Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,244)

Search Parameters:
Keywords = Reynolds number effect

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2575 KB  
Article
Effect of Heated Wall Corrugation on Thermal Performance in an L-Shaped Vented Cavity Crossed by Metal Foam Saturated with Copper–Water Nanofluid
by Luma F. Ali, Hussein Togun and Abdellatif M. Sadeq
Computation 2025, 13(9), 218; https://doi.org/10.3390/computation13090218 (registering DOI) - 6 Sep 2025
Abstract
Practical applications such as solar power energy systems, electronic cooling, and the convective drying of vented enclosures require continuous developments to enhance fluid and heat flow. Numerous studies have investigated the enhancement of heat transfer in L-formed vented cavities by inserting heat-generating components, [...] Read more.
Practical applications such as solar power energy systems, electronic cooling, and the convective drying of vented enclosures require continuous developments to enhance fluid and heat flow. Numerous studies have investigated the enhancement of heat transfer in L-formed vented cavities by inserting heat-generating components, filling the cavity with nanofluids, providing an inner rotating cylinder and a phase-change packed system, etc. Contemporary work has examined the thermal performance of L-shaped porous vented enclosures, which can be augmented by using metal foam, using nanofluids as a saturated fluid, and increasing the wall surface area by corrugating the cavity’s heating wall. These features are not discussed in published articles, and their exploration can be considered a novelty point in this work. In this study, a vented cavity was occupied by a copper metal foam with PPI = 10 and saturated with a copperwater nanofluid. The cavity walls were well insulated except for the left wall, which was kept at a hot isothermal temperature and was either non-corrugated or corrugated with rectangular waves. The DarcyBrinkmanForchheimer model and local thermal non-equilibrium models were adopted in momentum and energy-governing equations and solved numerically by utilizing commercial software. The influences of various effective parameters, including the Reynolds number (20 ≤ Re ≤ 1000), the nanoparticle volume fraction (0% ≤ φ ≤ 20%), the inflow and outflow vent aspect ratios (0.1 ≤ D/H ≤ 0.4), the rectangular wave corrugation number (N = 5 and N = 10), and the corrugation dimension ratio (CR = 1 and CR = 0.5) were determined. The results indicate that the flow field and heat transfer were affected mainly by variations in Re,  D/H, and φ for a non-corrugated left wall; they were additionally influenced by N and CR when the wall was corrugated. The fluid- and solid-phase temperatures of the metal foam increased with an increase in Re and D/H. The fluid-phase Nusselt number near the hot left sidewall increased with an increase in φ by (25–60)%, while the solid-phase Nusselt number decreased by (10–30)%, and these numbers rose by around 3.5 times when the Reynolds number increased from 20 to 1000. For the corrugated hot wall, the Nusselt numbers of the two metal foam phases increased with an increase in Re and decreased with an increase in D/H, CR, or N by 10%, 19%, and 37%. The original aspect of this study is its use of a thermal, non-equilibrium, nanofluid-saturated metal foam in a corrugated L-shaped vented cavity. We aimed to investigate the thermal performance of this system in order to reinforce the viability of applying this material in thermal engineering systems. Full article
(This article belongs to the Special Issue Numerical Simulation of Nanofluid Flow in Porous Media)
35 pages, 18671 KB  
Article
Heat Transfer Analysis in a Channel Mounted with In-Line Downward-Facing and Staggered Downward-Facing Notched Baffles
by A. Phila, W. Keaitnukul, M. Kumar, M. Pimsarn, S. Chokphoemphun and S. Eiamsa-Ard
Eng 2025, 6(9), 229; https://doi.org/10.3390/eng6090229 - 5 Sep 2025
Abstract
This study presents a comprehensive analysis of heat transfer enhancement, flow resistance, and thermal performance in rectangular channels equipped with three baffle configurations: conventional transverse baffles (TBs), in-line downward-facing notched baffles (IDF-NBs), and staggered downward-facing notched baffles (SDF-NBs). The influence of the pitch-to-baffle [...] Read more.
This study presents a comprehensive analysis of heat transfer enhancement, flow resistance, and thermal performance in rectangular channels equipped with three baffle configurations: conventional transverse baffles (TBs), in-line downward-facing notched baffles (IDF-NBs), and staggered downward-facing notched baffles (SDF-NBs). The influence of the pitch-to-baffle height ratio (P/e), ranging from 2.0 to 10, was examined across Reynolds numbers from 6000 to 24,000. Results indicate that a P/e ratio of 6.0 consistently yielded the highest Nusselt numbers across all configurations. While the TB configuration produced significant heat transfer at P/e= 6.0, it experienced a substantial friction penalty, with its best thermal enhancement factor (TEF = 1.168) observed at P/e = 8.0. The IDF-NB configuration achieved optimal performance at P/e = 6.0 with a TEF of 1.257, offering a better balance between heat transfer and flow resistance. The SDF-NB arrangement outperformed all other cases, delivering the highest Nusselt number (Nu = 116.9), TEF (1.362), and improved flow reattachment, primarily due to enhanced mixing from the staggered layout. These findings demonstrate that the staggered notched baffle configuration at P/e = 6.0 offers the most effective thermal performance enhancement among the configurations studied. Full article
Show Figures

Figure 1

14 pages, 2546 KB  
Article
Impact of Lens Angle and Nozzle Geometry on Aerodynamic Focusing: A Numerical Study
by Apolo Vannavong, Harrison Griffin, Xiaoliang Wang and Mustafa Hadj-Nacer
Atmosphere 2025, 16(9), 1049; https://doi.org/10.3390/atmos16091049 - 3 Sep 2025
Viewed by 138
Abstract
Straight-edge thin plate orifices (90° half-angle) are used as the focusing elements in most aerodynamic lenses. They are simple to fabricate and have fewer boundary-layer effects as compared to other geometries, such as capillaries and converging and diverging orifices. This study presents the [...] Read more.
Straight-edge thin plate orifices (90° half-angle) are used as the focusing elements in most aerodynamic lenses. They are simple to fabricate and have fewer boundary-layer effects as compared to other geometries, such as capillaries and converging and diverging orifices. This study presents the first systematic evaluation of lens focusing performance across a wide range of half-angles. Computational fluid dynamics (CFD) simulations and Lagrangian particle tracking were used to investigate aerodynamic focusing of converging, straight-edge, and diverging orifices with half-angles ranging from 30° to 150° at two Reynolds numbers (50 and 100) and three Mach numbers (0.03, 0.1, and 0.3). The results show that the optimal Stokes number for near-axis particles has small differences between the straight-edge orifice and the converging or diverging orifices, indicating small changes in focusing behavior for different orifice geometries. This study further optimized exit nozzle dimensions to enhance focusing. Several nozzle radial aspect ratios and nozzle constriction lengths were simulated in a two-dimensional axisymmetric domain. The optimal geometry was identified for generating the least divergent particle beams and maintaining the highest transmission efficiencies for 10 nm–10 μm particles. Identifying such a nozzle geometry is critical for future designs of more efficient aerodynamic focusing lenses. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

26 pages, 7753 KB  
Article
Reducing Carbon Footprint in Petrochemical Plants by Analysis of Entropy Generation for Flow in Sudden Pipe Contraction
by Rached Ben-Mansour
Eng 2025, 6(9), 216; https://doi.org/10.3390/eng6090216 - 2 Sep 2025
Viewed by 177
Abstract
A very important method of reducing carbon emissions is to make sure industrial plants are operated at optimal energy efficiency. The oil and petrochemical industries spend large amounts of energy in the transportation of petroleum and its various products that have high viscosities. [...] Read more.
A very important method of reducing carbon emissions is to make sure industrial plants are operated at optimal energy efficiency. The oil and petrochemical industries spend large amounts of energy in the transportation of petroleum and its various products that have high viscosities. A critical component in these plants is abrupt pipe contraction. Large amounts of energy are lost in pipe contractions. In this paper we investigate the energy losses in pipe contraction using the local entropy generation method after solving the detailed flow field around an abrupt pipe contraction. We have applied the method at various Reynolds numbers covering laminar and turbulent flow regimes. Furthermore, we have used an integral entropy analysis and found excellent agreement between the differential and integral entropy methods when the computational grid is well refined. The differential analysis was able to predict the local entropy generation and find where the large losses are located and therefore be able to minimize these losses effectively. Based on the detailed entropy generation field, it is recommended to use rounded contraction in order to reduce the losses. By introducing rounded contractions in laminar flow, the losses have been reduced by 22%. In the case of the turbulent flow regime, the losses were reduced by 96% by introducing a rounding radius to diameter ratio r/D2 of 10%. The turbulent flow results for the case of pipe entrance, which is a special case of abrupt contraction (D2/D1 goes to zero) agree very well with the present results. This work addresses a large range of D2/D1 for laminar and turbulent flows. It is recommended that companies involved in designing petrochemical plants and installations take these findings into consideration to reduce carbon emissions. These recommendations also extend to the design of equipment and piping systems for the food industry and micro-device flows. Full article
(This article belongs to the Special Issue Advances in Decarbonisation Technologies for Industrial Processes)
Show Figures

Figure 1

25 pages, 8226 KB  
Article
Investigation of the Influence of Gyroid Lattice Dimensions on Cooling
by Anton Pulin, Ivan Talabira, Denis Konin, Kirill Alisov, Mikhail Kanakin, Mikhail Laptev, Evgenii Komlev, Viktor Barskov, Anatoliy Popovich and Kirill Starikov
Energies 2025, 18(17), 4552; https://doi.org/10.3390/en18174552 - 27 Aug 2025
Viewed by 365
Abstract
This study investigates the influence of geometric parameters of a gyroid lattice structure on the thermal performance of internal cooling channels relevant to gas turbine blade design. Various gyroid configurations were analyzed using CFD simulations in ANSYS CFX to evaluate heat transfer effectiveness [...] Read more.
This study investigates the influence of geometric parameters of a gyroid lattice structure on the thermal performance of internal cooling channels relevant to gas turbine blade design. Various gyroid configurations were analyzed using CFD simulations in ANSYS CFX to evaluate heat transfer effectiveness (Nusselt number), cooling flow penetration depth (cooling depth coefficient), and aerodynamic losses (pressure drop and drag coefficient). A series of simulations were conducted, varying lattice wall thickness, structure period, and Reynolds number, followed by the development of regression models to identify key trends. Experimental verification was carried out using 3D printed samples tested on a specially assembled aerodynamic test rig. Results confirmed the existence of an optimal lattice density, providing a favorable balance between heat transfer and pressure losses. The study highlights the high potential of gyroid TPMS structures for turbine blade cooling systems, where additive manufacturing enables complex internal geometries unattainable by traditional methods. The research demonstrates the practical feasibility and thermo-hydraulic advantages of lattice-based cooling channels and provides accurate predictive models for further optimization of turbine blade designs under high-temperature turbomachinery conditions. Full article
Show Figures

Figure 1

17 pages, 7180 KB  
Article
Numerical Study on the Energy-Harvesting Performance of Multiple Flapping Foils
by Shihui Wu and Li Wang
Processes 2025, 13(9), 2739; https://doi.org/10.3390/pr13092739 - 27 Aug 2025
Viewed by 317
Abstract
Flapping foils, inspired by the wing motions of birds and the swimming mechanisms of aquatic animals, offer a promising alternative to traditional turbines for extracting renewable energy from ambient flows found in nature. This study employs an immersed boundary-lattice Boltzmann method (IB-LBM) to [...] Read more.
Flapping foils, inspired by the wing motions of birds and the swimming mechanisms of aquatic animals, offer a promising alternative to traditional turbines for extracting renewable energy from ambient flows found in nature. This study employs an immersed boundary-lattice Boltzmann method (IB-LBM) to numerically investigate the energy extraction performance of multiple flapping foils at a Reynolds number of 1100. Two staggered foils are systematically studied to identify the optimum spatial arrangements needed to achieve high energy-harvesting performance. The results show that the wake of the fore-foil mainly contributes to the negative performance of the hind-foil due to the loss of streamwise flow velocity, and the interaction between the two foils can enhance the energy-harvesting performance of the system, but cannot fully alleviate the effects of flow velocity loss. Therefore, the staggered arrangements, which help the hind-foil shed the wake, are essential to improve the energy-harvesting performance of the hind-foil. Comparable performance for the hind-foil is achieved at a horizontal gap of 2.5c and vertical gap of 2.5c with c being the chord length of the foil. The scaled-up systems, including three-, five-, and seven-foil configurations, are examined with gaps of 2.5c (horizontal) and 2.5c (vertical), and the results show that such ‘V’-shaped arrangements of these foils can achieve high energy-harvesting performance, with an enhancement up to 10.7% when seven foils are used, by utilizing the high mean streamwise velocity at the boundary of the leader’s wake, confirming the versatility of the optimum staggered arrangements for flapping-foil arrays. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 2969 KB  
Article
CFD-Based Extensional Stress and Hemolysis Risk Evaluation in the U.S. Food and Drug Administration (FDA) Benchmark Nozzle Configurations
by Mesude Avcı
Fluids 2025, 10(9), 224; https://doi.org/10.3390/fluids10090224 - 27 Aug 2025
Viewed by 294
Abstract
Hemolysis, or the breakdown of red blood cells, observed in medical devices has been a significant concern for many years, particularly when mechanical stress on the cells is considered. This study focuses on evaluating extensional stresses in two configurations of the U.S. Food [...] Read more.
Hemolysis, or the breakdown of red blood cells, observed in medical devices has been a significant concern for many years, particularly when mechanical stress on the cells is considered. This study focuses on evaluating extensional stresses in two configurations of the U.S. Food and Drug Administration (FDA) nozzle: the Gradual Cone (GC) and Sudden Contraction (SC) models. The nozzle geometries were created as 3D models using Ansys Fluent 18.2 and its pre-processing software ICEM CFD. The mesh was constructed with hexahedral elements with O-grid topologies. Effects of varying flow conditions were observed by modeling five experimental cases of the FDA nozzles, including throat Reynolds numbers of 500, 2000, 3500, 5000, and 6500. Hemolysis potentials of FDA nozzle configurations were examined by analyzing the whole domains. Turbulent modeling was used by applying the shear stress transport k-ω (SST k-ω) model. A threshold of 2.8 Pa for extensional stress was observed. Moreover, the most commonly used power law models were applied to the FDA nozzle to see the effect of extensional stress on power law models. Zhang’s power law models gave the lowest standard error, while Giersiepen’s model gave the highest error on hemolysis predictions. Full article
(This article belongs to the Special Issue Advances in Hemodynamics and Related Biological Flows)
Show Figures

Figure 1

15 pages, 4840 KB  
Article
Wake Turbulence Induced by Local Blade Oscillation in a Linear Cascade
by Vitalii Yanovych, Volodymyr Tsymbalyuk, Daniel Duda and Václav Uruba
Appl. Sci. 2025, 15(17), 9263; https://doi.org/10.3390/app15179263 - 22 Aug 2025
Viewed by 334
Abstract
This paper investigates the oscillatory effect of a single blade on the turbulence wake downstream of a low-pressure turbine cascade. Experimental investigations were conducted at a chord-based Reynolds number of 2.3×105 with an excitation frequency of 73 Hz. The experimental [...] Read more.
This paper investigates the oscillatory effect of a single blade on the turbulence wake downstream of a low-pressure turbine cascade. Experimental investigations were conducted at a chord-based Reynolds number of 2.3×105 with an excitation frequency of 73 Hz. The experimental campaign encompassed two incidence angles (−3° and +6°) and three blade motion conditions: stationary, bending, and torsional vibrations. Turbulence characteristics were analyzed using hot-wire anemometry. The results indicate that the bending mode notably alters the wake topology, causing a 5% decline in streamwise velocity deficit compared to other modes. Additionally, the bending motion promotes the formation of large-scale coherent vortices within the wake, increasing the integral length scale by 7.5 times. In contrast, Kolmogorov’s microscale stays mostly unaffected by blade oscillations. However, increasing the incidence angle causes the smallest eddies in the inter-blade region to grow three times larger. Moreover, the data indicate that at −3°, bending-mode results in an approximate 13% reduction in the turbulence energy dissipation rate compared to the stationary configuration. Furthermore, the study emphasizes the spectral features of turbulent flow and provides a detailed assessment of the Taylor microscale under different experimental conditions. Full article
Show Figures

Figure 1

22 pages, 7110 KB  
Article
Flow and Heat Transfer in an Axial Throughflow Rotating Disk Cavity with Dual Inlets Under Variable Conditions
by Jianfei Li, Xueying Li and Jing Ren
Energies 2025, 18(16), 4435; https://doi.org/10.3390/en18164435 - 20 Aug 2025
Viewed by 435
Abstract
The flow and heat transfer in a rotating disk cavity with dual axial inlets are investigated under a range of operating conditions. A full 360° computational fluid dynamics model is employed, with 40 simulation cases varying the rotational Reynolds number (Reω [...] Read more.
The flow and heat transfer in a rotating disk cavity with dual axial inlets are investigated under a range of operating conditions. A full 360° computational fluid dynamics model is employed, with 40 simulation cases varying the rotational Reynolds number (Reω= 1.9 × 106–3.1 × 106) and axial throughflow Reynolds number (Rez = 7.3 × 105–1.2 × 106). The results show that elevated rotation intensifies turbulent mixing and significantly enhances convective cooling on the upstream disk, whereas increasing throughflow improves heat transfer on the downstream disk by promoting deeper coolant penetration. However, an excessive axial flow rate can induce local thermal stratification near the upstream disk, which offsets its heat transfer gains, and strong rotation diminishes the marginal benefits of higher throughflow on downstream cooling. Overall, the study reveals distinct cooling behaviors on the upstream and downstream disk surfaces governed by the interplay between rotation and throughflow. These findings provide insight into optimizing dual-inlet cavity designs and underscore the importance of balancing rotational speed and coolant flow distribution for effective thermal management in gas turbine disk cavities. Full article
Show Figures

Figure 1

21 pages, 8217 KB  
Article
Numerical Study of Irregularly Roughened Micro-Particles’ Drag in Laminar Flow
by Eleni Papazoglou, Konstantinos-Stefanos Nikas and Demetri Bouris
Appl. Sci. 2025, 15(16), 9090; https://doi.org/10.3390/app15169090 - 18 Aug 2025
Viewed by 269
Abstract
The effect of surface roughness in laminar flow has been the focus of recent research related to drag reduction. However, although particle transport is governed by laminar flow in most applications, the effect of surface texture on the drag of a sphere has [...] Read more.
The effect of surface roughness in laminar flow has been the focus of recent research related to drag reduction. However, although particle transport is governed by laminar flow in most applications, the effect of surface texture on the drag of a sphere has mostly been addressed in the transitional and turbulent regimes. The aim of the present study is to explore the drag behavior of rough spherical micro-particles in laminar flow. The spheres’ roughness has been structured based on a 3D complex Weaire–Phelan model, as well as on a simpler orthogonal lattice one, and quantified as per various definitions. The emerging surface roughness comprises irregular elements in terms of shape and size. The investigation has been performed at Reynolds numbers ranging from 2 to 8. The drag coefficient is found to drop quadratically with increasing roughness. Relative roughness can reduce the total drag on the particle by over 21%. The key physical mechanism is explained by the particles’ surface cavities, which contain recirculating, nearly stagnant fluid, thus creating a self-lubricating effect that reduces skin friction, as the main flow skims over the top without entering the cavities. A reduction in total drag arises when skin friction drag reduction is larger than the increase in form drag. Understanding the drag behavior of spherical particles with irregular surface texture provides new and useful insight into low Reynolds number transport phenomena related to a variety of engineering applications. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

19 pages, 8271 KB  
Article
Characteristics of Hydrodynamic Parameters of Different Understory Vegetation Patterns
by Chenhui Zhang, Jiali Wang and Jianbo Jia
Plants 2025, 14(16), 2556; https://doi.org/10.3390/plants14162556 - 17 Aug 2025
Viewed by 433
Abstract
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, [...] Read more.
The presence of understory vegetation not only influences slope-scale soil and water conservation but also exerts a profound effect on hydrodynamic characteristics and the processes of runoff and sediment production. Therefore, in this study, different vegetation types and vegetation coverages (bare land, 30%, 60%, and 90%) were set up by simulating rainfall (45, 60, 90, and 120 mm·h−1) to evaluate the runoff-sediment process and the response characteristics of hydrodynamic parameters. The results showed that increasing vegetation cover significantly reduced soil erosion on forest slopes (p < 0.05). When the vegetation cover ranged from 60% to 90%, vegetation pattern C and pattern D were the most effective in suppressing erosion, where increased cover improved runoff stability. Under low-cover conditions, overland flow tended toward turbulent and rapid regimes, whereas under high cover conditions, flow was primarily laminar and slow. Patterns C and D significantly reduced flow velocity and water depth (p < 0.05). Structural equation patterning revealed that, under different vegetation patterns, the runoff power (ω), Reynolds number (Re), and resistance coefficient (f) more effectively characterized the erosion process. Among these, the Reynolds number and runoff power were the dominant factors driving erosion on red soil slopes. By contrast, runoff shear stress was significantly reduced under high-cover conditions and showed weak correlation with sediment yield, suggesting that it was unsuitable as an indicator of slope erosion. Segmental vegetation arrangements and increasing vegetation cover near runoff outlets—especially at 60–90% coverage—effectively reduced soil erosion. These findings provide scientific insight into the hydrodynamic mechanisms of vegetation cover on slopes and offer theoretical support for optimizing soil and water conservation strategies on hilly terrain. Full article
(This article belongs to the Special Issue Plant Challenges in Response to Salt and Water Stress)
Show Figures

Figure 1

17 pages, 3458 KB  
Article
Investigation of Heart Valve Dynamics: A Fluid-Structure Interaction Approach
by Muhammad Adnan Anwar, Mudassar Razzaq, Muhammad Owais, Kainat Jahangir and Marcel Gurris
Fluids 2025, 10(8), 215; https://doi.org/10.3390/fluids10080215 - 15 Aug 2025
Viewed by 373
Abstract
This study presents a numerical investigation into the heart valve through a fluid–structure interaction (FSI) framework using a two-dimensional, steady-state, Newtonian flow assumption. While simplified, this approach captures core biomechanical effects and provides a baseline for future extension toward non-Newtonian, pulsatile, and three-dimensional [...] Read more.
This study presents a numerical investigation into the heart valve through a fluid–structure interaction (FSI) framework using a two-dimensional, steady-state, Newtonian flow assumption. While simplified, this approach captures core biomechanical effects and provides a baseline for future extension toward non-Newtonian, pulsatile, and three-dimensional models. The analysis focuses on the influence of magnetic field intensity characterized by the Hartmann number (Ha) and flow regime defined by the Reynolds number (Re) on critical hemodynamic parameters, including wall shear stress (WSS), velocity profiles, and pressure gradients in the valve region. The results demonstrate that stronger magnetic fields significantly stabilize intravalvular flow by suppressing recirculation zones and reducing flow separation distal to valve constrictions, offering protective hemodynamic benefits and serving as a non-invasive method to modulate vascular behavior and reduce the risk of cardiovascular pathologies such as atherosclerosis and hypertension. Full article
(This article belongs to the Special Issue Recent Advances in Cardiovascular Flows)
Show Figures

Figure 1

19 pages, 3821 KB  
Article
Experimental Study on Particle Settling in Fiber-Containing Non-Newtonian Fluids
by Hui Zhang, Heng Wang, Yinsong Liu, Liang Tao, Jingyu Qu and Chao Liang
Processes 2025, 13(8), 2542; https://doi.org/10.3390/pr13082542 - 12 Aug 2025
Viewed by 376
Abstract
To investigate the settling behavior and drag characteristics of particles in fiber-containing non-Newtonian fluids, a series of systematic single-particle settling experiments were conducted. Power-law and Herschel–Bulkley fluids were prepared as base media, into which polyester fibers of various concentrations and lengths were introduced. [...] Read more.
To investigate the settling behavior and drag characteristics of particles in fiber-containing non-Newtonian fluids, a series of systematic single-particle settling experiments were conducted. Power-law and Herschel–Bulkley fluids were prepared as base media, into which polyester fibers of various concentrations and lengths were introduced. The effects of fiber structural parameters on fluid rheology and terminal settling velocity were thoroughly evaluated. First, the rheological changes induced by fiber addition were quantitatively analyzed, revealing a nonlinear increase in both viscosity and yield stress with increasing fiber concentration and length. Subsequently, the total drag force was decomposed into viscous and fiber-induced components, and a predictive model for the fiber-induced drag coefficient was developed based on fiber structural parameters. A power-law fitting approach was employed to characterize the nonlinear relationship between the fiber drag coefficient and the particle Reynolds number. Furthermore, a parametric coupling strategy was employed, in which fiber concentration and length were embedded into the model coefficients to construct a unified and continuous predictive model for the total drag coefficient. Experimental validation demonstrated that the mean relative errors (MREs) of the proposed model were within 5.17% for power-law fluids and 9.95% for Herschel–Bulkley fluids, indicating strong predictive accuracy and applicability. The findings of this study provide a robust theoretical and experimental basis for optimizing fiber-enhanced cutting transport systems and modeling particle transportation under complex drilling conditions. Full article
(This article belongs to the Special Issue Numerical and Process Modelling in Computational Fluid Dynamics)
Show Figures

Figure 1

23 pages, 4602 KB  
Article
Trailing Edge Loss of Choked Organic Vapor Turbine Blades
by Leander Hake and Stefan aus der Wiesche
Int. J. Turbomach. Propuls. Power 2025, 10(3), 23; https://doi.org/10.3390/ijtpp10030023 - 8 Aug 2025
Viewed by 254
Abstract
The present study reports the outcome of an experimental study of organic vapor trailing edge flows. As a working fluid, the organic vapor Novec 649 was used under representative pressure and temperature conditions for organic Rankine cycle (ORC) turbine applications characterized by values [...] Read more.
The present study reports the outcome of an experimental study of organic vapor trailing edge flows. As a working fluid, the organic vapor Novec 649 was used under representative pressure and temperature conditions for organic Rankine cycle (ORC) turbine applications characterized by values of the fundamental derivative of gas dynamics below unity. An idealized vane configuration was placed in the test section of a closed-loop organic vapor wind tunnel. The effect of the Reynolds number was assessed independently from the Mach number by charging the closed wind tunnel. The airfoil surface roughness and the trailing edge shape were evaluated by experimenting with different test blades. The flow and the loss behavior were obtained using Pitot probes, static wall pressure taps, and background-oriented schlieren (BOS) optics. Isentropic exit Mach numbers up to 1.5 were investigated. Features predicted via a simple flow model proposed by Denton and Xu in 1989 were observed for organic vapor flows. Still, roughness affected the downstream loss behavior significantly due to shockwave boundary-layer interactions and flow separation. The new experimental results obtained for this organic vapor are compared with correlations from the literature and available loss data. Full article
Show Figures

Figure 1

17 pages, 8580 KB  
Article
Assessment of Large-Eddy Simulations to Simulate a High-Speed Low-Pressure Turbine Cascade
by Florent Duchaine and Xavier Delon
Int. J. Turbomach. Propuls. Power 2025, 10(3), 21; https://doi.org/10.3390/ijtpp10030021 - 7 Aug 2025
Viewed by 300
Abstract
The development of compact high-speed low-pressure turbines with high efficiencies requires the characterization of the secondary flow structures and the interaction of cavity purge and leakage flows with the mainstream. During the SPLEEN project funded by the European Union’s Horizon 2020, the von [...] Read more.
The development of compact high-speed low-pressure turbines with high efficiencies requires the characterization of the secondary flow structures and the interaction of cavity purge and leakage flows with the mainstream. During the SPLEEN project funded by the European Union’s Horizon 2020, the von Karman Institute and Safran Aircraft Engines performed detailed measurements of low-pressure turbines in engine-realistic conditions (i.e., low Reynolds and high exit Mach numbers considering background turbulence, wakes, row interactions, and leakages). The SPLEEN project is thus a fundamental contribution to the progress of high-speed low-pressure turbines by delivering unique experimental databases, essential to characterize the time-resolved 3D turbine flow, and new critical knowledge to mature the design of 3D technological effects. Being able to simulate the flow and associated losses in such a configuration is both challenging and of paramount importance to help the understanding of the flow physics complementing experimental measurements. This paper focuses on the high-fidelity numerical simulation of one of the SPLEEN configuration consisting of a linear blade cascade. The objective is to provide a validated numerical setup in terms of computational domain, boundary conditions, mesh resolution and numerical scheme to reproduce the experimental results. By mean of wall-resolved large-eddy simulations, the design point characterized by an exit Mach number of 0.9 and an exit Reynolds number of 70,000 with a turbulence level of 2.4% is investigated for the baseline configuration without purge and without wake generator. The results show that the considered computational domain and the associated inlet total pressure profile play a critical role on the development of secondary flows. The isentropic Mach number distribution around the blade is shown to be robust to the mesh and numerical scheme. The development of the wake and secondary flow fields are drastically influenced by the mesh resolution and numerical scheme, impacting the resulting losses. Full article
Show Figures

Figure 1

Back to TopTop