual information and improve classification performance using isolated cell images. Twelve color space transformations were compared, including RGB, CMYK, HSV, Grayscale, CIELAB, YUV, the individual RGB channels, and combinations of these channels (RG, RB, and GB). Two classification strategies were employed: binary classification (normal vs. abnormal) and five-class classification. The SIPaKMeD dataset was used, with images resized to 256×256 pixels via zero-padding. Data augmentation included random flipping and ±10° rotations applied with a 50% probability, followed by normalization. A custom CNN architecture was developed, comprising four convolutional layers followed by two fully connected layers and an output layer. The model achieved average precision, recall, and F1-score values of 91.39%, 91.34%, and 91.31% for the five-class case, respectively, and 99.69%, 96.68%, and 96.89% for the binary classification, respectively; these results were compared with a VGG-16 network. Furthermore, CMYK, HSV, and the RG channel combination consistently outperformed other color spaces, highlighting their potential to enhance classification accuracy. Full article
(This article belongs to the Special Issue AI in Bio and Healthcare Informatics)
Show Figures

Figure 1

36 pages, 20759 KB  
Article
Autonomous UAV Landing and Collision Avoidance System for Unknown Terrain Utilizing Depth Camera with Actively Actuated Gimbal
by Piotr Łuczak and Grzegorz Granosik
Sensors 2025, 25(19), 6165; https://doi.org/10.3390/s25196165 - 5 Oct 2025
Viewed by 574
Abstract
Autonomous landing capability is crucial for fully autonomous UAV flight. Currently, most solutions use either color imaging from a camera pointed down, lidar sensors, dedicated landing spots, beacons, or a combination of these approaches. Classical strategies can be limited by either no color [...] Read more.
Autonomous landing capability is crucial for fully autonomous UAV flight. Currently, most solutions use either color imaging from a camera pointed down, lidar sensors, dedicated landing spots, beacons, or a combination of these approaches. Classical strategies can be limited by either no color data when lidar is used, limited obstacle perception when only color imaging is used, a low field of view from a single RGB-D sensor, or the requirement for the landing spot to be prepared in advance. In this paper, a new approach is proposed where an RGB-D camera mounted on a gimbal is used. The gimbal is actively actuated to counteract the limited field of view while color images and depth information are provided by the RGB-D camera. Furthermore, a combined UAV-and-gimbal-motion strategy is proposed to counteract the low maximum range of depth perception to provide static obstacle detection and avoidance, while preserving safe operating conditions for low-altitude flight, near potential obstacles. The system is developed using a PX4 flight stack, CubeOrange flight controller, and Jetson nano onboard computer. The system was flight-tested in simulation conditions and statically tested on a real vehicle. Results show the correctness of the system architecture and possibility of deployment in real conditions. Full article
(This article belongs to the Special Issue UAV-Based Sensing and Autonomous Technologies)
Show Figures

Figure 1

18 pages, 14342 KB  
Article
A Multi-LiDAR Self-Calibration System Based on Natural Environments and Motion Constraints
by Yuxuan Tang, Jie Hu, Zhiyong Yang, Wencai Xu, Shuaidi He and Bolun Hu
Mathematics 2025, 13(19), 3181; https://doi.org/10.3390/math13193181 - 4 Oct 2025
Viewed by 257
Abstract
Autonomous commercial vehicles often mount multiple LiDARs to enlarge their field of view, but conventional calibration is labor-intensive and prone to drift during long-term operation. We present an online self-calibration method that combines a ground plane motion constraint with a virtual RGB–D projection, [...] Read more.
Autonomous commercial vehicles often mount multiple LiDARs to enlarge their field of view, but conventional calibration is labor-intensive and prone to drift during long-term operation. We present an online self-calibration method that combines a ground plane motion constraint with a virtual RGB–D projection, mapping 3D point clouds to 2D feature/depth images to reduce feature extraction cost while preserving 3D structure. Motion consistency across consecutive frames enables a reduced-dimension hand–eye formulation. Within this formulation, the estimation integrates geometric constraints on SE(3) using Lagrange multiplier aggregation and quasi-Newton refinement. This approach highlights key aspects of identifiability, conditioning, and convergence. An online monitor evaluates plane alignment and LiDAR–INS odometry consistency to detect degradation and trigger recalibration. Tests on a commercial vehicle with six LiDARs and on nuScenes demonstrate accuracy comparable to offline, target-based methods while supporting practical online use. On the vehicle, maximum errors are 6.058 cm (translation) and 4.768° (rotation); on nuScenes, 2.916 cm and 5.386°. The approach streamlines calibration, enables online monitoring, and remains robust in real-world settings. Full article
(This article belongs to the Section A: Algebra and Logic)
Show Figures

Figure 1

18 pages, 1856 KB  
Article
A Uniform Multi-Modal Feature Extraction and Adaptive Local–Global Feature Fusion Structure for RGB-X Marine Animal Segmentation
by Yue Jiang, Yan Gao, Yifei Wang, Yue Wang, Hong Yu and Yuanshan Lin
Electronics 2025, 14(19), 3927; https://doi.org/10.3390/electronics14193927 - 2 Oct 2025
Viewed by 230
Abstract
Marine animal segmentation aims at segmenting marine animals in complex ocean scenes, which plays an important role in underwater intelligence research. Due to the complexity of underwater scenes, relying solely on a single RGB image or learning from a specific combination of multi-model [...] Read more.
Marine animal segmentation aims at segmenting marine animals in complex ocean scenes, which plays an important role in underwater intelligence research. Due to the complexity of underwater scenes, relying solely on a single RGB image or learning from a specific combination of multi-model information may not be very effective. Therefore, we propose a uniform multi-modal feature extraction and adaptive local–global feature fusion structure for RGB-X marine animal segmentation. It can be applicable to various situations such as RGB-D (RGB+depth) and RGB-O (RGB+optical flow) marine animal segmentation. Specifically, we first fine-tune the SAM encoder using parallel LoRA and adapters to separately extract RGB information and auxiliary information. Then, the Adaptive Local–Global Feature Fusion (ALGFF) module is proposed to progressively fuse multi-modal and multi-scale features in a simple and dynamical way. Experimental results on both RGB-D and RGB-O datasets demonstrate that our model achieves superior performance in underwater scene segmentation tasks. Full article
(This article belongs to the Special Issue Recent Advances in Efficient Image and Video Processing)
Show Figures

Figure 1

19 pages, 15475 KB  
Article
Oriented Object Detection with RGB-D Data for Corn Pose Estimation
by Yuliang Gao, Haonan Tang, Yuting Wang, Tao Liu, Zhen Li, Bin Li and Lifeng Zhang
Appl. Sci. 2025, 15(19), 10496; https://doi.org/10.3390/app151910496 - 28 Sep 2025
Viewed by 199
Abstract
Precise oriented object detection of corn provides critical support for automated agricultural tasks such as harvesting, spraying, and precision management. In this work, we address this challenge by leveraging oriented object detection in combination with depth information to estimate corn poses. To enhance [...] Read more.
Precise oriented object detection of corn provides critical support for automated agricultural tasks such as harvesting, spraying, and precision management. In this work, we address this challenge by leveraging oriented object detection in combination with depth information to estimate corn poses. To enhance detection accuracy while maintaining computational efficiency, we construct a precise annotated oriented corn detection dataset and propose YOLOv11OC, an improved detector. YOLOv11OC integrates three key components: Angle-aware Attention Module for angle encoding and orientation perception, Cross-Layer Fusion Network for multi-scale feature fusion, and GSConv Inception Network for efficient multi-scale representation. Together, these modules enable accurate oriented detection while reducing model complexity. Experimental results show that YOLOv11OC achieves 97.6% mAP@0.75, exceeding YOLOv11 by 3.2%, and improves mAP50:95 by 5.0%. Furthermore, when combined with depth maps, the system achieves 92.5% pose estimation accuracy, demonstrating its potential to advance intelligent and automated cultivation and spraying. Full article
Show Figures

Figure 1

34 pages, 9527 KB  
Article
High-Resolution 3D Thermal Mapping: From Dual-Sensor Calibration to Thermally Enriched Point Clouds
by Neri Edgardo Güidi, Andrea di Filippo and Salvatore Barba
Appl. Sci. 2025, 15(19), 10491; https://doi.org/10.3390/app151910491 - 28 Sep 2025
Viewed by 291
Abstract
Thermal imaging is increasingly applied in remote sensing to identify material degradation, monitor structural integrity, and support energy diagnostics. However, its adoption is limited by the low spatial resolution of thermal sensors compared to RGB cameras. This study proposes a modular pipeline to [...] Read more.
Thermal imaging is increasingly applied in remote sensing to identify material degradation, monitor structural integrity, and support energy diagnostics. However, its adoption is limited by the low spatial resolution of thermal sensors compared to RGB cameras. This study proposes a modular pipeline to generate thermally enriched 3D point clouds by fusing RGB and thermal imagery acquired simultaneously with a dual-sensor unmanned aerial vehicle system. The methodology includes geometric calibration of both cameras, image undistortion, cross-spectral feature matching, and projection of radiometric data onto the photogrammetric model through a computed homography. Thermal values are extracted using a custom parser and assigned to 3D points based on visibility masks and interpolation strategies. Calibration achieved 81.8% chessboard detection, yielding subpixel reprojection errors. Among twelve evaluated algorithms, LightGlue retained 99% of its matches and delivered a reprojection accuracy of 18.2% at 1 px, 65.1% at 3 px and 79% at 5 px. A case study on photovoltaic panels demonstrates the method’s capability to map thermal patterns with low temperature deviation from ground-truth data. Developed entirely in Python, the workflow integrates into Agisoft Metashape or other software. The proposed approach enables cost-effective, high-resolution thermal mapping with applications in civil engineering, cultural heritage conservation, and environmental monitoring applications. Full article
Show Figures

Figure 1

28 pages, 10315 KB  
Article
DKB-SLAM: Dynamic RGB-D Visual SLAM with Efficient Keyframe Selection and Local Bundle Adjustment
by Qian Sun, Ziqiang Xu, Yibing Li, Yidan Zhang and Fang Ye
Robotics 2025, 14(10), 134; https://doi.org/10.3390/robotics14100134 - 25 Sep 2025
Viewed by 506
Abstract
Reliable navigation for mobile robots in dynamic, human-populated environments remains a significant challenge, as moving objects often cause localization drift and map corruption. While Simultaneous Localization and Mapping (SLAM) techniques excel in static settings, issues like keyframe redundancy and optimization inefficiencies further hinder [...] Read more.
Reliable navigation for mobile robots in dynamic, human-populated environments remains a significant challenge, as moving objects often cause localization drift and map corruption. While Simultaneous Localization and Mapping (SLAM) techniques excel in static settings, issues like keyframe redundancy and optimization inefficiencies further hinder their practical deployment on robotic platforms. To address these challenges, we propose DKB-SLAM, a real-time RGB-D visual SLAM system specifically designed to enhance robotic autonomy in complex dynamic scenes. DKB-SLAM integrates optical flow with Gaussian-based depth distribution analysis within YOLO detection frames to efficiently filter dynamic points, crucial for maintaining accurate pose estimates for the robot. An adaptive keyframe selection strategy balances map density and information integrity using a sliding window, considering the robot’s motion dynamics through parallax, visibility, and matching quality. Furthermore, a heterogeneously weighted local bundle adjustment (BA) method leverages map point geometry, assigning higher weights to stable edge points to refine the robot’s trajectory. Evaluations on the TUM RGB-D benchmark and, crucially, on a mobile robot platform in real-world dynamic scenarios, demonstrate that DKB-SLAM outperforms state-of-the-art methods, providing a robust and efficient solution for high-precision robot localization and mapping in dynamic environments. Full article
(This article belongs to the Special Issue SLAM and Adaptive Navigation for Robotics)
Show Figures

Figure 1

22 pages, 3646 KB  
Article
Machine Learning in the Classification of RGB Images of Maize (Zea mays L.) Using Texture Attributes and Different Doses of Nitrogen
by Thiago Lima da Silva, Fernanda de Fátima da Silva Devechio, Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Liliane Maria Romualdo Altão, Gabriel Pagin, Adriano Rogério Bruno Tech and Murilo Mesquita Baesso
AgriEngineering 2025, 7(10), 317; https://doi.org/10.3390/agriengineering7100317 - 23 Sep 2025
Viewed by 390
Abstract
Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustainability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated the classification of maize plant nutritional status from red, green, and blue (RGB) leaf images using texture attributes. A greenhouse [...] Read more.
Nitrogen fertilization is decisive for maize productivity, fertilizer use efficiency, and sustainability, which calls for fast and nondestructive nutritional diagnosis. This study evaluated the classification of maize plant nutritional status from red, green, and blue (RGB) leaf images using texture attributes. A greenhouse experiment was conducted under a completely randomized factorial design with four nitrogen doses, one maize hybrid Pioneer 30F35, and four replicates, at two sampling times corresponding to distinct phenological stages, totaling thirty-two experimental units. Images were processed with the gray-level cooccurrence matrix computed at three distances 1, 3, and 5 pixels and four orientations 0°, 45°, 90°, and 135°, yielding eight texture descriptors that served as inputs to five supervised classifiers: an artificial neural network, a support vector machine, k nearest neighbors, a decision tree, and Naive Bayes. The results indicated that texture descriptors discriminated nitrogen doses with good performance and moderate computational cost, and that homogeneity, dissimilarity, and contrast were the most informative attributes. The artificial neural network showed the most stable performance at both stages, followed by the support vector machine and k nearest neighbors, whereas the decision tree and Naive Bayes were less suitable. Confusion matrices and receiver operating characteristic curves indicated greater separability for omission and excess classes, with D1 standing out, and the patterns were consistent with the chemical analysis. Future work should include field validation, multiple seasons and genotypes, integration with spectral indices and multisensor data, application of model explainability techniques, and assessment of latency and scalability in operational scenarios. Full article
Show Figures

Figure 1

Back to TopTop