Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417,018)

Search Parameters:
Keywords = S100

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2071 KB  
Article
Potential Protective Role of Amphibian Skin Bacteria Against Water Mold Saprolegnia spp.
by Sara Costa, Diogo Neves Proença, Artur Alves, Paula V. Morais and Isabel Lopes
J. Fungi 2025, 11(9), 649; https://doi.org/10.3390/jof11090649 (registering DOI) - 2 Sep 2025
Abstract
Amphibian populations have experienced a severe decline over the past 40 years, driven primarily by environmental pollution, habitat destruction, climate change, and disease. This work reports, for the first time, saprolegniosis in Pelophylax perezi egg masses and saprolegniosis in amphibians in Portugal. After [...] Read more.
Amphibian populations have experienced a severe decline over the past 40 years, driven primarily by environmental pollution, habitat destruction, climate change, and disease. This work reports, for the first time, saprolegniosis in Pelophylax perezi egg masses and saprolegniosis in amphibians in Portugal. After isolation and phylogenetic analysis, the pathogen was identified as Saprolegnia australis. Following this, the present work intended to screen a collection of P. perezi skin bacteria for the existence of bacterial strains with inhibitory action against the newly identified S. australis SC1 and two other species, Saprolegnia diclina SAP 1010 UE and Saprolegnia australis SAP 1581 UE. The results showed that various bacterial species could inhibit the growth of these three species of oomycetes. Bacteria with the most significant antagonistic action against Saprolegnia spp. predominantly belonged to the genus Bacillus, followed by Serratia, Pseudomonas, and Aeromonas. Despite variations in bacterial diversity among frog populations, the present study also demonstrated the presence of bacteria on frogs’ skin that were capable of inhibiting Saprolegnia spp., as evidenced by in vitro challenge assays. These findings highlight the protective function of bacteria present in amphibian skin. The observed bacterial diversity may contribute to the metabolic redundancy of the frog skin microbiome, helping to maintain its functional capacity despite shifts in the community composition. Additionally, the study found that, when providing a more advantageous environment for pathogen growth—in this case a peptone–glucose (PG) medium instead of R2A—the percentage of bacteria with moderate-to-strong antagonistic activity dropped by 13% to 4%. In conclusion, the presence of bacteria capable of inhibiting Saprolegnia spp. in adult individuals and across different environmental conditions may contribute to lowering the susceptibility of frog adults towards Saprolegnia spp., compared with that in the early stages of development, like the tadpole or egg stages. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

19 pages, 1624 KB  
Article
Enhancing Biological Nitrogen Fixation Through Diverse Pasture Swards
by Rukshagini Sutharsan, Paramsothy Jeyakumar, Lucy Burkitt, Dumsane Themba Matse, Ramadoss Dhanuskodi, James Hanly and Daniel J. Donaghy
Plants 2025, 14(17), 2727; https://doi.org/10.3390/plants14172727 (registering DOI) - 2 Sep 2025
Abstract
Regenerative agricultural practices emphasize the use of diverse pasture species within sustainable agriculture production systems. The inclusion of a range of legume species in diverse pasture swards is likely to increase biological N fixation (BNF) across seasons, reducing the system’s reliance on synthetic [...] Read more.
Regenerative agricultural practices emphasize the use of diverse pasture species within sustainable agriculture production systems. The inclusion of a range of legume species in diverse pasture swards is likely to increase biological N fixation (BNF) across seasons, reducing the system’s reliance on synthetic N inputs. The present field study aims to quantify BNF in selected legume species within diverse pasture (combining 9 species) and standard pastures (ryegrass and clover combination) and assess their performance to identify the potential for improving N supply while maintaining year-round pasture quality. A year-round seasonal BNF was assessed by evaluating soil N status, nodulation patterns, plant composition, and conducting 15N natural abundance studies. The results revealed that the diverse pasture sward produced 5.4% more dry matter compared to the standard pasture, while soil mineral N (NO3, NH4+) remained statistically similar between the two treatments. Nitrogen yield was 9.3% higher in the diverse pasture than in the standard pasture. 15N natural abundance analysis assessment revealed no substantial variation in BNF rates across treatments throughout the study. However, in contrast to standard pasture, the BNF rate in diverse pasture experienced a 3-fold increase from winter to summer, while the standard pasture exhibited a 1.5-fold increase. In both pasture systems, BNF increased with clover proportion up to 30%, indicating optimal fixation at moderate clover levels. The findings underscore the potential of diverse pastures when strategically managed to enhance seasonal BNF while sustaining pasture productivity. Full article
Show Figures

Figure 1

21 pages, 2924 KB  
Article
Feasibility Study on Using Calcium Lignosulfonate-Modified Loess for Landfill Leachate Filtration and Seepage Control
by Jinjun Guo, Wenle Hu and Shixu Zhang
ChemEngineering 2025, 9(5), 96; https://doi.org/10.3390/chemengineering9050096 (registering DOI) - 2 Sep 2025
Abstract
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to [...] Read more.
Prolonged exposure to landfill leachate can weaken the impermeability of liner systems, leading to leachate leakage and the contamination of surrounding soil and water. To improve loess impermeability to enable its use as a liner material, this study uses synthetic landfill leachate to investigate its effects on loess permeability via a series of laboratory tests. This study focused on the influence of varying dosages of calcium lignosulfonate (CLS) on loess permeability, along with its capacity to adsorb and immobilize heavy metal ions. Microscale characterization techniques, including Zeta potential analysis, X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy (SEM), were employed to investigate the impermeability mechanisms of CLS-modified loess and its adsorption behavior toward heavy metals. The results indicate that the permeability coefficient of loess decreases significantly with increasing compaction, while higher leachate concentrations lead to a notable increase in permeability. At a compaction degree of 0.90, the permeability coefficient was reduced to 8 × 10−8 cm/s. In contrast, under conditions of maximum leachate concentration, the permeability coefficient rose markedly to 1.5 × 10−4 cm/s. Additionally, increasing the dosage of the compacted loess stabilizer (CLS) effectively reduced the permeability coefficient of the modified loess to 7.1 × 10−5 cm/s, indicating improved impermeability and enhanced resistance to contaminant migration. With the prolonged infiltration time of landfill leachate, the removal efficiency of Pb2+ gradually decreases and stabilizes, while the Pb2+ removal efficiency of the modified loess increased by approximately 40%. CLS-modified loess, through multiple mechanisms, reduces the fluid flow pathways and enhances its adsorption capacity for Pb2+, thereby improving the soil’s protection against heavy metal contamination. While these results demonstrate the potential of CLS-modified loess as a sustainable landfill liner material, the findings are based on controlled laboratory conditions with Pb2+ as the sole target contaminant. Future work should evaluate long-term performance under field conditions, including seasonal wetting–drying and freeze–thaw cycles, and investigate multi-metal systems to validate the broader applicability of this modification technique. Full article
Show Figures

Figure 1

23 pages, 3338 KB  
Article
Hierarchical Fuzzy-Adaptive Position Control of an Active Mass Damper for Enhanced Structural Vibration Suppression
by Omer Saleem, Massimo Leonardo Filograno, Soltan Alharbi and Jamshed Iqbal
Mathematics 2025, 13(17), 2816; https://doi.org/10.3390/math13172816 (registering DOI) - 2 Sep 2025
Abstract
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the [...] Read more.
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the baseline regulator. To address the limitations of this baseline PID controller under varying seismic excitations, an auxiliary fuzzy adaptation layer is integrated to adjust the state-weighting matrices of the LQR performance index dynamically. The online modification of the state weightages alters the Riccati equation’s solution, thereby updating the PID gains at each sampling instant. The fuzzy adaptive mechanism modulates the said weighting parameters as nonlinear functions of the classical displacement error and normalized acceleration. Normalized acceleration provides fast, scalable, and effective feedback for vibration mitigation in structural control using AMDs. By incorporating the system’s normalized acceleration into the adaptation scheme, the controller achieves improved self-tuning, allowing it to respond efficiently and effectively to changing conditions. The hierarchical design enables robust real-time PID gain adaptation while maintaining the controller’s asymptotic stability. The effectiveness of the proposed controller is validated through customized MATLAB/SIMULINK-based simulations. Results demonstrate that the proposed adaptive PID controller significantly outperforms the baseline PID controller in mitigating structural vibrations during seismic events, confirming its suitability for intelligent structural control applications. Full article
Show Figures

Figure 1

23 pages, 2718 KB  
Article
Deep Learning Image-Based Classification for Post-Earthquake Damage Level Prediction Using UAVs
by Norah Alsaaran and Adel Soudani
Sensors 2025, 25(17), 5406; https://doi.org/10.3390/s25175406 (registering DOI) - 2 Sep 2025
Abstract
Unmanned Aerial Vehicles (UAVs) integrated with lightweight deep learning models represent an effective solution for image-based rapid post-earthquake damage assessment. UAVs, equipped with cameras, capture high-resolution aerial imagery of disaster-stricken areas, providing essential data for evaluating structural damage. When paired with light eight [...] Read more.
Unmanned Aerial Vehicles (UAVs) integrated with lightweight deep learning models represent an effective solution for image-based rapid post-earthquake damage assessment. UAVs, equipped with cameras, capture high-resolution aerial imagery of disaster-stricken areas, providing essential data for evaluating structural damage. When paired with light eight Convolutional Neural Network (CNN) models, these UAVs can process the captured images onboard, enabling real-time, accurate damage level predictions that might with potential interest to orient efficiently the efforts of the Search and Rescue (SAR) teams. This study investigates the use of the MobileNetV3-Small lightweight CNN model for real-time post-earthquake damage level prediction using UAV-captured imagery. The model is trained to classify three levels of post-earthquake damage, ranging from no damage to severe damage. Experimental results show that the adapted MobileNetV3-Small model achieves the lowest FLOPs, with a significant reduction of 58.8% compared to the ShuffleNetv2 model. Fine-tuning the last five layers resulted in a slight increase of approximately 0.2% in FLOPs, but significantly improved accuracy and robustness, yielding a 4.5% performance boost over the baseline. The model achieved a weighted average F-score of 0.93 on a merged dataset composed of three post-earthquake damage level datasets. It was successfully deployed and tested on a Raspberry Pi 5, demonstrating its feasibility for edge-device applications. This deployment highlighted the model’s efficiency and real-time performance in resource-constrained environments. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

31 pages, 21130 KB  
Article
A Multi-Objective Optimization Method for Enhancing Outdoor Environmental Quality in University Courtyards in Hot Arid Climates
by Amr Sayed Hassan Abdallah, Randa Mohamed Ahmed Mahmoud, Ayman Ragab and Mohammed M. Gomaa
Buildings 2025, 15(17), 3140; https://doi.org/10.3390/buildings15173140 (registering DOI) - 2 Sep 2025
Abstract
Enhancing urban air quality and thermal comfort involves addressing multifaceted environmental and design challenges. Investigating the effects of urban morphological and building geometrical parameters on enhancing air quality and thermal comfort is a multifaceted problem, influenced by different parameters. This study aims to [...] Read more.
Enhancing urban air quality and thermal comfort involves addressing multifaceted environmental and design challenges. Investigating the effects of urban morphological and building geometrical parameters on enhancing air quality and thermal comfort is a multifaceted problem, influenced by different parameters. This study aims to develop optimized design solutions for university buildings and courtyards to enhance outdoor thermal comfort and reduce CO2 concentration levels as an indicator of air quality. Consequently, the methodology involved a combination of field monitoring at two university faculties in Egypt and a computational parametric methodology using Rhino 3D+Grasshopper(V8) for enhancing thermal comfort, reducing CO2 concentration levels, and improving wind velocity. The in situ measurements revealed significantly high CO2 levels (780 ppm) and wind speed (3.8 m/s). The parametric methodology’s findings revealed a substantial reduction in the Universal Thermal Climate Index (UTCI) by 2.04 to 10.3 °C, a decrease in CO2 concentration by 57 to 197 ppm, and an increase in wind speed by 0.4 to 4.07 m/s. The most suitable vegetation ratio for trees within narrow courtyard designs was found to be 30%. This ratio effectively enhances thermal comfort (UTCI) and reduces CO2 concentrations, while also maintaining adequate airflow and avoiding excessive obstruction of natural ventilation within the courtyard. These findings provide valuable guidance for optimizing courtyard designs in hot arid climates. Full article
(This article belongs to the Special Issue Research on Indoor Air Environment and Energy Conservation)
Show Figures

Figure 1

23 pages, 15804 KB  
Article
Experimental Study on the Strengthening Mechanism of Modified Coal Gangue Concrete and Mechanical Properties of Hollow Block Masonry
by Qing Qin, Yuchen Wang, Chenghua Zhang, Zhigang Gao, Sha Ding, Xueming Cao and Xinqi Zhang
Buildings 2025, 15(17), 3141; https://doi.org/10.3390/buildings15173141 (registering DOI) - 2 Sep 2025
Abstract
To enhance the utilization efficiency of coal gangue aggregate, coarse aggregates are chemically modified with 5% sodium silicate solution. The effects of this modification on the compressive strength and microstructural characteristics of concrete are systematically investigated through integrated macro-testing and micro-characterization. By evaluating [...] Read more.
To enhance the utilization efficiency of coal gangue aggregate, coarse aggregates are chemically modified with 5% sodium silicate solution. The effects of this modification on the compressive strength and microstructural characteristics of concrete are systematically investigated through integrated macro-testing and micro-characterization. By evaluating the compressive performance of modified coal gangue concrete blocks, the optimal mix ratio of each strength grade of blocks is determined. Experimental results indicate that the apparent density, water absorption, and crushing index of the modified coal gangue coarse aggregate exhibit better mechanical properties than the control group. The modified coal gangue coarse aggregate demonstrates improved mechanical performance, with the compressive strength of 28-day concrete showing a 15.3% increase relative to the control group. Furthermore, using a sodium silicate solution effectively enhances the interface transition zone’s performance between coal gangue coarse aggregate and cement mortar, improving the compactness of this interface. The modified coal gangue concrete blocks exhibit higher compressive strength than the original material. When the substitution rate remains constant, the compressive strength of modified coal gangue concrete decreases with increasing water–cement ratio. Similarly, at a constant water–binder ratio, compressive strength decreases with higher modified gangue aggregate replacement. Finally, compressive tests are conducted on masonry constructed with hollow blocks of strength grades MU7.5, MU10, and MU15. Then, a calculation model for the average compressive strength of modified coal gangue concrete hollow block masonry is proposed, providing theoretical support for its engineering application. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

22 pages, 2700 KB  
Article
Multidimensional Climatic Vulnerability of Urban Market Gardeners in Grand Nokoué, Benin: A Typological Analysis of Risk Exposure and Socio–Economic Inequalities
by Vidjinnagni Vinasse Ametooyona Azagoun, Kossi Komi, Djigbo Félicien Badou, Expédit Wilfrid Vissin and Komi Selom Klassou
Geographies 2025, 5(3), 46; https://doi.org/10.3390/geographies5030046 (registering DOI) - 2 Sep 2025
Abstract
Market gardening plays a crucial role in ensuring food security and reducing poverty in Africa’s rapidly urbanizing regions. However, urban agricultural systems are increasingly threatened by climatic shocks such as floods, droughts, and heat waves. This study uses an integrated approach to analyze [...] Read more.
Market gardening plays a crucial role in ensuring food security and reducing poverty in Africa’s rapidly urbanizing regions. However, urban agricultural systems are increasingly threatened by climatic shocks such as floods, droughts, and heat waves. This study uses an integrated approach to analyze the multidimensional factors of climatic vulnerability among urban market gardeners in the Grand Nokoué region of Benin. Based on socio–economic, technico–agronomic, and perceptual data collected from 369 growers, multiple correspondence analysis (MCA) coupled with ascending hierarchical analysis (AHA) was performed to identify vulnerability profiles. K–means partitioning was used to confirm the optimal number of groups, thereby guaranteeing the robustness and internal consistency of the typology. Three distinct vulnerability groups were identified, each characterized by specific socioeconomic, technical, and territorial characteristics, as well as varying exposure to the risks of flooding, drought, and dry spells. The results show that the most vulnerable farmers tend to be young women with low incomes, limited access to land, and a reliance on manual irrigation in flood–prone areas. These findings emphasize the uneven distribution of adaptive capacities and the pressing requirement for tailored public policies to enhance resilience, especially among small–scale, low–income, and land–insecure urban farmers, who are vulnerable to various climate–related risks. Full article
Show Figures

Figure 1

17 pages, 4580 KB  
Article
Experimental Study of the Thermomechanical Properties of a New Eco-Friendly Composite Material Based on Clay and Reed
by Aya Minoual, Soumia Mounir, Sara Ibn-Elhaj, Youssef Maaloufa, Hind Sarghini, Ahmed Kabouri and Abdelhamid Khabbazi
J. Compos. Sci. 2025, 9(9), 469; https://doi.org/10.3390/jcs9090469 (registering DOI) - 2 Sep 2025
Abstract
Reducing environmental impacts and energy consumption in construction is increasingly important, prompting the use of renewable, ecological, and cost-effective materials. This research investigates an ecological building material combining clay and ground reed fibers, offering a promising alternative to conventional resources. A composite made [...] Read more.
Reducing environmental impacts and energy consumption in construction is increasingly important, prompting the use of renewable, ecological, and cost-effective materials. This research investigates an ecological building material combining clay and ground reed fibers, offering a promising alternative to conventional resources. A composite made of 50% clay and 50% ground reed was developed to study the influence of fiber size after grinding, as reed is typically used in its unprocessed form. Initial analyses included a physico-chemical characterization of both clay and reed. Thermal performance was then evaluated under steady-state and transient conditions to assess heat storage, heat transfer, and the material’s thermal inertia. The results showed a thermal conductivity of 0.38 W/m·K and an estimated 50% energy savings compared to clay alone, demonstrating the composite’s enhanced insulation capacity. Mechanical tests revealed compressive strengths of 2.48 MPa and flexural strengths of 0.79 MPa, with no significant effect from fiber size. The composite is lighter and more insulating than traditional clay blocks, indicating potential for reduced heating demand and improved indoor comfort. This study confirms the feasibility of incorporating ground reed fibers into clay-based composites to produce more sustainable building materials, supporting the transition toward energy-efficient and environmentally responsible construction practices. Full article
(This article belongs to the Special Issue Composites: A Sustainable Material Solution, 2nd Edition)
Show Figures

Figure 1

25 pages, 457 KB  
Review
Transformation of Brewer’s Spent Grain Through Solid-State Fermentation: Implications for Nutrition and Health
by Marcos Barrera-León, Elí Terán-Cabanillas, Roberto de Jesús Avena-Bustillos, Feliznando Isidro Cárdenas-Torres, Bianca Anabel Amézquita-López, Mario Armando Gómez-Favela, David Moroni Alemán-Hidalgo and Mayra Arias-Gastélum
Recycling 2025, 10(5), 170; https://doi.org/10.3390/recycling10050170 (registering DOI) - 2 Sep 2025
Abstract
Brewer’s spent grain (BSG), a by-product originating from the brewing industry, contains substantial amounts of fibers, proteins, and bioactive compounds; however, its utility is restricted by anti-nutritional factors. Solid-state fermentation (SSF) presents a viable method for improving the nutritional and functional properties of [...] Read more.
Brewer’s spent grain (BSG), a by-product originating from the brewing industry, contains substantial amounts of fibers, proteins, and bioactive compounds; however, its utility is restricted by anti-nutritional factors. Solid-state fermentation (SSF) presents a viable method for improving the nutritional and functional properties of BSG. Microorganisms such as Rhizopus oligosporus have been demonstrated to enhance nutrient bioavailability, facilitate the degradation of complex carbohydrates, and improve protein digestibility while simultaneously reducing anti-nutritional components. Furthermore, this fermentation process yields bioactive compounds that exhibit antioxidant, anti-inflammatory, and prebiotic properties, thereby contributing to improved gut health, the prevention of metabolic disorders, and enhanced nutritional outcomes. Additionally, SSF seeks sustainability by repurposing agro-industrial by-products, reducing waste, and promoting the principles of a circular economy. Collectively, these advantages underscore the transformative potential of SSF in converting BSG into a functional food ingredient, effectively addressing contemporary health and environmental challenges and offering innovative solutions for food security and sustainable development. Full article
Show Figures

Graphical abstract

37 pages, 7976 KB  
Article
A Fusion Multi-Strategy Gray Wolf Optimizer for Enhanced Coverage Optimization in Wireless Sensor Networks
by Zhenkun Liu, Yun Ou, Zhuo Yang and Shuanghu Wang
Sensors 2025, 25(17), 5405; https://doi.org/10.3390/s25175405 (registering DOI) - 2 Sep 2025
Abstract
Wireless sensor networks (WSNs) are fundamental to applications in the Internet of Things, smart cities, and environmental monitoring, where coverage optimization is critical for maximizing monitoring efficacy under constrained resources. Conventional approaches often suffer from low global coverage efficiency, high computational overhead, and [...] Read more.
Wireless sensor networks (WSNs) are fundamental to applications in the Internet of Things, smart cities, and environmental monitoring, where coverage optimization is critical for maximizing monitoring efficacy under constrained resources. Conventional approaches often suffer from low global coverage efficiency, high computational overhead, and a tendency to converge to local optima. To address these challenges, this study proposes the fusion multi-strategy gray wolf optimizer (FMGWO), an advanced variant of the Gray Wolf Optimizer (GWO). FMGWO integrates various strategies: electrostatic field initialization for uniform population distribution, dynamic parameter adjustment with nonlinear convergence and differential evolution scaling, an elder council mechanism to preserve historical elite solutions, alpha wolf tenure inspection and rotation to maintain population vitality, and a hybrid mutation strategy combining differential evolution and Cauchy perturbations to enhance diversity and global search capability. Ablation studies validate the efficacy of each strategy, while simulation experiments demonstrate FMGWO’s superior performance in WSN coverage optimization. Compared to established algorithms such as PSO, GWO, CSA, DE, GA, FA, OGWO, DGWO1, and DGWO2, FMGWO achieves higher coverage rates with fewer nodes—up to 98.63% with 30 nodes—alongside improved convergence speed and stability. These results underscore FMGWO’s potential as an effective solution for efficient WSN deployment, offering significant implications for resource-constrained optimization in IoT and edge computing systems. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

24 pages, 3434 KB  
Article
Secondary Education Students’ Misconceptions on Principles of Geology: Minerals and Rocks
by Georgios Giotopoulos, Ioannis Koukouvelas, Irini Skopeliti, Polychronis Economou and Dimitrios Papoulis
Geosciences 2025, 15(9), 338; https://doi.org/10.3390/geosciences15090338 (registering DOI) - 2 Sep 2025
Abstract
The purpose of this research is to investigate the misconceptions related to geological concepts among Secondary Education students in the region of Achaia, Greece. The study focuses on both Lower Secondary Education (Gymnasium, grades 7–9) and Upper Secondary Education, including General and Vocational [...] Read more.
The purpose of this research is to investigate the misconceptions related to geological concepts among Secondary Education students in the region of Achaia, Greece. The study focuses on both Lower Secondary Education (Gymnasium, grades 7–9) and Upper Secondary Education, including General and Vocational Education (grades 10–12). Previous research has shown that students entering Lower Secondary Education or High School often possess several misconceptions about geological concepts. These misconceptions result in a fragmented or incorrect understanding, which may arise from intuitive perceptions of how the natural world evolves that are incorrect, or from stereotypes and assumptions acquired from the family environment or inadequacies in the school curriculum. Despite teachers’ efforts to clarify these concepts, a significant percentage of students continue to hold misconceptions, mainly related to minerals and rocks. A total of 1065 secondary students completed an online closed-ended questionnaire that was designed and validated based on previous research findings to highlight their misconceptions. This study results showed a clear differentiation between students from urban and rural areas, while demographic characteristics (such as gender, age, parents’ occupation, and parents’ marital status) did not appear to play a significant role. In addition, the responses to specific sets of questions varied depending on the student’s grade level. Identifying students’ misconceptions can support the development of appropriate educational tools and/or inform targeted interventions that aim to clarify these concepts and correct any incorrect assumptions. Full article
Show Figures

Figure 1

24 pages, 652 KB  
Article
Determinants of Diabetes-Related Quality of Life in Saudi Arabia: A Nationwide Survey-Based Assessment of Demographic, Health, and Complication-Related Influences
by Ebtihag O. Alenzi, Alya AlZabin, Ebtesam Almajed and Norah Alqntash
Medicina 2025, 61(9), 1583; https://doi.org/10.3390/medicina61091583 - 1 Sep 2025
Abstract
Background and Objectives: Diabetes affects quality of life (QoL) in physical, psychological, and social aspects. With high prevalence rates in Saudi Arabia, this study aimed to assess QoL in adults with diabetes across different regions and identify associated factors, addressing research gaps [...] Read more.
Background and Objectives: Diabetes affects quality of life (QoL) in physical, psychological, and social aspects. With high prevalence rates in Saudi Arabia, this study aimed to assess QoL in adults with diabetes across different regions and identify associated factors, addressing research gaps on complications and demographic influences. Materials and Methods: This cross-sectional study recruited adults diagnosed with diabetes from all regions of Saudi Arabia through phone interviews and the distribution of self-administered questionnaires via social media platforms. Data on demographics, health behaviors, diabetes-related complications, comorbidities, and diabetes management were collected. QoL was assessed using the Diabetic Quality of Life (DQoL) tool. Statistical analysis included descriptive statistics and multivariate regression, with significance set at p < 0.05. Results: Among the 527 individuals with diabetes, 57.7% were married, 56.1% were female, 93.7% lived in urban areas, and 37.2% had at least a bachelor’s degree. Common comorbidities included hypertension (29.2%) and hypercholesterolemia (22.8%). Physical activity and healthy weight were linked to improved DQoL. Diabetic complications, such as neuropathy (6.6%) and diabetic foot (4.9%), were significantly associated with lower DQoL scores. Depression was reported in 4.7% of participants and was the strongest predictor of poor QoL (β = −2.01, p < 0.001). Furthermore, individuals who exercised less than five times per week had significantly lower QoL scores (beta = −1.83; 95% CI = −2.56 to −1.10; p-value < 0.001). Conclusions: The study highlights the significant impact of education, health behaviors, diabetes complications, and comorbid depression on QoL. Comprehensive diabetes care that addresses both physical and psychological factors is essential for achieving improved outcomes. Full article
(This article belongs to the Section Epidemiology & Public Health)
Show Figures

Figure 1

47 pages, 7363 KB  
Article
Geometric Symmetry and Temporal Optimization in Human Pose and Hand Gesture Recognition for Intelligent Elderly Individual Monitoring
by Pongsarun Boonyopakorn and Mahasak Ketcham
Symmetry 2025, 17(9), 1423; https://doi.org/10.3390/sym17091423 - 1 Sep 2025
Abstract
This study introduces a real-time, non-intrusive monitoring system designed to support elderly care through vision-based pose estimation and hand gesture recognition. The proposed framework integrates convolutional neural networks (CNNs), temporal modeling using LSTM networks, and symmetry-aware keypoint analysis to enhance the accuracy and [...] Read more.
This study introduces a real-time, non-intrusive monitoring system designed to support elderly care through vision-based pose estimation and hand gesture recognition. The proposed framework integrates convolutional neural networks (CNNs), temporal modeling using LSTM networks, and symmetry-aware keypoint analysis to enhance the accuracy and reliability of behavior detection under varied real-world conditions. By leveraging the bilateral symmetry of human anatomy, the system improves the robustness of posture and gesture classification, even in the presence of partial occlusion or variable lighting. A total of 21 hand landmarks and 33 body pose points are used to recognize predefined actions and communication gestures, enabling seamless interaction without wearable devices. Experimental evaluations across four distinct lighting environments confirm a consistent accuracy above 90%, with real-time alerts triggered via IoT messaging platforms. The system’s modular architecture, interpretability, and adaptability make it a scalable solution for intelligent elderly individual monitoring, offering a novel application of spatial symmetry and optimized deep learning in healthcare technology. Full article
17 pages, 1032 KB  
Article
Zinc Therapy in Mild Cognitive Impairment: Cognitive Stabilization in Pharmacodynamically Responsive Patients in the ZINCAiD Trial
by Rosanna Squitti, Alberto Benussi, Silvia Fostinelli, Andrea Geviti, Jasmine Rivolta, Mariacarla Ventriglia, Alessandra Micera, Mauro Rongioletti, Roberta Ghidoni, Matteo Santilli, Alberto Granzotto, Alberto Albanese, Giuliano Binetti, Stefano L. Sensi and Barbara Borroni
Biomolecules 2025, 15(9), 1268; https://doi.org/10.3390/biom15091268 - 1 Sep 2025
Abstract
Dysregulation contributes to Alzheimer’s disease (AD) pathophysiology. Zinc therapy promotes enterocyte copper sequestration, potentially reducing systemic copper. Individual biological responses may vary. Methods: ZINCAiD was a 24-week, randomized, double-blind, placebo-controlled phase II trial assessing zinc therapy in individuals with mild cognitive impairment (MCI) [...] Read more.
Dysregulation contributes to Alzheimer’s disease (AD) pathophysiology. Zinc therapy promotes enterocyte copper sequestration, potentially reducing systemic copper. Individual biological responses may vary. Methods: ZINCAiD was a 24-week, randomized, double-blind, placebo-controlled phase II trial assessing zinc therapy in individuals with mild cognitive impairment (MCI) due to AD (EudraCT No.: 2019-000604-15; registered on 26 March 2020). Participants were randomized 2:1 to receive elemental zinc (135 mg/day for 12 weeks, then 65 mg/day) or placebo. Ceruloplasmin was measured at predefined intervals for safety monitoring, blinded to the investigators. Post hoc, “Zinc Responders” were defined by ≥20% reduction in ceruloplasmin at week 12. The primary cognitive endpoint was the Cognitive Composite 2 scale (CC2); secondary endpoints included MMSE and CDR-Sob. Findings: Of the 48 participants randomized, 9 discontinued, primarily due to unrelated clinical deterioration; 39 had complete ceruloplasmin data. Two serious adverse events occurred in the Placebo group. Mild gastrointestinal symptoms occurred in eight participants, with only four leading to dropout. In the primary zinc vs. placebo analysis, no significant differences emerged in cognitive outcomes. A post hoc exploratory analysis stratified participants by pharmacodynamic response: 12 individuals with MCI due to AD (31%) met the criteria for “Zinc Responder,” defined by ≥20% reduction in serum ceruloplasmin at week 12. Only Zinc Responders maintained cognitive stability over 24 weeks, whereas the combined group of Zinc Non-Responders and placebo-treated participants showed a significant decline. For the composite cognitive score (CC2), the interaction between visit and response group was significant (p = 0.030), with deterioration observed only in the Non-Responder + Placebo group (Δ = –2.72, p < 0.0001 vs. –0.71, p = 0.35 in Responders). Similar patterns were observed for CDR-Sob (interaction p = 0.017) and MMSE (trend p = 0.09). Interpretation: Zinc therapy stabilized cognition in a pharmacodynamically defined MCI subgroup. These exploratory findings suggest serum ceruloplasmin as a feasible biomarker of target engagement. Larger trials are needed for confirmation. Full article
(This article belongs to the Section Chemical Biology)
Back to TopTop