Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = Rhenium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 2388 KB  
Review
A Review on Sulfonamide Complexes with Metals: Their Pharmacological Potential as Anticancer Drugs
by Przemysław Rozbicki and Danuta Branowska
Pharmaceuticals 2025, 18(9), 1414; https://doi.org/10.3390/ph18091414 - 19 Sep 2025
Viewed by 229
Abstract
Sulfonamides represent a versatile class of biologically active compounds, best known for their antibacterial activity, but increasingly investigated for their potential in oncology. Free sulfonamides themselves display cytotoxic properties; however, coordination with metal ions often enhances both selectivity and potency, while also introducing [...] Read more.
Sulfonamides represent a versatile class of biologically active compounds, best known for their antibacterial activity, but increasingly investigated for their potential in oncology. Free sulfonamides themselves display cytotoxic properties; however, coordination with metal ions often enhances both selectivity and potency, while also introducing new mechanisms of action. Although numerous studies have reported sulfonamide–metal complexes with anticancer activity, a systematic overview linking biological properties to the central metal atom has been lacking. This review summarizes current research on sulfonamide complexes with transition metals and selected main-group elements, focusing on their pharmacological potential as anticancer agents. The compounds discussed include complexes of titanium, chromium, manganese, rhenium, ruthenium, osmium, iridium, palladium, platinum, copper, silver, gold, iron, cobalt, nickel, uranium, calcium, magnesium and bismuth. For each group, representative structures are presented along with cytotoxicity data against cancer cell lines, comparisons with reference drugs such as for example cisplatin, and where relevant, studies on carbonic anhydrase inhibition. The survey of available data demonstrates that many sulfonamide–metal complexes show cytotoxic activity comparable to or greater than existing chemotherapeutic agents, while in some cases exhibiting reduced toxicity toward non-cancerous cells. These findings highlight the promise of sulfonamide–metal complexes as a fertile area for anticancer drug development and provide a framework for future design strategies. This review covers the research on anti-cancer activity of sulfonamide complexes during the years 2007–2025. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Application of Heterocyclic Compounds)
Show Figures

Graphical abstract

18 pages, 3597 KB  
Article
Continuous Flow-Mode Synthesis of Aromatic Amines in a 3D-Printed Fixed Bed Reactor Loaded with Amino Sugar-Stabilized Re Apparent Nanoparticles
by Patrick Niyirora, Joanna Wolska, Mateusz M. Marzec, Krystian Sokolowski, Anna Leśniewicz, Piotr Jamróz, Anna Dzimitrowicz, Andrzej Bernasik and Piotr Cyganowski
Molecules 2025, 30(18), 3782; https://doi.org/10.3390/molecules30183782 - 17 Sep 2025
Viewed by 313
Abstract
In industrial processes, catalysts—materials that speed up chemical reactions without being consumed—are essential. The goal of this research was to create two new rhenium-based nanocomposite catalysts that can effectively and sustainably reduce nitroaromatic compounds to aromatic amines in continuous-flow systems. Nitroaromatic hydrocarbons (NACs), [...] Read more.
In industrial processes, catalysts—materials that speed up chemical reactions without being consumed—are essential. The goal of this research was to create two new rhenium-based nanocomposite catalysts that can effectively and sustainably reduce nitroaromatic compounds to aromatic amines in continuous-flow systems. Nitroaromatic hydrocarbons (NACs), widely used in manufacturing pharmaceuticals, insecticides, and herbicides, often contaminate soil and water, posing significant environmental and health risks. However, their reduction to aromatic amines enables potential industrial reuse. In this study, we synthesized two nanocomposite catalysts based on a copolymer functionalized with N-methyl-D-glucamine, embedded with rhenium (Re)-based apparent nanoparticles, and used them to reduce the NACs in continuous-flow mode to their aromatic amines using newly designed and stereolithographic (SLA) 3D-printed reactors. Advanced characterization techniques were employed to evaluate their structure, morphology, and catalytical performance. Catalyst 1, prepared from a self-modified Purolite D4869 resin and characterized by higher Re loading, exhibited superior conversion rates in batch mode (k1 up to 1.406 s−1). In contrast, Catalyst 2, based on a commercial NMDG-functionalized Dowex resin with a mesoporous structure, demonstrated remarkable stability and catalytic capacity under continuous flow (up to 1.383 mmolNAC mLcat−1). Overall, Catalyst 1 was found to be better suited for rapid batch reactions, whereas Catalyst 2 was found to be more appropriate for long-term flow applications, offering a sustainable route for the efficient conversion of nitroaromatic compounds into valuable aromatic amines. The reactors enabled the efficient conversion of NACs into aromatic amines while enhancing process sustainability and efficiency. Full article
Show Figures

Graphical abstract

17 pages, 3402 KB  
Article
Interfacial Engineering of CdS/ReS2 Nanocomposites for Enhanced Charge Separation and Photocatalytic Hydrogen Production
by Jingrui Duan, Yao Wang, Wen Luo, Yang Wu, Piyong Zhang and Yifan Zhang
Sustainability 2025, 17(18), 8287; https://doi.org/10.3390/su17188287 - 15 Sep 2025
Viewed by 364
Abstract
CdS is a promising photocatalyst for solar-driven hydrogen production due to its favorable optical properties and electronic structure. However, rapid recombination of photogenerated carriers and photocorrosion significantly limit its practical application. In this study, we developed a sustainable strategy by constructing CdS/ReS2 [...] Read more.
CdS is a promising photocatalyst for solar-driven hydrogen production due to its favorable optical properties and electronic structure. However, rapid recombination of photogenerated carriers and photocorrosion significantly limit its practical application. In this study, we developed a sustainable strategy by constructing CdS/ReS2 nanocomposites through hydrothermal interfacial engineering. On this basis, ReS2 nanosheets were intercalated on the surface of CdS by the hydrothermal method for catalyst modification. The introduction of ReS2 can effectively enhance the photoelectrochemical performance of CdS and accelerate the transfer of photogenerated carriers. The effects of different ReS2 loadings on the photocatalytic activity of CdS were explored experimentally, and the data revealed that the photocatalytic hydrogen evolution efficiency reached 50 mmol g−1 h−1 when the loading amount of ReS2 was 7 wt% and did not show any obvious attenuation during four cycles. This study provides a robust surface engineering strategy to enhance the catalytic efficiency of CdS photocatalysts and provides a theoretical basis for its application in photocatalytic hydrogen precipitation. This study also emphasizes the potential of abundant, non-precious metal materials for promoting scalable, environmentally friendly hydrogen production technologies that align with the principles of green chemistry and sustainable energy systems. Full article
Show Figures

Figure 1

19 pages, 2580 KB  
Article
Manganese(I) and Rhenium(I) Chelate Complexes with 2-Azabutadienes (RS)2C=C(H)-N=CPh2: Topological AIM Bonding Analysis and Molecular Structure of fac-MnBr(CO)3[(iPrS)2C=C(H)-N=CPh2]
by Marek M. Kubicki, Abderrahim Khatyr and Michael Knorr
Chemistry 2025, 7(5), 145; https://doi.org/10.3390/chemistry7050145 - 9 Sep 2025
Viewed by 461
Abstract
The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L1 ligates to Mn(CO)5Br to form the five-membered chelate compound fac-MnBr(CO)3[(iPrS)2C=C(H)-N=CPh2] MnPropBr, whose crystal structure has been determined from X-ray diffraction [...] Read more.
The thioether-functionalized 2-azabutadiene (iPrS)2C=C(H)-N=CPh2 L1 ligates to Mn(CO)5Br to form the five-membered chelate compound fac-MnBr(CO)3[(iPrS)2C=C(H)-N=CPh2] MnPropBr, whose crystal structure has been determined from X-ray diffraction data. In the crystal, different secondary intermolecular interactions, such as BrHC and ππ, give rise to a supramolecular network. The electronic properties of the metal–ligand bonds in MnPropBr are similar to those of complex MnPhBr (with R = SPh instead of iPrS); this also applies to a series of structurally analogous fac-ReX(CO)3[(RS)2C=C(H)-N=CPh2] (X = Cl, Br and I; R = SiPr, SPh and StBu) rhenium complexes and are discussed on the basis of QT-AIM (Quantum Theory of Atoms in Molecules) calculations. New bond length/electron density relationships are proposed for the metal–halide bonds, including, for the first time, complexes of one given metal and all three corresponding halides. In order to obtain a set of coherent data, three manganese complexes that belong to the family fac-MnX(CO)3[N∩N] (X = Cl, Br and I; N∩N is a chelating ligand with two coordinating N atoms) were included in this study. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

24 pages, 4914 KB  
Article
Research on the Production of Methyltrioxorhenium and Heterogenous Catalysts from Waste Materials
by Joanna Malarz, Karolina Goc, Mateusz Ciszewski, Karolina Pianowska, Patrycja Wróbel, Łukasz Hawełek, Dorota Kopyto and Katarzyna Leszczyńska-Sejda
Crystals 2025, 15(8), 717; https://doi.org/10.3390/cryst15080717 - 8 Aug 2025
Viewed by 602
Abstract
This paper presents the research results on the synthesis of rhenium catalysts MTO, Re2O7/Al2O3, and M-Re2O7/Al2O3 (where M = Ni, Ag, Co, Cu) from rhenium compounds (ammonium perrhenate, [...] Read more.
This paper presents the research results on the synthesis of rhenium catalysts MTO, Re2O7/Al2O3, and M-Re2O7/Al2O3 (where M = Ni, Ag, Co, Cu) from rhenium compounds (ammonium perrhenate, perrhenic acid, nickel(II) perrhenate, cobalt(II) perrhenate, zinc perrhenate, silver perrhenate, and copper(II) perrhenate) derived from waste materials. Methyltrioxorhenium (MTO) was obtained from silver perrhenate with a yield of over 80%, whereas when using nickel(II), cobalt(II), and zinc perrhenates, the product was contaminated with tin compounds and the yield did not exceed 17%. The Re2O7/Al2O3 and M-Re2O7/Al2O3 catalysts were obtained from the above-mentioned rhenium compounds. Alumina obtained in a calcination process of aluminum nitrate nonahydrate was used as a support. The catalysts were characterized in terms of their chemical and phase composition and physicochemical properties. Catalytic activity in model reactions, such as cyclohexene epoxidation and hex-1-ene homometathesis, was also studied. MTO obtained from silver perrhenate showed >70% activity in the epoxidation reaction, thus surpassing commercial MTO (1.0 mol% MTO, room temperature, and reaction time—2 h). Ag-Re2O7/Al2O3, Cu-Re2O7/Al2O3, and H-Re2O7/Al2O3 catalysts were inactive, while Co-Re2O7/Al2O3 and Ni-Re2O7/Al2O3 showed low activity (<43%) in the hex-1-ene homometathesis reaction. Only Re2O7/Al2O3 catalysts achieved >70% activity in this reaction (2.5 wt% Re, room temperature, and reaction time—2 h). The results indicate the potential of using rhenium compounds derived from waste materials to synthesize active catalysts for chemical processes. Full article
Show Figures

Figure 1

21 pages, 3287 KB  
Article
Experimental and Quantum Mechanical Studies of Efficient Re(VII)/Mo(VI) Separation by a Magnetic Amino-Functionalized Polymer
by Bojana Marković, Goran Janjić, Antonije Onjia, Tamara Tadić, Plamen Stefanov and Aleksandra Nastasović
Separations 2025, 12(8), 206; https://doi.org/10.3390/separations12080206 - 7 Aug 2025
Viewed by 408
Abstract
A previously synthesized and functionalized magnetic glycidyl methacrylate-based nanocomposite, mPGMT-deta, was tested as a sorbent for Re(VII) oxoanions in Mo(VI)-containing solutions. The effect of pH on the removal efficiency and the separation factor was examined in the range of 2 to 9. A [...] Read more.
A previously synthesized and functionalized magnetic glycidyl methacrylate-based nanocomposite, mPGMT-deta, was tested as a sorbent for Re(VII) oxoanions in Mo(VI)-containing solutions. The effect of pH on the removal efficiency and the separation factor was examined in the range of 2 to 9. A maximum separation factor (βRe/Mo) of 8.85 was observed at pH 6. The nature of rhenium oxoanions binding to the active sites of mPGMT-deta was analyzed using density functional theory (DFT). The calculations indicated that the formation of MoO42−//hedetaH22+ adduct is electrostatically favored at pH 6, while the inclusion of solvation effects makes the formation of ReO4//hedetaH22+ adduct thermodynamically more favorable. Solvation played a dominant role in determining the selectivity of oxoanion sorption to the nanocomposite. The adsorption isotherm, kinetics, and thermodynamics of Re(VII) onto mPGMT-deta were determined. The equilibrium data were best-fitted using the Langmuir adsorption model (R2 = 0.999), with a maximum sorption capacity for Re(VII) of 0.43 mmol/g. The uptake kinetics of the sorption process obeyed the pseudo-second-order model, with the influence of diffusion and external mass transfer. Based on the thermodynamic parameters, Re(VII) sorption was spontaneous and endothermic. Full article
Show Figures

Figure 1

26 pages, 4818 KB  
Article
Novel Anion-Exchange Resins for the Effective Recovery of Re(VII) from Simulated By-Products of Cu-Mo Ore Processing
by Piotr Cyganowski, Pawel Pohl, Szymon Pawlik and Dorota Jermakowicz-Bartkowiak
Int. J. Mol. Sci. 2025, 26(15), 7563; https://doi.org/10.3390/ijms26157563 - 5 Aug 2025
Viewed by 425
Abstract
The efficient recovery of rhenium (Re), a critical metal in high-tech industries, is essential to address its growing demand and reduce reliance on primary mining. In this study, we developed novel anion-exchange resins for the selective adsorption and recovery of Re(VII) ions from [...] Read more.
The efficient recovery of rhenium (Re), a critical metal in high-tech industries, is essential to address its growing demand and reduce reliance on primary mining. In this study, we developed novel anion-exchange resins for the selective adsorption and recovery of Re(VII) ions from acidic solutions, simulating industrial by-products. The resins were synthesized from a vinylbenzyl chloride-co-divinylbenzene copolymer modified with aliphatic, heterocyclic, and aromatic weakly basic amines, selected from among bis(3-aminopropyl)amine (BAPA), 1-(2-pyrimidinyl)piperazine (PIP), thiosemicarbazide (TSC), 2-amino-3-hydroxypyridine (AHP), 1-(2-hydroxyethyl)piperazine (HEP), 4-amino-2,6-dihydroxypyrimidine (AHPI), and 2-thiazolamine (TA). The adsorption of Re on BAPA, PIP, and HEP resins obeyed the Langmuir model, and the resins exhibited high adsorption capacities, with maximum values reaching 435.4 mg Re g−1 at pH 6. Furthermore, strong selectivity for ReO4 ions over competing species, including Mo, Cu, and V, was noted in solutions simulating the leachates of the by-products of Cu-Mo ores. Additionally, complete elution of Re was possible. The developed resins turned out to be highly suitable for the continuous-flow-mode adsorption of ReO4, revealing outstanding adsorption capacities before reaching column breakthrough. In this context, the novel anion-exchange resins developed offer a reference for further Re recovery strategies. Full article
Show Figures

Figure 1

15 pages, 1363 KB  
Article
Evaluation of a Rhenium(I) Complex and Its Pyridostatin-Containing Chelator as Radiosensitizers for Chemoradiotherapy
by António Paulo, Sofia Cardoso, Edgar Mendes, Elisa Palma, Paula Raposinho and Ana Belchior
Molecules 2025, 30(15), 3240; https://doi.org/10.3390/molecules30153240 - 1 Aug 2025
Viewed by 410
Abstract
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years [...] Read more.
The use of radiosensitizers is a beneficial approach in cancer radiotherapy treatment. However, the enhancement of radiation effects on cancer cells by radiosensitizers involves several different mechanisms, reflecting the chemical nature of the radiosensitizer. G-quadruplex (G4) DNA ligands have emerged in recent years as a potential new class of radiosensitizers binding to specific DNA sequences. Recently, we have shown that the Re(I) tricarbonyl complex PDF-Pz-Re and its pyrazolyl-diamine chelator PDF-Pz, carrying a N-methylated pyridostatin (PDF) derivative, act as G4 binders of various G4-forming DNA and RNA sequences. As described in this contribution, these features prompted us to evaluate PDF-Pz-Re and PDF-Pz as radiosensitizers of prostate cancer PC3 cells submitted to concomitant treatment with Co-60 radiation. The compound RHPS4 was also tested, as this G4 ligand was previously shown to exhibit strong radiosensitizing properties in other cancer cell lines. The assessment of the resulting radiobiological effects, namely through clonogenic cell survival, DNA damage, and ROS production assays, showed that PDF-Pz-Re and PDF-Pz were able to radiosensitize PC3 cells despite being less active than RHPS4. Our results corroborate that G4 DNA ligands are a class of compounds with potential interest as radiosensitizers, deserving further studies to optimize their radiosensitization activity and elucidate the mechanisms of action. Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future, 3rd Edition)
Show Figures

Figure 1

11 pages, 1053 KB  
Communication
Understanding Room-Temperature Ductility of Bcc Refractory Alloys from Their Atomistic-Level Features
by Jiayi Yan and Cheng Fu
Metals 2025, 15(8), 851; https://doi.org/10.3390/met15080851 - 30 Jul 2025
Cited by 1 | Viewed by 434
Abstract
Many bcc refractory alloys show excellent high-temperature mechanical properties, while their fabricability can be limited by brittleness near room temperature. For the purpose of predicting ductile alloys, a number of ductility metrics based on atomic structures and crystal properties, ranging from mechanistic to [...] Read more.
Many bcc refractory alloys show excellent high-temperature mechanical properties, while their fabricability can be limited by brittleness near room temperature. For the purpose of predicting ductile alloys, a number of ductility metrics based on atomic structures and crystal properties, ranging from mechanistic to empirical, have been proposed. In this work, we propose an “average bond stiffness” as a new ductility metric that is also convenient to obtain from first-principles calculations, in addition to using the average magnitude of static displacements of atoms. The usefulness of average bond stiffness is validated by comparing first-principles calculation results to experimental data on the “rhenium effect” in Mo/W-base and V/Nb/Ta-base binary alloys. The average bond stiffness also correlates well with the room-temperature ductility of refractory high-entropy alloys, with a better performance than some ductility metrics previously reported. While in reality the ductility of an alloy can be influenced by many factors, from processing and microstructure, the average magnitude of static displacements and the average bond stiffness are atomistic-level features useful for design of alloy composition towards a desired level of ductility. Full article
Show Figures

Figure 1

19 pages, 4361 KB  
Article
Pinene-Based Chiral Bipyridine Ligands Drive Potent Antibacterial Activity in Rhenium(I) Complexes
by Justine Horner, Gozde Demirci, Aurelien Crochet, Aleksandar Pavic, Olimpia Mamula Steiner and Fabio Zobi
Molecules 2025, 30(15), 3183; https://doi.org/10.3390/molecules30153183 - 29 Jul 2025
Viewed by 569
Abstract
Antimicrobial resistance (AMR) poses a critical global health threat by rendering existing antibiotics ineffective against infections, leading to increased mortality, prolonged illnesses, and higher healthcare costs. Developing new antibiotics is essential to combat resistant pathogens, safeguard modern medical procedures, and prevent a return [...] Read more.
Antimicrobial resistance (AMR) poses a critical global health threat by rendering existing antibiotics ineffective against infections, leading to increased mortality, prolonged illnesses, and higher healthcare costs. Developing new antibiotics is essential to combat resistant pathogens, safeguard modern medical procedures, and prevent a return to a pre-antibiotic era where common infections become untreatable. We report a series of chiral tricarbonyl rhenium(I) complexes incorporating enantiopure pinene-substituted bipyridine ligands (L#) of the general formula fac-[Re(CO)3L#X] and fac-[Re(CO)3L#Py]+ (where X = Cl or Br and Py = pyridine). These complexes were isolated as mixtures of two diastereomers, characterized by standard techniques, and evaluated for cytotoxic activity against methicillin-resistant and methicillin-sensitive Staphylococcus aureus (MRSA and MSSA). The results revealed notable antibacterial efficacy (MIC = 1.6 μM), reflected in high therapeutic indices (Ti > 10). In contrast, analogous complexes bearing non-chiral 2,2′-bipyridine ligands exhibited no activity, underscoring the critical role of chirality in modulating biological interactions at the molecular level. These findings highlight the potential of chiral Re(I) complexes as promising scaffolds for the development of more potent and selective antibacterial agents. Full article
Show Figures

Figure 1

18 pages, 4119 KB  
Article
Structural Mechanics Calculations of SiC/Mo-Re Composites with Improved High Temperature Creep Properties
by Ke Li, Egor Kashkarov, Hailiang Ma, Ping Fan, Qiaoli Zhang, Andrey Lider and Daqing Yuan
Materials 2025, 18(15), 3459; https://doi.org/10.3390/ma18153459 - 23 Jul 2025
Viewed by 398
Abstract
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is [...] Read more.
In the present work, we design a laminated composite composed of molybdenum–rhenium alloy and silicon carbide ceramics for use in space reactors as a candidate structural material with neutron spectral shift properties. The influence of the internal microstructure on the mechanical properties is investigated by finite element simulation based on scale separation. The results of the study showed that the incorporation of gradient transition layers between the metallic and ceramic phases effectively mitigates thermally induced local stresses arising from mismatches in coefficients of thermal expansion. By optimizing the composition of the gradient transition layers, the stress distribution within the composite under operating conditions has been adjusted. As a result, the stress experienced by the alloy phase is significantly reduced, potentially extending the high-temperature creep rupture life. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 1366 KB  
Review
Review of Recent Medicinal Applications of Rhenium(I) Tricarbonyl Complexes
by Erick Kipngetich Towett, Vuyelwa J. Tembu, Douglas Kemboi, Moses K. Langat and Amanda-Lee E. Manicum
Int. J. Mol. Sci. 2025, 26(14), 7005; https://doi.org/10.3390/ijms26147005 - 21 Jul 2025
Cited by 1 | Viewed by 631
Abstract
The use of metal-based complexes is currently taking centre stage in the field of nanomedicine for the treatment and control of various ailments. Rhenium(I) tricarbonyl complexes have frequently been evaluated in vitro for their anticancer activities, and a few have advanced to in [...] Read more.
The use of metal-based complexes is currently taking centre stage in the field of nanomedicine for the treatment and control of various ailments. Rhenium(I) tricarbonyl complexes have frequently been evaluated in vitro for their anticancer activities, and a few have advanced to in vivo and clinical trials, owing to the distinct application characteristics of these complexes. Their inception in drug development is key. This study explores a detailed chronological overview of the medical applications of Re(I) tricarbonyl complexes over the past six years (2019–2024), focusing on their applications and clinical tests in the control and management of various ailments. An in-depth examination of their activities in anticancer treatments, Chagas disease, antifungal infections, antimalarial, and microbial infections was conducted, comparing the complexes to various standard antibiotics, conventional antimalarial drugs, antifungals, and standard anticancer agents. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

11 pages, 962 KB  
Article
Possible Realization of Hyperbolic Plasmons in Few-Layered Rhenium Disulfide
by Ravi Kiran, Dimitar Pashov, Mark van Schilfgaarde, Mikhail I. Katsnelson, Arghya Taraphder and Swagata Acharya
Condens. Matter 2025, 10(3), 40; https://doi.org/10.3390/condmat10030040 - 19 Jul 2025
Viewed by 626
Abstract
Hyperbolic plasmons are a highly desired property in optoelectronics and biomolecular sensing. The necessary condition to realize hyperbolic plasmons is a significant anisotropy of the principal components of the dielectric function, such that at a certain frequency range, one component is negative and [...] Read more.
Hyperbolic plasmons are a highly desired property in optoelectronics and biomolecular sensing. The necessary condition to realize hyperbolic plasmons is a significant anisotropy of the principal components of the dielectric function, such that at a certain frequency range, one component is negative and the other is positive, i.e., one component is metallic, and the other one is dielectric. Here, we study the effect of anisotropy in ReS2, and our theory shows that ReS2 can host hyperbolic plasmons in the ultraviolet frequency range. The operating frequency range of the hyperbolic plasmons can be tuned with the number of ReS2 layers. However, we note that the significantly large imaginary part of the macroscopic dielectric response in all layered variants of ReS2 can result in substantial losses for the hyperbolic plasmons, as in the case with other known hyperbolic materials, with the exception of MoOCl2. We also note that ReS2 hosts ultraviolet hyperbolic plasmons while ZrSiSe, WTe2, and CuS nanocrystals host infrared plasmons, providing a novel platform for optoelectronics in the ultraviolet range. Full article
Show Figures

Figure 1

20 pages, 2436 KB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Cited by 1 | Viewed by 727
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 3671 KB  
Article
Improving the Water–Gas Shift Performance of a Co/CeO2 Catalyst for Hydrogen Production
by Nipatta Chumanee and Pannipa Nachai
ChemEngineering 2025, 9(4), 71; https://doi.org/10.3390/chemengineering9040071 - 10 Jul 2025
Viewed by 624
Abstract
The aim of this study was to improve the water–gas shift efficiency of Co/CeO2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), [...] Read more.
The aim of this study was to improve the water–gas shift efficiency of Co/CeO2 catalyst by incorporating praseodymium and rhenium. The catalysts were synthesized via combustion method and characterized using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) surface area analysis, Scanning Electron Microscope (SEM), H2-temperature programmed reduction (H2-TPR), NH3-temperature programmed desorption (NH3-TPD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). These characterization techniques evaluate the increase of the surface acidity and oxygen vacancies in Co-based catalysts, which leads to an increase in water–gas shift performance because CO molecules prefer to react with surface oxygen, then followed by the production of CO2 and oxygen vacancies which act as active sites for H2O dissociation. The 1%Re4%Co/Ce-5%Pr-O catalyst exhibited a maximum CO conversion of 86% at 450 °C, substantially outperforming the 5%Co/Ce-5%Pr-O catalyst, which showed only 62% CO conversion at 600 °C. In addition, 1%Re4%Co/Ce-5%Pr-O catalyst is more resistant towards deactivation than 5%Co/Ce-5%Pr-O. The result presented that the catalytic activity of 1%Re4%Co/Ce-5%Pr-O catalyst was kept constant for the whole period of 50 h, while a 6% decrease in water–gas shift activity was found for the 5%Co/Ce-5%Pr-O catalyst. Moreover, the addition of rhenium into the Co/Ce-Pr-O catalyst reveals that the enhancement of oxygen vacancy concentration, oxygen mobility, and surface acidity, thereby enhances CO conversion efficiency. Full article
Show Figures

Figure 1

Back to TopTop