Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,263)

Search Parameters:
Keywords = SEM-EDS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6323 KB  
Article
Characterization and Antibacterial Properties of Centrifugally Spun Polyvinylpyrrolidone/Copper(II) Acetate Composite Fibers
by Batool Ibrahim, Roberto Curiel, Sara Ibrahim, Luis Materon, Oleg Ermolinsky, Helia Morales, Jason G. Parsons and Mataz Alcoutlabi
J. Compos. Sci. 2025, 9(11), 590; https://doi.org/10.3390/jcs9110590 (registering DOI) - 1 Nov 2025
Abstract
The demand for effective antibacterial materials is growing rapidly in today’s world. Both metallic and metal oxide nanoparticles have been widely used as antibacterial agents against various bacterial species due to their unique mechanisms of destroying bacterial membrane cells. The current study explores [...] Read more.
The demand for effective antibacterial materials is growing rapidly in today’s world. Both metallic and metal oxide nanoparticles have been widely used as antibacterial agents against various bacterial species due to their unique mechanisms of destroying bacterial membrane cells. The current study explores the antibacterial activity of centrifugally spun fibers prepared from copper acetate polyvinylpyrrolidone (PVP) ethanol precursor solutions against both Gram-negative and Gram-positive bacteria. During the synthesis of the composite fibers, the physical and chemical conditions were optimized. The structure and morphology of the PVP/Cu-Ac fibers were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), and thermogravimetric analysis (TGA). The antibacterial activity of PVP/copper acetate fibers was tested against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The PVP/Copper acetate fibers demonstrated bactericidal activity against both bacterial strains, making the PVP/copper acetate composite fibers an effective material for biomedical applications. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

30 pages, 14718 KB  
Article
Impact of Cement Storage Temperature on the Mechanical, Microstructural, and Chemical Properties of Sustainable Mortars
by Heliana C. B. Nascimento, Bruno S. Teti, Rafael C. Manta, Delma G. Rocha, José Allef F. Dantas, Sanderson D. Jesus, Paulo R. L. Souza, Nathan B. Lima and Nathalia B. D. Lima
J. Compos. Sci. 2025, 9(11), 583; https://doi.org/10.3390/jcs9110583 (registering DOI) - 1 Nov 2025
Abstract
The present work investigated the effect of different storage temperatures (10 °C, 30 °C, and 50 °C) on the mechanical, structural, chemical, and microstructural properties of a set of sustainable mortars with gray waste. Three types of mortar were investigated: (1) Type A, [...] Read more.
The present work investigated the effect of different storage temperatures (10 °C, 30 °C, and 50 °C) on the mechanical, structural, chemical, and microstructural properties of a set of sustainable mortars with gray waste. Three types of mortar were investigated: (1) Type A, prepared from a proportion of 1 part cement: 1 part hydrated lime: 6 parts sand; (2) Type B, prepared from a proportion of 1 part cement: 1 part hydrated lime: 6 parts sand: 0.1 part waste; and (3) Type C, prepared from a proportion of 0.9 part cement: 1 part hydrated lime: 6 parts sand: 0.1 part waste. The waste incorporation reduced compressive strength by 8%, while partial cement replacement reduced by 33%. The cement storage at 10 °C preserved the compressive strength, whereas storage at 50 °C increased it by 8.8%. In type B mortar, the waste incorporation improved compressive strength by 19% at 50 °C. The most substantial enhancement occurred in type C mortar, where cement replacement with residue and storage at 50 °C led to a 27% increase. These results highlight the potential of higher storage temperatures to mitigate cement degradation in humid environments. Furthermore, XRD analysis revealed that cement storage temperature did not affect the formation of primary cement phases, as degradation products were chemically similar to hydration products. However, sustainable mortars exhibited changes in the C-S-H phase signal when the cement is stored for 90 days at 30 °C. Finally, SEM and EDS analyses identified variations in Ca, Si, and O proportions depending on storage conditions. Full article
(This article belongs to the Special Issue Sustainable Cementitious Composites)
Show Figures

Figure 1

24 pages, 27712 KB  
Article
Analysis of Microstructure Evolution, Mechanical Properties, and Strengthening Mechanisms in Extruded 2014Al-GNP Composites
by Junjie Xiong, Shaolong Ma, Jinsheng Zhou and Yu Zhou
Metals 2025, 15(11), 1213; https://doi.org/10.3390/met15111213 (registering DOI) - 31 Oct 2025
Abstract
A 2014Al matrix composite reinforced with 0.8 wt.% graphene nanoplatelets (GNPs) was prepared by pre-dispersion and ultrasonic melt casting. Subsequently, the as-cast 2014Al-GNP composite was subjected to hot extrusion under different parameters, followed by a comparative analysis of the microstructure and properties of [...] Read more.
A 2014Al matrix composite reinforced with 0.8 wt.% graphene nanoplatelets (GNPs) was prepared by pre-dispersion and ultrasonic melt casting. Subsequently, the as-cast 2014Al-GNP composite was subjected to hot extrusion under different parameters, followed by a comparative analysis of the microstructure and properties of the various alloys. Microstructure and phase composition of the prepared samples were characterized using OM, SEM, EDS, EBSD and TEM inspections. The results indicate that the addition of GNPs effectively promoted the refinement of the as-cast matrix alloy microstructure, while hot extrusion with appropriate parameters further refined the microstructure of the as-cast matrix alloy. At an extrusion ratio of 16, the Al2Cu, Al2CuMg, and GNPs in the microstructure displayed a band-like distribution along the extrusion direction, with reduced size and enhanced uniformity. Concurrently, the dislocation density and Kernel Average Misorientation (KAM) values of the composite increased significantly, dynamic recrystallization intensified, and the texture was further enhanced. The tensile strength reached 572.1 MPa, hardness was 369.6 HV, and elongation was 11.9%, representing improvements of 89.0%, 92.0%, and 142.9%, respectively, compared to the as-cast matrix alloy. Fracture surface analysis exhibited brittle fracture characteristics in the matrix alloy, while the extruded composite with optimal parameters displayed distinct ductile fracture features. In the extruded aluminum matrix composite, the interface between GNPs and the matrix was clean, with mutual diffusion of Al and C atoms, achieving an excellent interfacial bonding state. The significant enhancement in mechanical properties of the extruded alloy was primarily attributed to grain refinement strengthening, dislocation strengthening, and load transfer strengthening by GNPs. Full article
25 pages, 20193 KB  
Article
Effect of a Montmorillonite Modification on the Rheology and Mechanical Properties of a Clay/Natural Rubber Nanocomposite
by Christiano Gianesi Bastos Andrade, Gabriel Akio Mori dos Santos, Michael Cezar Camargo, Abel Cardoso Gonzaga Neto, Ticiane Sanches Valera and Samuel Marcio Toffoli
Minerals 2025, 15(11), 1151; https://doi.org/10.3390/min15111151 (registering DOI) - 31 Oct 2025
Abstract
Clay/natural rubber (Clay–NR) nanocomposites are a sustainable material class with a wide range of applications. The type and amount of the filler added to the rubber matrix promote significant changes in the matrix properties. Montmorillonitic clays (MMT) are mineral, natural fillers. This study [...] Read more.
Clay/natural rubber (Clay–NR) nanocomposites are a sustainable material class with a wide range of applications. The type and amount of the filler added to the rubber matrix promote significant changes in the matrix properties. Montmorillonitic clays (MMT) are mineral, natural fillers. This study investigates the effect of a modified Brazilian polycationic MMT on the nanocomposite rheology and mechanical properties. The MMT was incorporated into a NR matrix in its natural state, and after modification by cation exchange (MMTNa) and organophilization (MMTORG), at concentrations of 2.5 and 5 phr (parts per hundred parts of rubber). The natural and modified clays were characterized by XRD, FTIR, BET, and SEM/EDS. Mechanical tests (tensile strength, elongation at break, and modulus at 100%) indicated that the use of MMTNa led to increased strength and modulus, whereas a minor decrease in the elongation was observed. However, the use of MMTORG yielded the most significant improvements in the mechanical properties. The rheology tests indicated that the Payne effect was not observed, and the strain-dependent behavior arises from matrix-dominated mechanisms, rather than disruption of a filler network. Vulcanization curves showed that the NR-MMTORG composites exhibited higher torque values, corroborated by higher crosslink densities. These findings highlight the critical role of cation exchange modification in optimizing MMT dispersion and interfacial interactions within NR matrices, providing design principles for high-performance sustainable nanocomposites. Full article
(This article belongs to the Special Issue Organo-Clays: Preparation, Characterization and Applications)
Show Figures

Figure 1

21 pages, 21900 KB  
Article
Evolution of the Structural and Phase Composition of Ni–Ti–Cu Alloy Produced via Spark Plasma Sintering After Aging
by Danagul Aubakirova, Elfira Sagymbekova, Yernat Kozhakhmetov, Yerkhat Dauletkhanov, Azamat Urkunbay, Dias Yerbolat, Piotr Kowalewski and Yerkezhan Tabiyeva
Crystals 2025, 15(11), 939; https://doi.org/10.3390/cryst15110939 - 30 Oct 2025
Abstract
This study investigates the control of the phase-structural state in Ni–45Ti–xCu (x = 5, 7 at.%) shape memory alloys fabricated via a shortened powder metallurgy route: mechanical activation → spark plasma sintering (SPS) → heat treatment. Compact samples were produced from mechanically alloyed [...] Read more.
This study investigates the control of the phase-structural state in Ni–45Ti–xCu (x = 5, 7 at.%) shape memory alloys fabricated via a shortened powder metallurgy route: mechanical activation → spark plasma sintering (SPS) → heat treatment. Compact samples were produced from mechanically alloyed powders (650–750 rpm, up to 5 h) and sintered at 900 °C. The structure and microstructure were characterized using X-ray diffraction (to identify B2/B19′/Ni4Ti3 phases and assess ordering) and SEM–BSE/EDS (to analyze morphology, porosity, and Ni-rich precipitates). Two post-processing treatments were applied: single-stage annealing (500 °C, 2 h) and a three-stage treatment (900 °C/30 min → water quenching → 300 °C/20 min). Mechanical alloying transformed the initial elemental powder mixture (fcc-Ni, hcp-Ti, fcc-Cu) into a supersaturated fcc-(Ni, Cu, Ti) solid solution with emerging NiTi phases, with a minimum particle size achieved after ~300 min at 750 rpm. SPS compaction yielded a high-density matrix consisting predominantly of the B2 phase. Single-stage annealing preserved B19′ martensite and Ni4Ti3 precipitates, particularly in the 5 at.% Cu alloy. In contrast, the three-stage treatment dissolved the Ni4Ti3 precipitates, suppressed the formation of B19′ and R phases, and stabilized a highly ordered B2 matrix. Increasing the Cu content from 5 to 7 at.% significantly enhanced the B2 phase fraction, reduced secondary nickel-rich phases, and improved structural homogeneity, evidenced by a continuous neck network and closed porosity. The optimized condition—7 at.% Cu combined with the three-stage annealing—produced a microstructure with >95% B2 phase, <1% Ni4Ti3, and ~98% relative density. This forms the prerequisite microstructural state for a narrow transformation hysteresis and high functional cyclic stability. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

26 pages, 6742 KB  
Article
Sustainable Concrete with Waste Tire Rubber and Recycled Steel Fibers: Experimental Insights and Hybrid PINN–CatBoost Prediction
by Ali Serdar Ecemiş, Sadik Alper Yildizel, Alexey N. Beskopylny, Sergey A. Stel’makh, Evgenii M. Shcherban’, Ceyhun Aksoylu, Emrah Madenci and Yasin Onuralp Özkılıç
Polymers 2025, 17(21), 2910; https://doi.org/10.3390/polym17212910 - 30 Oct 2025
Abstract
The growing environmental concern over waste tire accumulation necessitates innovative recycling strategies in construction materials. Therefore, this study aims to develop and evaluate sustainable concrete by integrating waste tire rubber (WTR) aggregates of different sizes and recycled waste tire steel fibers (WTSFs), assessing [...] Read more.
The growing environmental concern over waste tire accumulation necessitates innovative recycling strategies in construction materials. Therefore, this study aims to develop and evaluate sustainable concrete by integrating waste tire rubber (WTR) aggregates of different sizes and recycled waste tire steel fibers (WTSFs), assessing their combined effects on the mechanical and microstructural performance of concrete through experimental and analytical approaches. WTR aggregates, consisting of fine (0–4 mm), small coarse (5–8 mm), and large coarse (11–22 mm) particles, were used at substitution rates of 0–20%; WTSF was used at volumetric dosages of 0–2%, resulting in a total of 40 mixtures. Mechanical performance was evaluated using density and pressure resistance tests, while microstructural properties were assessed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The findings indicate systematic decreases in density and compressive strength with increasing WTR ratio; the average strength losses were approximately 12%, 20%, and 31% at 5%, 10%, and 20% for WTR substitution, respectively. Among the WTR types, the most negative effect occurred in fine particles (FWTR), while the least negative effect occurred in coarse particles (LCWTR). The addition of WTSF compensated for losses at low/medium dosages (0.5–1.0%) and increased strength by 2–10%. However, high dosages (2.0%) reduced strength by 20–40% due to workability issues, fiber clumping, and void formation. The highest strength was achieved in the 5LCWTR–1WTSF mixture at 36.98 MPa (≈6% increase compared to the reference/control concrete), while the lowest strength was measured at 16.72 MPa in the 20FWTR–2WTSF mixture (≈52% decrease compared to the reference/control). A strong positive correlation was found between density and strength (r, Pearson correlation coefficient, ≈0.77). SEM and EDX analyses confirmed the weak matrix–rubber interface and the crack-bridging effect of steel fibers in mixtures containing fine WTR. Additionally, a hybrid prediction model combining physics-informed neural networks (PINNs) and CatBoost, supported by data augmentation strategies, accurately estimated compressive strength. Overall, the results highlight that optimized integration of WTR and WTSF enables sustainable concrete production with acceptable mechanical and microstructural performance. Full article
(This article belongs to the Special Issue Recycling of Plastic and Rubber Wastes, 2nd Edition)
Show Figures

Figure 1

21 pages, 4390 KB  
Article
Experimental Investigation of CO2–Mineral Interactions in Tight Clastic Rock Reservoirs: Implications for Geological Carbon Sequestration
by Ziyi Wang, Liehui Zhang, Shu Liu, Meng Wang, Hongming Tang, Dongyu Peng, Xinan Yu and Xingming Duan
Minerals 2025, 15(11), 1142; https://doi.org/10.3390/min15111142 - 30 Oct 2025
Abstract
Geological Carbon Sequestration (GCS) plays a crucial role in addressing climate change, particularly in oil and gas development. Understanding the reaction of supercritical CO2 under in situ conditions and its effects on minerals is essential for advancing GCS technology. This study investigates [...] Read more.
Geological Carbon Sequestration (GCS) plays a crucial role in addressing climate change, particularly in oil and gas development. Understanding the reaction of supercritical CO2 under in situ conditions and its effects on minerals is essential for advancing GCS technology. This study investigates the reaction mechanisms of feldspar (potassium and sodium feldspar) and clay minerals (chlorite, illite, montmorillonite, kaolinite) in CO2 environments. The impacts on mineral crystal structures, morphologies, and elemental compositions were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and ion concentration measurements (ICP-OES and ICP-MS). The results show that feldspar minerals exhibit lower reaction rates, with sodium feldspar dissolving faster than potassium feldspar, due to the higher solubility of sodium ions in acidic conditions. Chlorite showed significant crystal structure damage after 30 days, while montmorillonite underwent both dissolution and precipitation, influenced by interlayer cation dissociation. Kaolinite exhibited minimal reaction, primarily showing localized dissolution. Additionally, the formation of siderite (FeCO3) was observed as Fe2+ substituted for Ca2+ in CaCO3, highlighting the role of iron-bearing carbonates in CO2 interactions. The study provides insights into the factors influencing mineral reactivity, including mineral structure, ion exchange capacity, and solubility, and suggests that chlorite, montmorillonite, and illite are more reactive under reservoir conditions, while kaolinite shows higher resistance to CO2-induced reactions. These findings offer valuable data for optimizing GCS technologies and predicting long-term sequestration outcomes. Full article
(This article belongs to the Special Issue Advances in Mineral-Based Carbon Capture and Storage)
Show Figures

Figure 1

28 pages, 5100 KB  
Article
Electrochemical and Computational Analyses of Thiocolchicoside as a New Corrosion Inhibitor for Biomedical Ti6Al4V Alloy in Saline Solution: DFT, NBO, and MD Approaches
by Inam M. A. Omar, Ibrahim H. Elshamy, Shimaa Abdel Halim and Magdy A. M. Ibrahim
Surfaces 2025, 8(4), 77; https://doi.org/10.3390/surfaces8040077 - 30 Oct 2025
Abstract
The Ti6Al4V alloy is considered the most beneficial of the titanium alloys for use in biomedical applications. However, it corrodes when exposed to various biocompatible fluids. This investigation aims to evaluate the corrosion inhibition performance of the Ti6Al4V in a saline solution (SS) [...] Read more.
The Ti6Al4V alloy is considered the most beneficial of the titanium alloys for use in biomedical applications. However, it corrodes when exposed to various biocompatible fluids. This investigation aims to evaluate the corrosion inhibition performance of the Ti6Al4V in a saline solution (SS) using thiocolchicoside (TCC) drug as an environmentally acceptable corrosion inhibitor. The corrosion assessments were conducted using potentiodynamic polarization curves (PPCs), open-circuit potential (OCP), and electrochemical impedance spectroscopy (EIS) methodologies, supplemented by scanning electron microscopy (SEM), energy-dispersive X-ray (EDS) analysis, atomic force microscopy (AFM), and contact angle (CA) measurements. The outcomes indicated that the inhibitory efficacy improved with higher TCC concentrations (achieving 92.40% at 200 mg/L of TCC) and diminished with an increase in solution temperature. TCC’s physical adsorption onto the surface of the Ti6A14V, which adheres to the Langmuir adsorption isotherm, explains its mitigating power. The TCC acts as a mixed-type inhibitor. The adsorption and inhibitory impact of TCC were examined at various temperatures using PPC and EIS. When TCC is present, the corrosion’s apparent activation energy is higher (35.79 kJ mol−1) than when it is absent (14.46 kJ mol−1). In addition, the correlation between the structural properties of thiocolchicoside (TCC) and its corrosion inhibition performance was systematically analyzed. Density Functional Theory (DFT) calculations were utilized to characterize the adsorption mechanism, supported by Natural Bond Orbital (NBO) analysis and Molecular Dynamics (MD) simulations. The combined computational and electrochemical findings confirm that TCC provides effective and enhanced corrosion protection for the Ti6Al4V alloy in a saline environment. These characteristics provide compelling evidence for the suitability of these pharmaceutical compounds as promising corrosion inhibitors. Full article
Show Figures

Figure 1

22 pages, 12374 KB  
Article
Electrocrystallization of Calcium Oxalate Mediated by Electrospun Polymer Fiber Using Poly(acrylic acid-co-4-styrene sulfonate)
by Andrónico Neira-Carrillo, Eddie Nieto, Nicole Butto-Miranda, Dania Cataldo, Bruno F. Urbano and Mehrdad Yazdani-Pedram
Polymers 2025, 17(21), 2888; https://doi.org/10.3390/polym17212888 - 29 Oct 2025
Abstract
Calcium oxalate (CaOx) crystals play a central role in urolithiasis, a pathological crystallization process that remains difficult to prevent. In this study, electrospun polymeric fiber (EPF) meshes of poly(acrylic acid-co-styrene sulfonate) P(AA-co-SS) were fabricated by electrospinning (ES) under controlled [...] Read more.
Calcium oxalate (CaOx) crystals play a central role in urolithiasis, a pathological crystallization process that remains difficult to prevent. In this study, electrospun polymeric fiber (EPF) meshes of poly(acrylic acid-co-styrene sulfonate) P(AA-co-SS) were fabricated by electrospinning (ES) under controlled positive (+) or negative (−) voltages. The influence of PAA and PSS homopolymers, as well as P(AA-co-SS) copolymers with varying compositions, was evaluated as anionic scaffolds in in vitro CaOx electrocrystallization (EC) experiments. The structural and morphological features of the EPF meshes were characterized by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Our results demonstrate that specific EPF meshes can effectively guide CaOx crystal growth, promoting the selective stabilization of either calcium oxalate monohydrate (COM) or calcium oxalate dihydrate (COD) phases. These findings highlight the potential of tailored EPF meshes as anionic scaffolds for modulating pathological CaOx crystallization. Full article
(This article belongs to the Special Issue Recent Advances in Electrospun Polymer Nanofibers)
Show Figures

Graphical abstract

17 pages, 5543 KB  
Article
Study on the Microstructure and Properties of TC4 Alloy Based on Water-Jet-Guided Laser Technology
by Hao Yang, Mingrui Lu, Jibin Zhao, Chongyang Han, Dongming Li and Boyu Sun
Metals 2025, 15(11), 1204; https://doi.org/10.3390/met15111204 - 29 Oct 2025
Abstract
Ti–6Al–4V (TC4) dual-phase titanium alloy is widely used in aerospace components owing to its excellent strength-to-weight ratio and high-temperature stability. However, conventional machining often generates a wide heat-affected zone (HAZ) and oxide or recast layers, which deteriorate the microstructure and reduce long-term reliability. [...] Read more.
Ti–6Al–4V (TC4) dual-phase titanium alloy is widely used in aerospace components owing to its excellent strength-to-weight ratio and high-temperature stability. However, conventional machining often generates a wide heat-affected zone (HAZ) and oxide or recast layers, which deteriorate the microstructure and reduce long-term reliability. In this study, the water-jet-guided laser (WJGL) process was applied to investigate how coupled laser–water interactions influence the groove morphology, elemental distribution, and crystallographic evolution of TC4 alloy. Under optimized parameters, the WJGL process reduced the HAZ width to less than 1 μm, effectively removed the resolidified layer, and suppressed surface oxidation. SEM, EDS, and EBSD analyses confirmed that the α + β dual-phase structure remained stable, with no significant phase transformation or grain coarsening. Compared with conventional laser cutting, WJGL achieved smoother surfaces, improved interfacial integrity, and reduced thermal damage. These findings highlight the potential of WJGL for precision machining of high-performance titanium alloys and provide theoretical and experimental support for enhancing the microstructural control and service reliability of aerospace TC4 components. Full article
(This article belongs to the Section Structural Integrity of Metals)
Show Figures

Figure 1

33 pages, 18102 KB  
Article
Sustainable Concrete Using Porcelain and Clay Brick Waste as Partial Sand Replacement: Evaluation of Mechanical and Durability Properties
by Mustafa Thaer Hasan, Alaa A. Abdul-Hamead and Farhad M. Othman
Constr. Mater. 2025, 5(4), 78; https://doi.org/10.3390/constrmater5040078 - 29 Oct 2025
Abstract
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving [...] Read more.
The increasing demand for sustainable construction materials has prompted the recycling of construction and demolition waste in concrete manufacturing. This study investigates the feasibility of utilizing porcelain and brick waste as partial substitutes for natural sand in concrete with the objective of improving sustainability and preserving mechanical and durability characteristics. The experimental program was conducted in three consecutive phases. During the initial phase, natural sand was partially substituted with porcelain waste powder (PWP) and brick waste powder (BWP) in proportions of 25%, 50%, and 75% of the weight of the fine aggregate. During the second phase, polypropylene fibers were mixed at a dosage of 0.5% by volume fraction to enhance tensile and flexural properties. During the third phase, zinc oxide nanoparticles (ZnO-NPs) were utilized as a partial substitute for cement at concentrations of 0.5% and 1% to improve microstructure and strength progression. Concrete samples were tested at curing durations of 7, 28, and 91 days. The assessed qualities encompassed workability, density, water absorption, porosity, compressive strength, flexural strength, and splitting tensile strength. Microstructural characterization was conducted utilizing X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings indicated that porcelain waste powder markedly surpassed brick waste powder in all mechanical and durability-related characteristics, particularly at 25% and 50% sand replacement ratios. The integration of polypropylene fibers enhanced fracture resistance and ductility. Moreover, the incorporation of zinc oxide nanoparticles improved hydration, optimized the pore structure, and resulted in significant enhancements in compressive and tensile strength throughout prolonged curing durations. The best results were obtained with a mix of 50% porcelain sand aggregate, 1% zinc oxide nanoparticles as cement replacement, and 0.5% polypropylene fibers, for which the improvements in compressive strength, flexural strength, and splitting tensile strength were 39.5%, 46.2%, and 60%, respectively, at 28 days. The results confirm the feasibility of using porcelain and brick waste as sand replacements in concrete, as well as polypropylene fiber-reinforced concrete and polypropylene fiber-reinforced concrete mixed with zinc oxide nanoparticles as a sustainable option for construction purposes. Full article
Show Figures

Figure 1

21 pages, 5722 KB  
Article
Calcium Phosphates for Bone Tissue Regeneration—Influence of Synthesis Method on Physicochemical and Biological Properties
by Julia Sadlik, Edyta Kosińska, Karina Niziołek, Mateusz M. Urbaniak, Agnieszka Sobczak-Kupiec and Dagmara Słota
Materials 2025, 18(21), 4945; https://doi.org/10.3390/ma18214945 - 29 Oct 2025
Abstract
Calcium phosphates, including hydroxyapatite, are widely used biomaterials in bone tissue regeneration due to their bioactivity, osteoconductivity, and similarity to the mineral phase of bone. In this study, various apatite calcium phosphate powders were synthesized using three precipitation methods, with controlled pH conditions [...] Read more.
Calcium phosphates, including hydroxyapatite, are widely used biomaterials in bone tissue regeneration due to their bioactivity, osteoconductivity, and similarity to the mineral phase of bone. In this study, various apatite calcium phosphate powders were synthesized using three precipitation methods, with controlled pH conditions and reagent ratios, to assess the effect of the synthesis method on their physicochemical and biological properties. Elemental composition (Ca/P ratio), FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDS, and particle size measurements were used to determine the structure, morphology, and stoichiometry of the obtained powders. The results indicated that the synthesis method and pH significantly affect the phase composition of the material, particle size, and Ca/P ratio, which directly influence their solubility and bioactivity. Microbiological tests, NF-κB transcription factor activation, metabolic activity, and cell compatibility of mouse L929 fibroblasts and human hFOB 1.19 osteoblasts showed good biological tolerance of the obtained powders and no cytotoxic effects. The results confirm that a properly selected synthesis method allows for the control of material properties, which is crucial for applications in bone tissue engineering. The materials show potential for use as bioactive components in bone-related biomaterials. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

20 pages, 11136 KB  
Article
Genesis and Timing of Low-Sulphide Gold–Quartz Mineralization of the Upryamoye Ore Field, Western Chukotka
by Ludmila Salete Canhimbue, Andrey Tarasenko, Elena Vatrushkina, Irina Latysheva and Afanasii Telnov
Minerals 2025, 15(11), 1130; https://doi.org/10.3390/min15111130 - 29 Oct 2025
Abstract
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data [...] Read more.
The Upryamoye ore field is located in the Chukotka metallogenic belt in Northeast Russia. The orebodies are hosted within Late Jurassic–Early Cretaceous greenschist-facies metamorphosed rocks and structurally controlled by NW-trending fold-and-thrust dislocations. Based on geological exploration, petrographic, mineralogical, and geochronological studies, new data on the geological structure and composition of gold–quartz mineralization of the Upryamoye ore field are presented. Optical and scanning microscopy were used to study the lithological features of the host rocks and determine the ore textures and the morphology and internal structure of native gold, auriferous pyrite, and arsenopyrite. Qualitative and quantitative characterization of the ore minerals was carried out using SEM-EDS and EPMA. To determine the age of the gold mineralization, Re-Os dating of arsenopyrite and U-Th/He dating of pyrite were performed. The results show that the orebodies comprise carbonate–quartz and sulphide–carbonate–quartz saddle reef veins in both the fold hinge and limbs, as well as mineralized shatter zones and mylonite zones that trace thrust faults. The main ore minerals are arsenopyrite and pyrite, associated with minor amounts of galena, sphalerite, chalcopyrite, tetrahedrite, and bournonite. Native gold is distributed extremely unevenly, forming thin and finely dispersed inclusions in pyrite and arsenopyrite. U-Th/He isotopic analyses of auriferous pyrites suggest that gold mineralization in the Upryamoye ore field occurred at 123 ± 4 Ma. The data obtained by Re–Os dating of auriferous arsenopyrite are inconsistent with direct geological observations but indicate that Os in the arsenopyrite was derived from the crustal source. According to a number of characteristic features of mineralization, the Upryamoye ore field is attributed to a metamorphic genetic type of orogenic low-sulphide gold–quartz deposits. The ore-forming process was long and multi-stage, occurring during the final collisional phase and the beginning of the extensional phase of the Chukotka orogen. Full article
Show Figures

Figure 1

22 pages, 7605 KB  
Article
Design of Novel Non-Cytotoxic Ti-15Nb-xTa Alloys for Orthopedic Implants
by Yasmin Monteiro Schumacher, Carlos Roberto Grandini, Gerson Santos de Almeida, Willian Fernando Zambuzzi and Pedro Akira Bazaglia Kuroda
Metals 2025, 15(11), 1201; https://doi.org/10.3390/met15111201 - 28 Oct 2025
Viewed by 84
Abstract
The objective of this study was to develop novel alloys of the Ti-15Nb-xTa system (x = 0, 10, 20, and 30 wt.%) and to evaluate the effect of tantalum addition on the structure, microstructure, hardness, and elastic modulus for biomedical applications. The ingots [...] Read more.
The objective of this study was to develop novel alloys of the Ti-15Nb-xTa system (x = 0, 10, 20, and 30 wt.%) and to evaluate the effect of tantalum addition on the structure, microstructure, hardness, and elastic modulus for biomedical applications. The ingots were produced using an arc melting furnace under a controlled argon atmosphere. Chemical composition analyses were performed using energy-dispersive spectroscopy (EDS) to determine the alloying element fractions and to conduct chemical mapping. The Thermo-Calc software (https://thermocalc.com/, 4 September 2024) was employed to predict the influence of Ta on the phase transformation temperatures. Structural and microstructural characterizations were performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns enabled the identification of the phases, the relative volume fractions, and the lattice parameters of the unit cells. As mechanical properties, Vickers microhardness and elastic modulus were measured. The results revealed that increasing Ta content decreased the β-transus temperature but increased the melting temperature of the alloys. Structural and microstructural characterizations indicated that the Ti-15Nb alloy consisted of α′ + α″ phases, Ti-15Nb-10Ta of α″ + β phases, Ti-15Nb-20Ta of α″ + β + ω phases, and Ti-15Nb-30Ta of metastable β phase. Hardness and elastic modulus results exhibited similar behavior: the alloy with the highest fraction of the α″ phase (Ti-15Nb-10Ta) displayed the lowest hardness and elastic modulus, whereas the alloy containing the ω phase (Ti-15Nb-20Ta) presented significantly higher values. Among the studied alloys, Ti-15Nb-10Ta stands out due to its low elastic modulus (57 GPa). In vitro cellular assays demonstrated that Ti-15Nb-Ta alloys promote osteoblast proliferation while exhibiting no cytotoxicity. Full article
(This article belongs to the Special Issue Advances in Metallic Materials for Biomedical Applications)
Show Figures

Graphical abstract

17 pages, 5894 KB  
Article
Enhanced Solubility and Electron Transfer of Osmium-Based Mediators via Quaternized Poly(4-Vinylpyridine) for Electrochemical Glucose Detection
by Yun Yeong Cho, Tae-Won Seo, Young-Bong Choi and Won-Yong Jeon
Polymers 2025, 17(21), 2874; https://doi.org/10.3390/polym17212874 - 28 Oct 2025
Viewed by 102
Abstract
Hydrophilic polymer–osmium complexes enhance electron transfer between enzymes and electrodes in biosensors. In this study, hydrophobic poly(4-vinylpyridine) (PVP) was quaternized with 2-bromoethanol to synthesize water-soluble PVP(Q)-C2H4OH polymers (MW 60,000 and 160,000). The resulting PVP(Q)-C2H4OH-Os(dmo-bpy)2 [...] Read more.
Hydrophilic polymer–osmium complexes enhance electron transfer between enzymes and electrodes in biosensors. In this study, hydrophobic poly(4-vinylpyridine) (PVP) was quaternized with 2-bromoethanol to synthesize water-soluble PVP(Q)-C2H4OH polymers (MW 60,000 and 160,000). The resulting PVP(Q)-C2H4OH-Os(dmo-bpy)2Cl complexes were verified by UV-Vis, FT-IR, 1H NMR, SEM-EDS, and zeta potential analyses, confirming successful quaternization and osmium coordination with good dispersion stability. Electrochemical tests (cyclic voltammetry, multi-potential step, amperometry) demonstrated that electrodes with quaternized mediators showed greatly enhanced catalytic currents for glucose (0–20 mM), with sensitivities of 6.9791 (MW 60,000) and 6.6279 μA·mM−1·cm−2 (MW 160,000), respectively, which were 6.6–10.3 times higher than those of non-quaternized polymers. Selectivity tests showed negligible interference from common species such as ascorbic acid, dopamine, uric acid, and serotonin. Continuous glucose monitoring (CGM) electrodes were fabricated by immobilizing the mediator and glucose dehydrogenase on silanized Au electrodes. SEM, scan rate, and impedance analyses confirmed stable binding. The modified electrodes showed strong linearity (R2 = 0.992) and high sensitivity (2.56 μA·mM−1·cm−2), and good stability, maintaining ~82% activity for seven days. Human plasma testing validated accurate glucose detection (6.05 mM), consistent with physiological levels. Overall, quaternized PVP(Q) mediators significantly improved solubility and electron transfer, enabling the development of a stable, selective glucose sensor suitable for CGM applications. Full article
(This article belongs to the Special Issue Conductive Polymers for Electronic Devices, Displays and Sensors)
Show Figures

Graphical abstract

Back to TopTop