Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (413)

Search Parameters:
Keywords = SM dynamic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2031 KB  
Review
Compressive Sensing for Multimodal Biomedical Signal: A Systematic Mapping and Literature Review
by Anggunmeka Luhur Prasasti, Achmad Rizal, Bayu Erfianto and Said Ziani
Signals 2025, 6(4), 54; https://doi.org/10.3390/signals6040054 - 4 Oct 2025
Viewed by 736
Abstract
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review [...] Read more.
This study investigated the transformative potential of Compressive Sensing (CS) for optimizing multimodal biomedical signal fusion in Wireless Body Sensor Networks (WBSN), specifically targeting challenges in data storage, power consumption, and transmission bandwidth. Through a Systematic Mapping Study (SMS) and Systematic Literature Review (SLR) following the PRISMA protocol, significant advancements in adaptive CS algorithms and multimodal fusion have been achieved. However, this research also identified crucial gaps in computational efficiency, hardware scalability (particularly concerning the complex and often costly adaptive sensing hardware required for dynamic CS applications), and noise robustness for one-dimensional biomedical signals (e.g., ECG, EEG, PPG, and SCG). The findings strongly emphasize the potential of integrating CS with deep reinforcement learning and edge computing to develop energy-efficient, real-time healthcare monitoring systems, paving the way for future innovations in Internet of Medical Things (IoMT) applications. Full article
Show Figures

Figure 1

23 pages, 24609 KB  
Article
Effect of Initial Solid Solution Microstructure on the Hot Deformation Behavior of Mg-Er-Sm-Zn-Zr Alloy
by Guiyang Shao, Zhongyi Cai, Chaojie Che, Liren Cheng, Minqiang Shi, Tingzhuang Han, Xiaobo Liang and Hongjie Zhang
Crystals 2025, 15(10), 855; https://doi.org/10.3390/cryst15100855 - 30 Sep 2025
Viewed by 198
Abstract
The hot deformation behavior of a Mg-9.2Er-4.9Sm-2.2Zn-0.6Zr (wt.%) alloy, with emphasis on the role of grain size and long-period stacking-ordered (LPSO) phases, was examined via comparison experiments. Two types of samples were obtained through distinct heat treatment schedules: sample A had a smaller [...] Read more.
The hot deformation behavior of a Mg-9.2Er-4.9Sm-2.2Zn-0.6Zr (wt.%) alloy, with emphasis on the role of grain size and long-period stacking-ordered (LPSO) phases, was examined via comparison experiments. Two types of samples were obtained through distinct heat treatment schedules: sample A had a smaller grain size, featuring block-shaped LPSO phases at grain boundaries and lamellar LPSO phases within grains, while sample B had a larger grain size and few LPSO phases. The hot deformation behavior was characterized by the true stress–strain curve within the processing window of 300–450 °C and 0.001–1 s−1. The block-shaped LPSO phases contributed more significantly to strain hardening, leading to elevated flow stress in sample A, particularly under low-temperature and high-strain-rate conditions. Through the particle-stimulated nucleation (PSN) mechanism, block-shaped LPSO phases demonstrated greater efficiency in promoting Dynamic recrystallization (DRX) compared to lamellar LPSO phases; additionally, the synergistic effect between LPSO phases and grain boundary density further improved DRX efficiency. During hot deformation, dynamic precipitation of both block-shaped and lamellar LPSO phases occurred. The formation of block-shaped phases required a longer duration than that of lamellar ones. The presence of the LPSO kink exerted an influence on DRX, while a significant angle kink can promote DRX. Full article
(This article belongs to the Special Issue Mechanical Properties and Structure of Metal Materials)
Show Figures

Figure 1

23 pages, 4197 KB  
Article
Position and Attitude Control of Multi-Modal Underwater Robots Using an Improved LADRC Based on Sliding Mode Control
by Luze Wang, Yu Lu, Lei Zhang, Bowei Cui, Fengluo Chen, Bingchen Liang, Liwei Yu and Shimin Yu
Sensors 2025, 25(19), 6010; https://doi.org/10.3390/s25196010 - 30 Sep 2025
Viewed by 539
Abstract
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based [...] Read more.
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based on sliding mode control is proposed (SM-ADRC). Firstly, to reduce overshoot, a piecewise fhan function is introduced into the tracking differentiator (TD). This design retains the system’s fast nonlinear tracking characteristics outside the boundary layer while leveraging linear damping within it to achieve effective overshoot suppression. Secondly, two key enhancements are made to the SMC: an integral sliding surface is designed to improve steady-state accuracy, and a saturation function replaces the sign function to suppress high-frequency chattering. Furthermore, the SMC integrates the total disturbance estimate from the linear extended state observer (LESO) for feedforward compensation. Finally, the simulation experiment verification is completed. The simulation results show that the SM-ADRC scheme significantly improves the dynamic response and disturbance suppression ability of the system and simultaneously suppresses the chattering problem of SMC. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

28 pages, 23060 KB  
Article
SM-FSOD: A Second-Order Meta-Learning Algorithm for Few-Shot PCB Defect Object Detection
by Xinnan Shao, Zhoufeng Liu, Qihang He, Miao Yu and Chunlei Li
Electronics 2025, 14(19), 3863; https://doi.org/10.3390/electronics14193863 - 29 Sep 2025
Viewed by 255
Abstract
Few-shot object detection methods perform well in natural scenes, where meta-learners can effectively extract target features from limited support data. However, PCB defect detection faces unique challenges: scarce defect samples, low-resolution targets, and severe overfitting risks. Additionally, PCBs’ dense circuitry creates low-contrast defects [...] Read more.
Few-shot object detection methods perform well in natural scenes, where meta-learners can effectively extract target features from limited support data. However, PCB defect detection faces unique challenges: scarce defect samples, low-resolution targets, and severe overfitting risks. Additionally, PCBs’ dense circuitry creates low-contrast defects that blend into background noise, while traditional meta-learning struggles to generate realistic synthetic defects under actual manufacturing constraints. To overcome these limitations, we propose SM-FSOD, a second-order meta-learning model featuring a defect-aware prototype network. Unlike conventional approaches, it dynamically emphasizes critical defect features when constructing class prototypes from few-shot samples. Our extensive few-shot experiments on the DeepPCB and DsPCBSD+ datasets demonstrate the performance of the SM-FSOD model. Comparative tests on the DeepPCB dataset show that, compared with the strong Meta-RCNN baseline, our model achieves a maximum performance improvement of 14.0% under the challenging five-shot setting, while still attaining a 7.6% accuracy gain in the more relaxed 50-shot setting. Similarly, evaluation on the DsPCBSD+ dataset reveals that our proposed method maintains an average accuracy improvement of 2.3% to 9.6% compared to the competitive DeFRCN model in complex scenarios, indicating the strong adaptability of SM-FSOD across various application environments. Ablation studies further demonstrate that incorporating the improved MOMP and DGPT modules individually yields average accuracy gains of 3.6% and 4.5%, respectively, under the five-shot setting compared to the baseline, confirming that these enhancements can orthogonally improve the detection precision in few-shot PCB scenarios. Full article
Show Figures

Figure 1

25 pages, 11660 KB  
Article
Revisiting the Terrestrial Water Storage Changes in the Northeastern Tibetan Plateau Using GRACE/GRACE-FO at Different Spatial Scales Considering the Impacts of Large Lakes and Reservoirs
by Zhenyuan Zhu, Zhiyong Huang, Fancui Kong, Xin Luo, Jianping Wang, Yingkui Yang and Huiyang Shi
Remote Sens. 2025, 17(19), 3272; https://doi.org/10.3390/rs17193272 - 23 Sep 2025
Viewed by 415
Abstract
The large lakes and reservoirs of the northeastern Tibetan Plateau play a key role in regional water resources, yet their influence on terrestrial water storage (TWS) changes at different spatial scales remains unclear. This study employed the constrained forward modeling (CFM) method to [...] Read more.
The large lakes and reservoirs of the northeastern Tibetan Plateau play a key role in regional water resources, yet their influence on terrestrial water storage (TWS) changes at different spatial scales remains unclear. This study employed the constrained forward modeling (CFM) method to correct leakage errors in level-2 spherical harmonic (SH) coefficients from the Gravity Recovery and Climate Experiment and its follow-on missions (GRACE/GRACE-FO) at three spatial scales: two circular regions covering 90,000 km2 and 200,000 km2, respectively, and a 220,000 km2 region based on the shape of mass concentration (Mascon). TWS changes derived from SH solutions after leakage correction through CFM were compared with level-3 Mascon solutions. Individual water storage components, including lake and reservoir water storage (LRWS), groundwater storage (GWS), and soil moisture storage (SMS), were quantified, and their relationships with precipitation were assessed. From 2003 to 2022, the CFM method effectively mitigated signal leakage, revealing an overall upward trend in TWS at all spatial scales. Signals from Qinghai Lake and Longyangxia Reservoir dominated the long-term trend and amplitude variations of LRWS, respectively. LRWS explained more than 47% of the TWS changes, and together with GWS, accounted for over 85% of the changes. Both CFM-based and Mascon-based TWS changes indicated a consistent upward trend from January 2003 to September 2012, followed by declines from November 2012 to May 2017 and October 2018 to December 2022. During the decline phases, GWS contributions increased, while LRWS contributions and component exchange intensity decreased. LRWS, SMS, and TWS changes were significantly correlated with precipitation, with varying time lags. These findings underscore the value of GRACE/GRACE-FO data for monitoring multiscale TWS dynamics and their climatic drivers in lake- and reservoir-dominated regions. Full article
Show Figures

Figure 1

15 pages, 1517 KB  
Article
Drought Resistance and Its Relationship with Functional Traits of Tree Species in a Tropical Urban Environment
by María Isabel Vásquez, Flavio Moreno, Néstor Orozco Suárez, Krafft H. Saldarriaga and Lucas Cifuentes
Forests 2025, 16(9), 1493; https://doi.org/10.3390/f16091493 - 20 Sep 2025
Viewed by 393
Abstract
Despite the progress to understand drought tolerance worldwide, the response of urban trees to the increased frequency and severity of droughts, particularly in tropical regions, remains unclear. Such an evaluation is essential for predicting future urban forest dynamics. The leaf turgor loss point [...] Read more.
Despite the progress to understand drought tolerance worldwide, the response of urban trees to the increased frequency and severity of droughts, particularly in tropical regions, remains unclear. Such an evaluation is essential for predicting future urban forest dynamics. The leaf turgor loss point (πTLP), leaf safety margins (SMs) and their relationship with functional traits were measured in ten native tree species during wet and dry seasons in a tropical urban environment. We detected interspecific variation in tree responses related to desiccation tolerance and desiccation avoidance as strategies to resist drought. Desiccation avoidance was linked to lower adjustment of midday water potentials and water-conservative traits such as high wood density, low specific leaf area (SLA), and high leaf dry matter content, while species with more negative πTLP maintained stomatal conductance and growth despite decreasing leaf water potentials. Although the differences between predawn and midday potentials during the dry season suggest that severe drought does not occur, some species showed negative safety margins. This indicates that while some urban trees can tolerate or avoid current dry periods, continued climate change may push certain species beyond their safe operating range, making species selection for urban planning increasingly critical. Full article
(This article belongs to the Special Issue Drought Tolerance in ​Trees: Growth and Physiology)
Show Figures

Figure 1

20 pages, 2194 KB  
Article
Straw Deep Burial and Returning to Farmland: Mechanistic Study on Enhancing Albic Soil Fertility
by Qiuju Wang, Yuxin Liu, Yuping Liu, Baoguang Wu, Qingying Meng, Jingyang Li, Jiahe Zou and Xin Liu
Agronomy 2025, 15(9), 2210; https://doi.org/10.3390/agronomy15092210 - 18 Sep 2025
Viewed by 384
Abstract
This study developed an innovative model integrating straw subsoil deep burial (SD) and mixing plow to mitigate albic soil’s physical and chemical constraints and enhance crop yield. A field experiment with four treatments, including conventional tillage (CT), straw mulching (SM), straw subsoil deep [...] Read more.
This study developed an innovative model integrating straw subsoil deep burial (SD) and mixing plow to mitigate albic soil’s physical and chemical constraints and enhance crop yield. A field experiment with four treatments, including conventional tillage (CT), straw mulching (SM), straw subsoil deep burial (SD), and straw burning (SR), was conducted to assess impacts on soil enzyme activity, nutrient dynamics, crop yield, and soil physical properties. Results showed that SD treatment significantly improved albic soil properties compared to conventional tillage: catalase activity in the albic horizon decreased by 13.51%, reducing peroxide toxicity. In the albic horizon, alkaline hydrolysis nitrogen, total nitrogen, available phosphorus, total phosphorus, available potassium, total potassium, and organic matter increased by 29.98%, 58.70%, 36.86%, 20.46%, 5.00%, 21.70%, and 40.46%, respectively. Correspondingly, maize and soybean yield under SD reached 8686.6 kg/ha and 2245.3 kg/ha, increasing by 15.39% and 19.94% compared to CT, respectively. Additionally, SD treatment improved physical properties of the albic horizon: soil hardness reduced by 43.56%, with enhanced water-holding capacity, permeability coefficient, porosity, and hydraulic conductivity. Its findings not only boost agronomic productivity by improving crop yields but also support environmental sustainability by enhancing soil fertility, which is of great significance for ensuring food security. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 8733 KB  
Article
The Effect of Transparent/Black Film and Straw Mulching on Canopy Conductance in Maize
by Shanshan Qin, Yanqun Zhang, Xiyun Jiao, Yan Mo, Shihong Gong, Zhe Gu and Baozhong Zhang
Plants 2025, 14(18), 2877; https://doi.org/10.3390/plants14182877 - 16 Sep 2025
Viewed by 348
Abstract
Canopy conductance (Gc) is an important biological constant for quantifying the water vapor flux at the canopy-atmosphere interface, reflecting the coupling strength between crop transpiration and microclimate. To elucidate how mulching modulates Gc dynamics under varying environments, we measured [...] Read more.
Canopy conductance (Gc) is an important biological constant for quantifying the water vapor flux at the canopy-atmosphere interface, reflecting the coupling strength between crop transpiration and microclimate. To elucidate how mulching modulates Gc dynamics under varying environments, we measured the transpiration of maize based on thermal equilibrium method from 2020 and 2021, synchronously recording solar radiation (Rs), temperature (T), relative humidity (RH), and vapor pressure deficit (VPD) under no-mulching (NM), transparent film (TFM), black film (BM), and straw mulching (SM) treatments in the North China Plain. The results showed that in the near-surface microenvironment, at early stages (seedling-jointing), compared to the NM treatment, TFM and BM treatments unexpectedly reduced temperature by 0.1–1.1% while increasing humidity by 0.2–4.0%, lowering VPD by 0.7–15.5%, contradicting presumed warming effects. During tasseling-filling stages, both plastic films elevated temperature by 3.5–5.2%, decreased humidity by 5.2–6.9%, and sharply increased VPD by 23.4–27.6%, inducing heat-VPD coupling stress. Throughout the entire growth period, SM treatment resulted in an initial increase followed by a decrease in temperature, but the decrease in humidity and increase in VPD occurred earlier and smoothly compared to film mulching treatment in the near-surface microenvironment. All treatments increased average temperature but decreased average humidity in the near-ground microenvironment throughout growth stages, ultimately leading to an increase in average VPD. In addition, all treatments increased Gc at noon by 10.3–81.2%. Under different solar radiation conditions, TFM, BM, and SM treatments increased the reference conductance (GcR) but did not always increase Gc sensitivity to VPD (m). We propose a specific mulching strategy: Using black or transparent plastic film mulching in arid/cold regions and straw mulching in high-temperature and drought-prone/rain-fed agricultural areas can reconcile the trade-off between microclimate optimization and physiological adaptation, advancing precision water management in arid-prone croplands. Full article
Show Figures

Figure 1

14 pages, 7307 KB  
Article
Revealing the Influence of Zn Content on the Microstructure and Mechanical Properties of Bimodal Mg-Zn-Gd-Sm Alloy
by Hansong Xue, Zengjun Wei, Shanyi Lan, Yang Zhou, Ming Zhang, Jun Li, Ying Liu, Jia She, Jia Hu and Bin Jiang
Materials 2025, 18(18), 4226; https://doi.org/10.3390/ma18184226 (registering DOI) - 9 Sep 2025
Viewed by 649
Abstract
The development of low-cost and high-performance Mg alloys is an important way to achieve further application of magnesium alloys. In this work, the as-extruded Mg98.3−xZnxGd1Sm0.7 alloy with excellent mechanical properties is successfully prepared by regulating the [...] Read more.
The development of low-cost and high-performance Mg alloys is an important way to achieve further application of magnesium alloys. In this work, the as-extruded Mg98.3−xZnxGd1Sm0.7 alloy with excellent mechanical properties is successfully prepared by regulating the bimodal-grained structure. The effect of the Zn content on the microstructure evolution and mechanical properties of the as-extruded Mg98.3−xZnxGd1Sm0.7 alloy is systematically investigated. The results show that the addition of Zn increases the dynamic recrystallization (DRX) fraction and weakens the basal texture of the as-extruded alloy. The Mg98.05Zn0.25Gd1Sm0.7 alloy exhibits a typical bimodal-grained structure. A large amount of geometrically necessary dislocations (GNDs) are generated at the interface between the soft zone and the hard zone of the bimodal-grained structure during the plastic deformation process, resulting in back stress strengthening, thereby improving the strength of the alloy. And it achieves exceptional mechanical properties with an ultimate tensile strength (UTS) of 330 MPa, a yield strength (YS) of 248 MPa, and an elongation (EL) of 18.5% at room temperature. This paper provides a new idea for introducing a heterogeneous structure and improving the strength of low-cost Mg alloys. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

19 pages, 5327 KB  
Article
Effects of Sanqi Cultivation on Soil Fertility and Heavy Metal Content in the Sanqi–Pine Agroforestry System
by Keyu Liu, Xiaoyan Zhao, Rui Rui, Yue Li, Jingying Hei, Longfeng Yu, Shu Wang and Xiahong He
Agronomy 2025, 15(9), 2123; https://doi.org/10.3390/agronomy15092123 - 4 Sep 2025
Viewed by 670
Abstract
The Sanqi–pine agroforestry (SPA) system is considered a sustainable agroforestry model. However, empirical studies that clearly elucidate the impact of Sanqi cultivation on soil fertility and the heavy metal content within the SPA system are still lacking. This study established monoculture Pinus armandii [...] Read more.
The Sanqi–pine agroforestry (SPA) system is considered a sustainable agroforestry model. However, empirical studies that clearly elucidate the impact of Sanqi cultivation on soil fertility and the heavy metal content within the SPA system are still lacking. This study established monoculture Pinus armandii (MPA) and SPA systems to conduct a comparative analysis of dynamic changes in soil physicochemical properties and the heavy metal content of Sanqi and pine over one year (with semi-monthly sampling), followed by a comprehensive evaluation of soil fertility and heavy metal pollution. Following the land use conversion from MPA to SPA, there was a notable increase in soil moisture (SM), total nitrogen (TN), and nitrate nitrogen (NO3-N) levels within Sanqi soil. Conversely, total potassium (TK), ammonium nitrogen (NH4+-N), plumbum (Pb), and chromium (Cr) levels experienced a significant reduction. In the case of pine soil, soil moisture (SM), pH levels, and ammonium nitrogen (NH4+-N) content exhibited an increase. However, soil organic carbon (SOC), total phosphorus (TP), total potassium (TK), zinc (Zn), manganese (Mn), plumbum (Pb), and chromium (Cr) contents all significantly decreased. The Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) demonstrated that Sanqi cultivation not only significantly enhanced soil fertility for Sanqi rather than pine but also reduced the heavy metal content in the soil of both Sanqi and pine within the SPA system. Furthermore, the Nemerow pollution index for both Sanqi and pine soils has decreased, transitioning the pollution status from relatively safe to safe. This suggests that the introduction of Sanqi promotes the sustainable development of the SPA system. Full article
(This article belongs to the Special Issue Effects of Agronomic Practices on Soil Properties and Health)
Show Figures

Figure 1

28 pages, 10429 KB  
Article
Theoretical Insights and Experimental Studies of the New Layered Tellurides EuRECuTe3 with RE = Nd, Sm, Tb and Dy
by Anna V. Ruseikina, Evgenii M. Roginskii, Maxim V. Grigoriev, Vladimir A. Chernyshev, Alexander A. Garmonov, Ralf J. C. Locke and Thomas Schleid
Crystals 2025, 15(9), 787; https://doi.org/10.3390/cryst15090787 - 31 Aug 2025
Viewed by 530
Abstract
Single crystals of the layered EuRECuTe3 series with RE = Nd, Sm, Tb and Dy are obtained for the first time, completing the series of studies on quaternary tellurides synthesized using the halide flux method. These compounds crystallize in the [...] Read more.
Single crystals of the layered EuRECuTe3 series with RE = Nd, Sm, Tb and Dy are obtained for the first time, completing the series of studies on quaternary tellurides synthesized using the halide flux method. These compounds crystallize in the orthorhombic space group Pnma (no. 62) with unit cell parameters ranging from a = 11.5634(7) Å, b = 4.3792(3) Å and c = 14.3781(9) Å for EuNdCuTe3 to a = 11.2695(7) Å, b = 4.3178(3) Å and c = 14.3304(9) Å for EuDyCuTe3. The influence of prismatic polyhedra [EuTe6+1]7− structural units on the stabilization of 3d framework composed by 2d layered fragments [RECuTe3]2−, which have a key role in the interlayer interaction, is established. A comparative analysis of structural and magnetic properties dependence on the rare-earth element radius ri(RE3+) in the EuRECuTe3 series (RE = Sc, Y, Nd–Lu) is carried out. The structural contraction, including decrease in degree of tetrahedral polyhedra distortion, bond lengths shortening and unit cell volume shrinking with increasing ri(RE3+), is established. It is shown that the structural alternation leads to transition from ferromagnetic to ferrimagnetic ordering. It was established that changes in the cationic sublattice have a more significant impact on structural transitions in the series of quaternary tellurides than changes in the anionic sublattice. The electronic structure and elastic and dynamic properties were estimated using ab initio calculations. The exfoliation energy for each compound is obtained by estimation of monolayer ground state energy as a result of structure relaxation. The symmetry and structural properties of monolayer EuRECuTe3 (RE = Nd, Sm, Tb, Dy) compound are established and the orthorhombic symmetry is obtained with layer group pm2_1b. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

23 pages, 5273 KB  
Article
Federated Learning Detection of Cyberattacks on Virtual Synchronous Machines Under Grid-Forming Control Using Physics-Informed LSTM
by Ali Khaleghi, Soroush Oshnoei and Saeed Mirzajani
Fractal Fract. 2025, 9(9), 569; https://doi.org/10.3390/fractalfract9090569 - 29 Aug 2025
Cited by 1 | Viewed by 853
Abstract
The global shift toward clean production, like using renewable energy, has significantly decreased the use of synchronous machines (SMs), which help maintain stability and control, causing serious frequency stability issues in power systems with low inertia. Fractional order controller-based virtual synchronous machines (FOC-VSMs) [...] Read more.
The global shift toward clean production, like using renewable energy, has significantly decreased the use of synchronous machines (SMs), which help maintain stability and control, causing serious frequency stability issues in power systems with low inertia. Fractional order controller-based virtual synchronous machines (FOC-VSMs) have become a promising option, but they rely on communication networks to work together in real time, causing them to be at risk of cyberattacks, especially from false data injection attacks (FDIAs). This paper suggests a new way to detect FDI attacks using a federated physics-informed long short-term memory (PI-LSTM) network. Each FOC-VSM uses its data to train a PI-LSTM, which keeps the information private but still helps it learn from a common model that understands various operating conditions. The PI-LSTM incorporates physical constraints derived from the FOC-VSM swing equation, facilitating residual-based anomaly detection that is sensitive to minor deviations in control dynamics, such as altered inertia or falsified frequency signals. Unlike traditional LSTMs, the physics-informed architecture minimizes false positives arising from benign disturbances. We assessed the proposed method on an IEEE 9-bus test system featuring two FOC-VSMs. The results show that our method can successfully detect FDI attacks while handling regular changes, proving it could be a strong solution. Full article
Show Figures

Figure 1

28 pages, 67103 KB  
Article
Spatiotemporal Patterns, Driving Mechanisms, and Response to Meteorological Drought of Terrestrial Ecological Drought in China
by Qingqing Qi, Ruyi Men, Fei Wang, Mengting Du, Wenhan Yu, Hexin Lai, Kai Feng, Yanbin Li, Shengzhi Huang and Haibo Yang
Agronomy 2025, 15(9), 2044; https://doi.org/10.3390/agronomy15092044 - 26 Aug 2025
Viewed by 620
Abstract
Ecological drought in terrestrial systems is a vegetation-functional degradation phenomenon triggered by the long-term imbalance between ecosystem water supply and demand. This process involves nonlinear coupling of multiple climatic factors, ultimately forming a compound ecological stress mechanism characterized by spatiotemporal heterogeneity. Based on [...] Read more.
Ecological drought in terrestrial systems is a vegetation-functional degradation phenomenon triggered by the long-term imbalance between ecosystem water supply and demand. This process involves nonlinear coupling of multiple climatic factors, ultimately forming a compound ecological stress mechanism characterized by spatiotemporal heterogeneity. Based on meteorological and remote sensing datasets from 1982 to 2022, this study identified the spatial distribution and temporal variability of ecological drought in China, elucidated the dynamic evolution and return periods of typical drought events, unveiled the scale-dependent effects of climatic factors under both univariate dominance and multivariate coupling, as well as deciphered the response mechanisms of ecological drought to meteorological drought. The results demonstrated that (1) terrestrial ecological drought in China exhibited a pronounced intensification trend during the study period, with the standardized ecological water deficit index (SEWDI) reaching its minimum value of −1.21 in February 2020. Notably, the Alpine Vegetation Region (AVR) displayed the most significant deterioration in ecological drought severity (−0.032/10a). (2) A seasonal abrupt change in SEWDI was detected in January 2003 (probability: 99.42%), while the trend component revealed two mutation points in January 2003 (probability: 96.35%) and November 2017 (probability: 43.67%). (3) The drought event with the maximum severity (6.28) occurred from September 2019 to April 2020, exhibiting a return period exceeding the 10-year return level. (4) The mean values of gridded trend eigenvalues ranged from −1.06 in winter to 0.19 in summer; 87.01% of the area exhibited aggravated ecological drought in winter, with the peak period (88.51%) occurring in January. (5) Evapotranspiration (ET) was identified as the dominant univariate driver, contributing a percentage of significant power (POSP) of 18.75%. Under multivariate driving factors, the synergistic effects of ET, soil moisture (SM), and air humidity (AH) exhibited the strongest explanatory power (POSP = 19.21%). (6) The response of ecological drought to meteorological drought exhibited regional asynchrony, with the maximum correlation coefficient averaging 0.48 and lag times spanning 1–6 months. Through systematic analysis of ecological drought dynamics and driving mechanisms, a dynamic assessment framework was constructed. These outcomes strengthen the scientific basis for regional drought risk early-warning systems and spatially tailored adaptive management strategies. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

17 pages, 8493 KB  
Article
Effect of Surface-Modified Mica in Hybrid Filler Systems on the Curing and Mechanical Behavior of Ethylene–Propylene–Diene Monomer (EPDM)/Butadiene Rubber (BR) Blend
by Won-Young Jung, Seong-Woo Cho and Keon-Soo Jang
Polymers 2025, 17(16), 2250; https://doi.org/10.3390/polym17162250 - 20 Aug 2025
Viewed by 619
Abstract
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, [...] Read more.
This study investigates the influence of hybrid filler systems comprising carbon black (CB), mica, and surface-modified mica (SM) on the properties of ethylene–propylene–diene monomer (EPDM)/butadiene rubber (PB) composites. To reduce the environmental issues associated with CB, mica was incorporated as a partial substitute, and its compatibility with the rubber matrix was enhanced through surface modification using ureidopropyltrimethoxysilane (URE). The composites with hybrid filler systems and surface modification were evaluated in terms of curing behavior, crosslink density, mechanical and elastic properties, and dynamic viscoelasticity. Rheological analysis revealed that high mica loadings delayed vulcanization due to reduced thermal conductivity and accelerator adsorption, whereas SM composites maintained comparable curing performance. Swelling tests showed a reduction in crosslink density with increased unmodified mica content, while SM-filled samples improved the network density, confirming enhanced interfacial interaction. Mechanical testing demonstrated that the rubber compounds containing SM exhibited average improvements of 17% in tensile strength and 20% in toughness. In particular, the CB20/SM10 formulation achieved a well-balanced enhancement in tensile strength, elongation at break, and toughness, surpassing the performance of the CB-only system. Furthermore, rebound resilience and Tan δ analyses showed that low SM content reduced energy dissipation and improved elasticity, whereas excessive filler loadings led to increased hysteresis. The compression set results supported the thermal stability and recovery capacity of the SM-containing systems. Overall, the results demonstrated that the hybrid filler system incorporating URE-modified mica significantly enhanced filler dispersion and rubber–filler interaction, offering a sustainable and high-performance solution for elastomer composite applications. Full article
Show Figures

Figure 1

25 pages, 1003 KB  
Review
Power Quality Mitigation in Modern Distribution Grids: A Comprehensive Review of Emerging Technologies and Future Pathways
by Mingjun He, Yang Wang, Zihong Song, Zhukui Tan, Yongxiang Cai, Xinyu You, Guobo Xie and Xiaobing Huang
Processes 2025, 13(8), 2615; https://doi.org/10.3390/pr13082615 - 18 Aug 2025
Viewed by 1151
Abstract
The global transition toward renewable energy and the electrification of transportation is imposing unprecedented power quality (PQ) challenges on modern distribution networks, rendering traditional governance models inadequate. To bridge the existing research gap of the lack of a holistic analytical framework, this review [...] Read more.
The global transition toward renewable energy and the electrification of transportation is imposing unprecedented power quality (PQ) challenges on modern distribution networks, rendering traditional governance models inadequate. To bridge the existing research gap of the lack of a holistic analytical framework, this review first establishes a systematic diagnostic methodology by introducing the “Triadic Governance Objectives–Scenario Matrix (TGO-SM),” which maps core objectives—harmonic suppression, voltage regulation, and three-phase balancing—against the distinct demands of high-penetration photovoltaic (PV), electric vehicle (EV) charging, and energy storage scenarios. Building upon this problem identification framework, the paper then provides a comprehensive review of advanced mitigation technologies, analyzing the performance and application of key ‘unit operations’ such as static synchronous compensators (STATCOMs), solid-state transformers (SSTs), grid-forming (GFM) inverters, and unified power quality conditioners (UPQCs). Subsequently, the review deconstructs the multi-timescale control conflicts inherent in these systems and proposes the forward-looking paradigm of “Distributed Dynamic Collaborative Governance (DDCG).” This future architecture envisions a fully autonomous grid, integrating edge intelligence, digital twins, and blockchain to shift from reactive compensation to predictive governance. Through this structured approach, the research provides a coherent strategy and a crucial theoretical roadmap for navigating the complexities of modern distribution grids and advancing toward a resilient and autonomous future. Full article
Show Figures

Figure 1

Back to TopTop