Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = RTK-GNSS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8782 KB  
Article
Concrete Mixture Cold Joint Prevention and Control System
by Liping He, Linjiang Yu, Huidong Qu and Zhenghong Tian
Buildings 2025, 15(17), 3096; https://doi.org/10.3390/buildings15173096 - 28 Aug 2025
Viewed by 446
Abstract
To resolve the issue of cold joints forming in concrete during the construction process, this study has developed a control system with visual prevention capabilities. By utilizing the improved YOLO11-LP license plate recognition system, we record license plate information and calculate the supply [...] Read more.
To resolve the issue of cold joints forming in concrete during the construction process, this study has developed a control system with visual prevention capabilities. By utilizing the improved YOLO11-LP license plate recognition system, we record license plate information and calculate the supply time of the mixture. Based on the structural characteristics of the belt conveyor, laser ranging technology, and GNSS-RTK positioning technology, an algorithm is proposed to determine the operating status of the belt conveyor, calculate the position and area of the mixed material, and record the pouring and compaction time. This algorithm is suitable for parameter acquisition equipment throughout the entire process of mixture pouring. The developed software system is based on the parameters calculated by the pouring process time calculation model, combined with the cold joint prevention and control threshold of the mixture, and feeds back the construction warning information to the site through a visual model. The application proves that the developed preventive control system helps to avoid the formation of cold joints in the mixture. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

33 pages, 5506 KB  
Article
The Impact of Signal Interference on Static GNSS Measurements
by Željko Bačić, Danijel Šugar and Zvonimir Nevistić
Geomatics 2025, 5(3), 39; https://doi.org/10.3390/geomatics5030039 - 26 Aug 2025
Viewed by 995
Abstract
Global navigation satellite systems (GNSSs) are an integral part of modern society and are used in various industries, providing users with positioning, navigation, and timing (PNT). However, their effectiveness is vulnerable to signal interference, since GNSSs are based on received satellite signals from [...] Read more.
Global navigation satellite systems (GNSSs) are an integral part of modern society and are used in various industries, providing users with positioning, navigation, and timing (PNT). However, their effectiveness is vulnerable to signal interference, since GNSSs are based on received satellite signals from space, and that can severely impact applications that rely on continuous and accurate data. Interference can pose significant risks to sectors dependent on GNSSs, including transportation, telecommunications, finance, geodesy, and others. For this reason, in parallel with the development of GNSSs, various interference protection techniques are being developed to enable users to receive GNSS signals without the risk of interference, which can cause various effects, such as reducing the accuracy of positioning, as well as completely blocking signal reception and making it impossible to obtain positioning. There are various sources and methods of interfering with GNSS signals, and the greatest consequences are caused by intentional interference, which includes jamming, spoofing, and meaconing. This study investigates the effects of jamming devices on static GNSS observations using high-accuracy devices through multiple controlled experiments using both single-frequency (SF) and multi-frequency (MF) jammers. The aim was to identify the distances within which signal interference devices disrupt GNSS signal reception and position accuracy. The research conducted herein was divided into several phases where zones within which the jammer completely blocked the reception of the GNSS signal were determined (blackout zones), as were zones within which it was possible to obtain the position (but the influence of the jammer was present) and the influence of the jammer from different directions/azimuths in relation to the GNSS receiver. Various statistical indicators of the jammer’s influence, such as DOP (dilution of precision), SNR (signal-to-noise-ratio), RMS (root mean square), and others, were obtained through research. The results of this study indicate that commercially available, low-cost jamming devices, when operated within manufacturer-specified distances, completely disrupt the reception of GNSS signals. Their impact is also evident at greater distances, where they significantly reduce SNR values, increase DOP, and decrease the number of visible satellites, leading to reduced measurement reliability and integrity. These results underline the necessity of developing effective protection mechanisms against GNSS interference and strategies to ensure reliable signal reception in GNSS-dependent applications, particularly as the use of jamming devices becomes more prevalent. Full article
Show Figures

Figure 1

19 pages, 2457 KB  
Article
Fast Protection Level for Precise Positioning Using PPP-RTK with Robust Adaptive Kalman Filter
by Hassan Elsayed, Ahmed El-Mowafy, Amir Allahvirdi-Zadeh and Kan Wang
Remote Sens. 2025, 17(17), 2924; https://doi.org/10.3390/rs17172924 - 22 Aug 2025
Viewed by 648
Abstract
Developing advanced receiver autonomous integrity monitoring (ARAIM) for ground real-time precise positioning applications such as autonomous vehicles presents computational challenges, particularly in calculating real-time protection levels (PLs) that bound possible positioning errors under an acceptable integrity risk. This study proposes an enhanced method [...] Read more.
Developing advanced receiver autonomous integrity monitoring (ARAIM) for ground real-time precise positioning applications such as autonomous vehicles presents computational challenges, particularly in calculating real-time protection levels (PLs) that bound possible positioning errors under an acceptable integrity risk. This study proposes an enhanced method for fast PL estimation by introducing a segmentation approach to the Gershgorin circle theorem-based technique for computing standard deviation upper bounds (UBs). This method divides satellites into segments based on normalised geometry mapping coefficients, allowing multiple UBs instead of a single bound for all subsets within each fault-tolerant mode. The approach is implemented for PPP-RTK with an improved Classification Adaptive Kalman Filter (CAKF). Testing is conducted using a network of 10 continuously operating reference stations (CORSs) employing dual-frequency multi-constellation GNSS data. Results show that when monitoring single fault mode, the PL ranges from 0.05 to 0.1 m with a PL-to-PE ratio of 30:1, while dual fault modes monitoring yields PL from 1 to 10 m with a ratio of 3700:1. The segmentation method achieves 1–5% tighter PLs, i.e., better integrity monitoring (IM) availability, compared to the classical single UB approach while maintaining the same computational efficiency by reducing processed subsets from 325 to 1 for dual fault modes. While the method provides slight improvement in PL tightness, it can be more computationally efficient when having geometries with dominant off-diagonal correlation that fails the computation of a UB. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

26 pages, 11892 KB  
Article
Retrieval of Wave Parameters from GNSS Buoy Measurements Using Spectrum Analysis: A Case Study in the Huanghai Sea
by Jin Wang, Xiaohang Chang, Rui Tu, Shiwei Yan, Shengli Wang and Pengfei Zhang
Remote Sens. 2025, 17(16), 2869; https://doi.org/10.3390/rs17162869 - 18 Aug 2025
Viewed by 694
Abstract
Global Navigation Satellite System (GNSS) buoys are widely used to retrieve wave parameters such as significant wave heights (SWHs) and dominant wave periods. In addition to the statistical methods employed to estimate wave parameters, spectral-analysis-based approaches are also frequently utilized to analyze them. [...] Read more.
Global Navigation Satellite System (GNSS) buoys are widely used to retrieve wave parameters such as significant wave heights (SWHs) and dominant wave periods. In addition to the statistical methods employed to estimate wave parameters, spectral-analysis-based approaches are also frequently utilized to analyze them. This study presents statistical and spectral methods for retrieving wave parameters at GNSS buoy positioning resolution in the Huanghai Sea area. To verify the method’s effectiveness, the zero-crossing method and three spectral analysis techniques (periodogram, autocorrelation function, and autoregressive model methods) were used to estimate wave height and period for comparison. The vertical positioning resolution was decomposed into low-frequency ocean-tide level information and high-frequency wave height and period information with the Complete Ensemble Empirical Mode Decomposition (CEEMD) method and moving average filtering. The horizontal positioning results and velocity parameters were used to determine the wave direction using directional spectrum analysis. The results show that the three spectral methods yield consistent effective wave heights, with a maximum difference of 0.02 s in the wave period. Compared with the zero-crossing method results, the wave height and period obtained through spectral analysis differ by 0.05 m and 0.79 s, respectively, while the average wave height and period differ by 0.09 m and 0.08 s, respectively. The GNSS-derived wave heights also closely match tidal gauge observations, confirming the method’s validity. Directional spectrum analysis indicates that wave energy is concentrated in the 0.2–0.25 Hz frequency band and within a directional range of 0° ± 30°, with a dominant northward propagation trend. These findings demonstrate that the proposed approach can provide high accuracy and physical consistency for GNSS-based wave monitoring under complex sea conditions. Full article
(This article belongs to the Special Issue Advances in Multi-GNSS Technology and Applications)
Show Figures

Figure 1

14 pages, 16353 KB  
Communication
Fault Detection in Real-Time Kinematic Positioning Using Multiple Reference Stations
by Euiho Kim and Soomin Lee
Sensors 2025, 25(15), 4653; https://doi.org/10.3390/s25154653 - 27 Jul 2025
Viewed by 380
Abstract
Multiple-reference-station-based real-time kinematics (MR-RTK) is an advanced RTK technique that leverages global navigation satellite system (GNSS) measurements from multiple reference stations and their known baselines. This study investigates the fault detection capabilities of MR-RTK by employing additional measurements from continuously operating reference stations [...] Read more.
Multiple-reference-station-based real-time kinematics (MR-RTK) is an advanced RTK technique that leverages global navigation satellite system (GNSS) measurements from multiple reference stations and their known baselines. This study investigates the fault detection capabilities of MR-RTK by employing additional measurements from continuously operating reference stations (CORSs) to evaluate the probability of missed detection. The proposed method was validated using test data from a ground rover and a few CORSs within a 10 km radius. The test results show that the missed detection probability decreased by up to 55.0% as the number of reference stations increased up to four. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

25 pages, 27165 KB  
Article
Reverse-Engineering of the Japanese Defense Tactics During 1941–1945 Occupation Period in Hong Kong Through 21st-Century Geospatial Technologies
by Chun-Hei Lam, Chun-Ho Pun, Wallace-Wai-Lok Lai, Chi-Man Kwong and Craig Mitchell
Heritage 2025, 8(8), 294; https://doi.org/10.3390/heritage8080294 - 22 Jul 2025
Cited by 1 | Viewed by 487 | Correction
Abstract
Hundreds of Japanese features of war (field positions, tunnels, and fortifications) were constructed in Hong Kong during World War II. However, most of them were poorly documented and were left unknown but still in relatively good condition because of their durable design, workmanship, [...] Read more.
Hundreds of Japanese features of war (field positions, tunnels, and fortifications) were constructed in Hong Kong during World War II. However, most of them were poorly documented and were left unknown but still in relatively good condition because of their durable design, workmanship, and remoteness. These features of war form parts of Hong Kong’s brutal history. Conservation, at least in digital form, is worth considering. With the authors coming from multidisciplinary and varied backgrounds, this paper aims to explore these features using a scientific workflow. First, we reviewed the surviving archival sources of the Imperial Japanese Army and Navy. Second, airborne LiDAR data were used to form territory digital terrain models (DTM) based on the Red Relief Image Map (RRIM) for identifying suspected locations. Third, field expeditions of searching for features of war were conducted through guidance of Global Navigation Satellite System—Real-Time Kinetics (GNSS-RTK). Fourth, the found features were 3D-laser scanned to generate mesh models as a digital archive and validate the findings of DTM-RRIM. This study represents a reverse-engineering effort to reconstruct the planned Japanese defense tactics of guerilla fight and Kamikaze grottos that were never used in Hong Kong. Full article
Show Figures

Figure 1

18 pages, 5181 KB  
Article
New Possibilities of Field Data Survey in Forest Road Design
by Mihael Lovrinčević, Ivica Papa, David Janeš, Luka Hodak, Tibor Pentek and Andreja Đuka
Sensors 2025, 25(13), 4192; https://doi.org/10.3390/s25134192 - 5 Jul 2025
Viewed by 598
Abstract
Field data, as the basis for planning and designing forest roads, must have high spatial accuracy. Classical (using a theodolite and a level) and modern (based on total stations and GNSSs) surveying methods are used in current field data survey for forest road [...] Read more.
Field data, as the basis for planning and designing forest roads, must have high spatial accuracy. Classical (using a theodolite and a level) and modern (based on total stations and GNSSs) surveying methods are used in current field data survey for forest road design. This study analyzed the spatial accuracy of classical and modern surveying methods, the accuracy of spatial data recorded using a UAV equipped with an RGB camera at different flight altitudes, and the accuracy of lidar data of the Republic of Croatia. This study was conducted on a forest area where salvage logging was carried out, which enabled the use of a GNSS receiver in RTK mode as a reference method. The highest RMSE values of the spatial coordinates were recorded for measurements obtained with the classical surveying method (0.89 m) and a total station (0.33 m). The flight altitude of the UAV did not significantly affect the spatial error of the collected data, which ranged between 0.07 and 0.09 m. The cross-terrain slope, as one of the factors that significantly affect the amount of earthworks, did not differ statistically significantly between the methods. The ALS error was strongly influenced by the cross-terrain slope. The authors conclude that the new survey methods (SfM and lidar data) provide high-accuracy data but also draw attention to challenges in their use, such as vegetation and biomass on the ground. Full article
(This article belongs to the Special Issue Application of LiDAR Remote Sensing and Mapping)
Show Figures

Figure 1

30 pages, 25636 KB  
Article
Cluster-Based Flight Path Construction for Drone-Assisted Pear Pollination Using RGB-D Image Processing
by Arata Kuwahara, Tomotaka Kimura, Sota Okubo, Rion Yoshioka, Keita Endo, Hiroyuki Shimizu, Tomohito Shimada, Chisa Suzuki, Yoshihiro Takemura and Takefumi Hiraguri
Drones 2025, 9(7), 475; https://doi.org/10.3390/drones9070475 - 4 Jul 2025
Viewed by 945
Abstract
This paper proposes a cluster-based flight path construction method for automated drone-assisted pear pollination systems in orchard environments. The approach uses RGB-D (Red-Green-Blue-Depth) sensing through an observation drone equipped with RGB and depth cameras to detect blooming pear flowers. Flower detection is performed [...] Read more.
This paper proposes a cluster-based flight path construction method for automated drone-assisted pear pollination systems in orchard environments. The approach uses RGB-D (Red-Green-Blue-Depth) sensing through an observation drone equipped with RGB and depth cameras to detect blooming pear flowers. Flower detection is performed using a YOLO (You Only Look Once)-based object detection algorithm, and three-dimensional flower positions are estimated by integrating depth information with the drone’s positional and orientation data in the east-north-up coordinate system. To enhance pollination efficiency, the method applies the OPTICS (Ordering Points To Identify the Clustering Structure) algorithm to group detected flowers based on spatial proximity that correspond to branch-level distributions. The cluster centroids then construct a collision-free flight path, with offset vectors ensuring safe navigation and appropriate nozzle orientation for effective pollen spraying. Field experiments conducted using RTK-GNSS-based flight control confirmed the accuracy and stability of generated flight trajectories. The drone hovered in front of each flower cluster and performed uniform spraying along the planned path. The method achieved a fruit set rate of 62.1%, exceeding natural pollination at 53.6% and compared to the 61.9% of manual pollination. These results demonstrate the effectiveness and practicability of the method for real-world deployment in pear orchards. Full article
(This article belongs to the Special Issue UAS in Smart Agriculture: 2nd Edition)
Show Figures

Figure 1

22 pages, 14822 KB  
Article
Partial Ambiguity Resolution Strategy for Single-Frequency GNSS RTK/INS Tightly Coupled Integration in Urban Environments
by Dashuai Chai, Xiqi Wang, Yipeng Ning and Wengang Sang
Electronics 2025, 14(13), 2712; https://doi.org/10.3390/electronics14132712 - 4 Jul 2025
Viewed by 346
Abstract
Single-frequency global navigation satellite system/inertial navigation system (GNSS/INS) integration has wide application prospects in urban environments; however, correct integer ambiguity is the major challenge because of GNSS-blocked environments. In this paper, a sequential strategy of partial ambiguity resolution (PAR) of GNSS/INS for tightly [...] Read more.
Single-frequency global navigation satellite system/inertial navigation system (GNSS/INS) integration has wide application prospects in urban environments; however, correct integer ambiguity is the major challenge because of GNSS-blocked environments. In this paper, a sequential strategy of partial ambiguity resolution (PAR) of GNSS/INS for tightly coupled integration based on the robust posteriori residual, elevation angle, and azimuth in the body frame using INS aids is presented. First, the satellite is eliminated if the maximum absolute value of the robust posteriori residuals exceeds the set threshold. Otherwise, the satellites with a minimum elevation angle of less than or equal to 35° are successively eliminated. If satellites have elevation angles greater than 35°, these satellites are divided into different quadrants based on their azimuths calculated in body frame. The satellite with the maximum azimuth in each quadrant is selected as the candidate satellite, the candidate satellites are eliminated one by one, and the remaining satellites are used to calculate the position dilution of the precision (PDOP). Finally, the candidate satellite with the lowest PDOP is eliminated. Two sets of vehicle-borne data with a low-cost GNSS/INS integrated system are used to analyze the performance of the proposed algorithm. These experiments demonstrate that the proposed algorithm has the highest ambiguity fixing rates among all the designed PAR methods, and the fixing rates for these two sets of data are 99.40% and 98.74%, respectively. Additionally, among all the methods compared in this paper, the proposed algorithm demonstrates the best positioning performance in GNSS-blocked environments. Full article
Show Figures

Figure 1

29 pages, 4413 KB  
Article
Advancing Road Infrastructure Safety with the Remotely Piloted Safety Cone
by Francisco Javier García-Corbeira, David Alvarez-Moyano, Pedro Arias Sánchez and Joaquin Martinez-Sanchez
Infrastructures 2025, 10(7), 160; https://doi.org/10.3390/infrastructures10070160 - 27 Jun 2025
Viewed by 735
Abstract
This article presents the design, implementation, and validation of a Remotely Piloted Safety Cone (RPSC), an autonomous robotic system developed to enhance safety and operational efficiency in road maintenance. The RPSC addresses challenges associated with road works, including workers’ exposure to traffic hazards [...] Read more.
This article presents the design, implementation, and validation of a Remotely Piloted Safety Cone (RPSC), an autonomous robotic system developed to enhance safety and operational efficiency in road maintenance. The RPSC addresses challenges associated with road works, including workers’ exposure to traffic hazards and inefficiencies of traditional traffic cones, such as manual placement and retrieval, limited visibility in low-light conditions, and inability to adapt to dynamic changes in work zones. In contrast, the RPSC offers autonomous mobility, advanced visual signalling, and real-time communication capabilities, significantly improving safety and operational flexibility during maintenance tasks. The RPSC integrates sensor fusion, combining Global Navigation Satellite System (GNSS) with Real-Time Kinematic (RTK) for precise positioning, Inertial Measurement Unit (IMU) and encoders for accurate odometry, and obstacle detection sensors within an optimised navigation framework using Robot Operating System (ROS2) and Micro Air Vehicle Link (MAVLink) protocols. Complying with European regulations, the RPSC ensures structural integrity, visibility, stability, and regulatory compliance. Safety features include emergency stop capabilities, visual alarms, autonomous safety routines, and edge computing for rapid responsiveness. Field tests validated positioning accuracy below 30 cm, route deviations under 15 cm, and obstacle detection up to 4 m, significantly improved by Kalman filtering, aligning with digitalisation, sustainability, and occupational risk prevention objectives. Full article
Show Figures

Figure 1

20 pages, 2791 KB  
Article
Assessment of Affordable Real-Time PPP Solutions for Transportation Applications
by Mohamed Abdelazeem, Amgad Abazeed, Abdulmajeed Alsultan and Amr M. Wahaballa
Algorithms 2025, 18(7), 390; https://doi.org/10.3390/a18070390 - 26 Jun 2025
Viewed by 470
Abstract
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time [...] Read more.
With the availability of multi-frequency, multi-constellation global navigation satellite system (GNSS) modules, precise transportation applications have become attainable. For transportation applications, GNSS geodetic-grade receivers can achieve an accuracy of a few centimeters to a few decimeters through differential, precise point positioning (PPP), real-time kinematic (RTK), and PPP-RTK solutions in both post-processing and real-time modes; however, these receivers are costly. Therefore, this research aims to assess the accuracy of a cost-effective multi-GNSS real-time PPP solution for transportation applications. For this purpose, the U-blox ZED-F9P module is utilized to collect dual-frequency multi-GNSS observations through a moving vehicle in a suburban area in New Aswan City, Egypt; thereafter, datasets involving different multi-GNSS combination scenarios are processed, including GPS, GPS/GLONASS, GPS/Galileo, and GPS/GLONASS/Galileo, using both RT-PPP and RTK solutions. For the RT-PPP solution, the satellite clock and orbit correction products from Bundesamt für Kartographie und Geodäsie (BKG), Centre National d’Etudes Spatiales (CNES), and the GNSS research center of Wuhan University (WHU) are applied to account for the real-time mode. Moreover, GNSS datasets from two geodetic-grade Trimble R4s receivers are collected; hence, the datasets are processed using the traditional kinematic differential solution to provide a reference solution. The results indicate that this cost-effective multi-GNSS RT-PPP solution can attain positioning accuracy within 1–3 dm, and is thus suitable for a variety of transportation applications, including intelligent transportation system (ITS), self-driving cars, and automobile navigation applications. Full article
(This article belongs to the Section Analysis of Algorithms and Complexity Theory)
Show Figures

Figure 1

21 pages, 21726 KB  
Article
Evaluation of Positioning Accuracy Using Smartphone RGB and LiDAR Sensors with the viDoc RTK Rover
by Sara Zollini and Laura Marconi
Sensors 2025, 25(13), 3867; https://doi.org/10.3390/s25133867 - 21 Jun 2025
Viewed by 2286
Abstract
Modern surveying is increasingly focused on fast data acquisition and processing using lightweight, low-cost equipment, particularly for the continuous monitoring of structures and infrastructures. This study investigates the use of LiDAR and RGB sensors embedded in Apple and Android smartphones, paired with an [...] Read more.
Modern surveying is increasingly focused on fast data acquisition and processing using lightweight, low-cost equipment, particularly for the continuous monitoring of structures and infrastructures. This study investigates the use of LiDAR and RGB sensors embedded in Apple and Android smartphones, paired with an innovative device, the viDoc RTK Rover, for centimeter-level surveying. Three case studies were selected, each characterized by different materials, functional uses, and environmental contexts. The methodology centers on evaluating final accuracy during both the data acquisition and processing phases. Coordinates of target points were obtained directly via the viDoc device and indirectly through dense point clouds. Validation was conducted using a geodetic GNSS receiver. Results demonstrate that, in most cases, the system achieves accuracy comparable to traditional surveying methods. The findings confirm that these emerging tools offer a reliable and efficient solution for rapid 3D surveys with centimeter-level accuracy. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

25 pages, 21149 KB  
Article
Enhancing Conventional Land Surveying for Cadastral Documentation in Romania with UAV Photogrammetry and SLAM
by Lucian O. Dragomir, Cosmin Alin Popescu, Mihai V. Herbei, George Popescu, Roxana Claudia Herbei, Tudor Salagean, Simion Bruma, Catalin Sabou and Paul Sestras
Remote Sens. 2025, 17(13), 2113; https://doi.org/10.3390/rs17132113 - 20 Jun 2025
Cited by 1 | Viewed by 1453
Abstract
This study presents an integrated surveying methodology for efficient and accurate cadastral documentation, combining UAV photogrammetry, SLAM-based terrestrial and aerial scanning, and conventional geodetic measurements. Designed to be scalable across various cadastral and planning contexts, the workflow was tested in Charlottenburg, Romania’s only [...] Read more.
This study presents an integrated surveying methodology for efficient and accurate cadastral documentation, combining UAV photogrammetry, SLAM-based terrestrial and aerial scanning, and conventional geodetic measurements. Designed to be scalable across various cadastral and planning contexts, the workflow was tested in Charlottenburg, Romania’s only circular heritage village. The approach addresses challenges in built environments where traditional total station or GNSS techniques face limitations due to obstructed visibility and complex architectural geometries. The SLAM system was initially deployed in mobile scanning mode using a backpack configuration for ground-level data acquisition, and was later mounted on a UAV to capture building sides and areas inaccessible from the main road. The results demonstrate that the integration of aerial and terrestrial data acquisition enables precise building footprint extraction, with a reported RMSE of 0.109 m between the extracted contours and ground-truth total station measurements. The final cadastral outputs are fully compatible with GIS and CAD systems, supporting efficient land registration, urban planning, and historical site documentation. The findings highlight the method’s applicability for modernizing cadastral workflows, particularly in dense or irregularly structured areas, offering a practical, accurate, and time-saving solution adaptable to both national and international land administration needs. Beyond the combination of known technologies, the innovation lies in the practical integration of terrestrial and aerial SLAM (dual SLAM) with RTK UAV workflows under real-world constraints, offering a field-validated solution for complex cadastral scenarios where traditional methods are limited. Full article
Show Figures

Graphical abstract

26 pages, 9416 KB  
Article
Multi-Component Remote Sensing for Mapping Buried Water Pipelines
by John Lioumbas, Thomas Spahos, Aikaterini Christodoulou, Ioannis Mitzias, Panagiota Stournara, Ioannis Kavouras, Alexandros Mentes, Nopi Theodoridou and Agis Papadopoulos
Remote Sens. 2025, 17(12), 2109; https://doi.org/10.3390/rs17122109 - 19 Jun 2025
Viewed by 979
Abstract
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV [...] Read more.
Accurate localization of buried water pipelines in rural areas is crucial for maintenance and leak management but is often hindered by outdated maps and the limitations of traditional geophysical methods. This study aimed to develop and validate a multi-source remote-sensing workflow, integrating UAV (unmanned aerial vehicle)-borne near-infrared (NIR) surveys, multi-temporal Sentinel-2 imagery, and historical Google Earth orthophotos to precisely map pipeline locations and establish a surface baseline for future monitoring. Each dataset was processed within a unified least-squares framework to delineate pipeline axes from surface anomalies (vegetation stress, soil discoloration, and proxies) and rigorously quantify positional uncertainty, with findings validated against RTK-GNSS (Real-Time Kinematic—Global Navigation Satellite System) surveys of an excavated trench. The combined approach yielded sub-meter accuracy (±0.3 m) with UAV data, meter-scale precision (≈±1 m) with Google Earth, and precision up to several meters (±13.0 m) with Sentinel-2, significantly improving upon inaccurate legacy maps (up to a 300 m divergence) and successfully guiding excavation to locate a pipeline segment. The methodology demonstrated seasonal variability in detection capabilities, with optimal UAV-based identification occurring during early-vegetation growth phases (NDVI, Normalized Difference Vegetation Index ≈ 0.30–0.45) and post-harvest periods. A Sentinel-2 analysis of 221 cloud-free scenes revealed persistent soil discoloration patterns spanning 15–30 m in width, while Google Earth historical imagery provided crucial bridging data with intermediate spatial and temporal resolution. Ground-truth validation confirmed the pipeline location within 0.4 m of the Google Earth-derived position. This integrated, cost-effective workflow provides a transferable methodology for enhanced pipeline mapping and establishes a vital baseline of surface signatures, enabling more effective future monitoring and proactive maintenance to detect leaks or structural failures. This methodology is particularly valuable for water utility companies, municipal infrastructure managers, consulting engineers specializing in buried utilities, and remote-sensing practitioners working in pipeline detection and monitoring applications. Full article
(This article belongs to the Special Issue Remote Sensing Applications for Infrastructures)
Show Figures

Graphical abstract

23 pages, 4440 KB  
Article
Large-Scale Topographic Mapping Using RTK-GNSS and Multispectral UAV Drone Photogrammetric Surveys: Comparative Evaluation of Experimental Results
by Siyandza M. Dlamini and Yashon O. Ouma
Geomatics 2025, 5(2), 25; https://doi.org/10.3390/geomatics5020025 - 18 Jun 2025
Viewed by 2816
Abstract
The automation in image acquisition and processing using UAV drones has the potential to acquire terrain data that can be utilized for the accurate production of 2D and 3D digital data. In this study, the DJI Phantom 4 drone was employed for large-scale [...] Read more.
The automation in image acquisition and processing using UAV drones has the potential to acquire terrain data that can be utilized for the accurate production of 2D and 3D digital data. In this study, the DJI Phantom 4 drone was employed for large-scale topographical mapping, and based on the photogrammetric Structure-from-Motion (SfM) algorithm, drone-derived point clouds were used to generate the terrain DSM, DEM, contours, and the orthomosaic from which the topographical map features were digitized. An evaluation of the horizontal (X, Y) and vertical (Z) coordinates of the UAV drone points and the RTK-GNSS survey data showed that the Z-coordinates had the highest MAE(X,Y,Z), RMSE(X,Y,Z) and Accuracy(X,Y,Z) errors. An integrated georeferencing of the UAV drone imagery using the mobile RTK-GNSS base station improved the 2D and 3D positional accuracies with an average 2D (X, Y) accuracy of <2 mm and height accuracy of −2.324 mm, with an overall 3D accuracy of −4.022 mm. Geometrically, the average difference in the perimeter and areas of the features from the RTK-GNSS and UAV drone topographical maps were −0.26% and −0.23%, respectively. The results achieved the recommended positional accuracy standards for the production of digital geospatial data, demonstrating the cost-effectiveness of low-cost UAV drones for large-scale topographical mapping. Full article
Show Figures

Figure 1

Back to TopTop