Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,947)

Search Parameters:
Keywords = SO2 sorbents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4508 KB  
Article
Use of Oil Shale as a Catalyst and Hydrogen Donor in the Processing of Heavy Hydrocarbons: Accumulation of Rare Trace Elements and Production of Light Fractions
by Murzabek Baikenov, Dariya Izbastenova, Xintai Su, Akmaral Sarsenbekova, Alfiya Khalitova, Almas Tusipkhan, Amirbek Moldabayev, Balzhan Tulebaeva, Gulzhan Baikenova and Satybaldin Amangeldy
ChemEngineering 2025, 9(5), 108; https://doi.org/10.3390/chemengineering9050108 - 9 Oct 2025
Viewed by 78
Abstract
This study presents an integrated approach to processing the heavy fraction of coal tar (HFCT) using oil shale (OS) from Shubarkol Komir JSC to simultaneously increase the yield of valuable hydrocarbon fractions and extract rare and dispersed trace elements. The lack of data [...] Read more.
This study presents an integrated approach to processing the heavy fraction of coal tar (HFCT) using oil shale (OS) from Shubarkol Komir JSC to simultaneously increase the yield of valuable hydrocarbon fractions and extract rare and dispersed trace elements. The lack of data on the effect of shale on the process and the kinetics of multi-component “tar + shale” systems limits the development of effective technologies. TG/DTG analysis was combined with the Friedman, Ozawa–Flynn–Wall, and Šesták–Berggren methods for the first time to evaluate the role of oil shale (OS). It was shown that the addition of 13% OS provides a sustained reduction in activation energy (~85–86 kJ/mol) and optimal conditions for hydrometallization. At 420 °C, an initial H2 pressure of 4 MPa, and a reaction time of 60 min, the yield of light fractions reaches 62.6%, and the solid residue concentrates Ti, Mo, Ge, and other rare and dispersed elements reach up to 66,000 g/t in total. The possibility of extracting Ge using the Purolite C100 sorbent has also been confirmed. The novelty of the study lies in demonstrating the donor–catalytic effect of shale and the practical prospects of solid residue as a secondary mineral raw materials. Full article
Show Figures

Figure 1

17 pages, 2611 KB  
Article
The Removal of Azoles from an Aqueous Solution by Adsorption on Nature-Derived and Waste Materials
by Julia Płatkiewicz, Robert Frankowski, Tomasz Grześkowiak, Włodzimierz Urbaniak and Agnieszka Zgoła-Grześkowiak
Processes 2025, 13(10), 3197; https://doi.org/10.3390/pr13103197 - 8 Oct 2025
Viewed by 304
Abstract
The objective of this study was to investigate the adsorption of 11 azoles (tebuconazole, ketoconazole, econazole, miconazole, fluconazole, clotrimazole, climbazole, flutriafol, epoxiconazole, tiabendazole, and imazalil) on natural and waste-derived sorbents such as ceramsite, perlite, pumice, sawdust, coconut fibers, heavy oil fly ash (HOFA), [...] Read more.
The objective of this study was to investigate the adsorption of 11 azoles (tebuconazole, ketoconazole, econazole, miconazole, fluconazole, clotrimazole, climbazole, flutriafol, epoxiconazole, tiabendazole, and imazalil) on natural and waste-derived sorbents such as ceramsite, perlite, pumice, sawdust, coconut fibers, heavy oil fly ash (HOFA), activated carbon, and silica gel. The results of adsorption efficiency for most sorbents varied depending on the azole compounds and their concentration. The highest adsorption for all tested compounds was obtained for activated carbon and heavy oil fly ash, reaching about 100% in both tested concentrations (0.2 mg L−1 and 0.02 mg L−1). The HOFA material was characterized in terms of elemental analysis (CHNS), confirming the elemental contents of 52% C, 0.65% H, 0.4% N, and 2.3% S. The specific surface area of HOFA was 11.2 m2 g−1, and scanning electron microscopy (SEM) results showed the spherical yet porous nature of the particles. Furthermore, the calculated adsorption isotherms demonstrated that for most tested azoles, the Dubinin–Radushkevich (D-R) isotherm best fits the data, with R2 = 0.93 or more, which is characteristic of porous carbon materials. The results highlight the significant potential of the tested HOFA sorbent for effectively removing azoles, as the tests performed showed that it was possible to remove these compounds with a concentration of up to 0.2 mg L−1 within an hour. This is particularly important because HOFA is an easily accessible waste material. Furthermore, the adsorption of azoles will not increase the cost of HOFA disposal when using the standard procedures currently applied to this waste. Full article
(This article belongs to the Special Issue Biochemical Processes for Sustainability, 2nd Edition)
Show Figures

Figure 1

16 pages, 1522 KB  
Article
Assessment of Mold-Specific Volatile Organic Compounds and Molds Using Sorbent Tubes and a CDC/NIOSH-Developed Tool in Homes Affected by Hurricane Ian
by Atin Adhikari, Oluwatosin Jegede, Victor Chiedozie Ezeamii, Oluwatoyin Ayo-Farai, Michael Savarese and Jayanta Gupta
Appl. Sci. 2025, 15(19), 10805; https://doi.org/10.3390/app151910805 - 8 Oct 2025
Viewed by 224
Abstract
Flooding from hurricanes creates damp indoor environments that support mold growth and microbial contamination, posing long-term health risks for occupants. This pilot study evaluated TMVOCs, microbial activity, and environmental conditions in 13 Hurricane Ian-affected residences across multiple flood-affected neighborhoods. Air samples were collected [...] Read more.
Flooding from hurricanes creates damp indoor environments that support mold growth and microbial contamination, posing long-term health risks for occupants. This pilot study evaluated TMVOCs, microbial activity, and environmental conditions in 13 Hurricane Ian-affected residences across multiple flood-affected neighborhoods. Air samples were collected using sorbent tubes and analyzed by gas chromatography–mass spectrometry, while microbial activity on surfaces was assessed via ATP bioluminescence. Visible mold and dampness were documented with the CDC/NIOSH Dampness and Mold Assessment Tool, and environmental measurements included temperature, relative humidity, and surface as well as hidden moisture. Median (IQR) TMVOC concentrations were 12 (8) µg/m3, with 61% of homes exceeding the 10 µg/m3 benchmark set by previous researchers despite minimal visible contamination. Spearman’s correlation revealed significant negative relationships between odor and surface microbial activity (ρ = −0.569, p < 0.05), indicating that organic debris may play a more crucial role in microbial activity within the tested homes, and that odors might originate from hidden microbes instead of surface microbial growth. Our study emphasizes the necessity of utilizing both chemical (TMVOC) and biological (ATP) indicators to evaluate poor air quality caused by molds in flood-affected homes, serving as a supplement to routine visible mold assessments. Full article
(This article belongs to the Special Issue Exposure Pathways and Health Implications of Environmental Chemicals)
Show Figures

Figure 1

15 pages, 2135 KB  
Article
Novel Synthesis of Phosphorus-Doped Porous Carbons from Lotus Petiole Using Sodium Phytate for Selective CO2 Capture
by Yue Zhi, Jiawei Shao, Junting Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Utku Bulut Simsek, Linlin Wang and Xin Hu
Molecules 2025, 30(19), 3990; https://doi.org/10.3390/molecules30193990 - 5 Oct 2025
Viewed by 310
Abstract
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium [...] Read more.
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium phytate as a dual-function activating and phosphorus-doping agent. The simultaneous activation and phosphorus incorporation at various temperatures (650–850 °C) under a nitrogen atmosphere produced carbons with tailored textural properties and surface functionalities. Among them, LPSP-700 exhibited the highest specific surface area (525 m2/g) and a hierarchical porous structure, with abundant narrow micropores (<1 nm) and phosphorus-containing surface groups that synergistically enhanced CO2 capture performance. The introduction of P functionalities not only improved the surface polarity and binding affinity toward CO2 but also promoted the formation of a well-connected pore network. As a result, LPSP-700 delivered a CO2 uptake of 2.51 mmol/g at 25 °C and 1 bar (3.34 mmol/g at 0 °C), along with a high CO2/N2 selectivity, fast CO2 adsorption kinetics and moderate isosteric heat of adsorption (Qst). Furthermore, the dynamic CO2 adsorption capacity (0.81 mmol/g) was validated by breakthrough experiments, and cyclic adsorption–desorption tests revealed excellent stability with negligible loss in performance over five cycles. Correlation analysis revealed pores < 2.02 nm as the dominant contributors to CO2 uptake. Overall, this work highlights sodium phytate as an effective dual-role agent for simultaneous activation and phosphorus doping and validates LPSP-700 as a sustainable and high-performance sorbent for CO2 capture under post-combustion conditions. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Graphical abstract

20 pages, 4603 KB  
Article
Recyclable MnCl2-Fe2O3@CNT as Sulfur and Water-Resistant Sorbent for Gaseous Elemental Mercury Removal from Coal Combustion Flue Gas
by Zhuo Liu, Yuchi Chen, Hao Rong, Cui Jie, Xiyan Peng and Honghu Li
Materials 2025, 18(19), 4573; https://doi.org/10.3390/ma18194573 - 1 Oct 2025
Viewed by 323
Abstract
Mercury poses serious hazards to human health. Carbon nanotube (CNT) is a potential material for elemental mercury (Hg0) adsorption removal, however, it shows susceptibility to SO2 and H2O. Herein, CNT is first decorated with Fe2O3 [...] Read more.
Mercury poses serious hazards to human health. Carbon nanotube (CNT) is a potential material for elemental mercury (Hg0) adsorption removal, however, it shows susceptibility to SO2 and H2O. Herein, CNT is first decorated with Fe2O3 then modified with MnCl2 (MnCl2-Fe2O3@CNT) to enhance SO2 and H2O resistance. The Hg0 removal performance and physical–chemical properties of samples are comprehensively studied. MnCl2(10)FeCNT (10 wt% MnCl2 content) has a high specific surface area (775.76 m2·g−1) and abundant active chlorine (35.01% Cl* content) as well as oxygen species (84.23% Oα content), which endows it with excellent Hg0 adsorption capacity (25.06 mg·g−1) and good SO2 and H2O resistance. Additionally, the superparamagnetic property can enable MnCl2(10)FeCNT to be conveniently recycled. After fifth regeneration, MnCl2(10)FeCNT can still achieve >90% Hg0 removal. The abundant active chlorine and oxygen species over MnCl2(10)FeCNT are responsible for Hg0 removal with HgCl2 as the primary product. This work demonstrates the enhancement of CNT’s resistance to SO2 and H2O by Fe2O3 and MnCl2 modification, which has potential application in flue gas mercury removal. Full article
(This article belongs to the Section Green Materials)
Show Figures

Figure 1

20 pages, 9190 KB  
Article
Nanostructured K- and Na-Substituted Aluminosilicates for Ni(II) Ions Removal from Liquid Media: Assessment of Sorption Performance and Mechanism
by Ekaterina Nekhludova, Nikita Ivanov, Sofia Yarusova, Oleg Shichalin, Yulia Parotkina, Alexander Karabtsov, Vitaly Mayorov, Natalya Ivanenko, Kirill Barkhudarov, Viktoriya Provatorova, Viktoriya Rinchinova, Vladimir Afonchenko, Sergei Savin, Vasilii Ivanovich Nemtinov, Anton Shurygin, Pavel Gordienko and Eugeniy Papynov
J. Compos. Sci. 2025, 9(10), 530; https://doi.org/10.3390/jcs9100530 - 1 Oct 2025
Viewed by 296
Abstract
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. [...] Read more.
The removal of nickel from industrial wastewater necessitates efficient sorbent materials. This study investigates nanostructured potassium- and sodium-substituted aluminosilicate-based nanocomposites for this application. Materials were synthesized and characterized using SEM-EDS, XPS, XRD, FTIR, low temperature N2 adsorption–desorption and Ni2+ adsorption experiments. SEM and XRD confirmed an X-ray amorphous structure attributable to fine crystallite size. The sodium-substituted material Na2Al2Si2O8 exhibited the lowest specific surface area (48.3 m2/g) among the tested composites. However, it demonstrated the highest Ni(II) sorption capacity (64.6 mg/g, 1.1 mmol/g) and the most favorable sorption kinetics, as indicated by a Morris-Weber coefficient of 0.067 ± 0.008 mmol/(g·min1/2). Potassium-substituted analogs with higher Si/Al ratios showed increased surface area but reduced capacity. Analysis by XPS and SEM-EDS established that Ni(II) uptake occurs through a complex mechanism, involving ion exchange, surface complexation, and chemisorption resulting in the formation of new nickel-containing composite surface phases. The results indicate that optimal sorption performance for Ni(II) is achieved with sodium-based aluminosilicates at a low Si/Al ratio (Si/Al = 1). The functional characteristics of Na2Al2Si2O8 compare favorably with other silicate-based sorbents, suggesting its potential utility for wastewater treatment. Further investigation is needed to elucidate the precise local coordination environment of the adsorbed nickel. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Figure 1

41 pages, 6056 KB  
Article
Comparison of Cu(II) Adsorption Using Fly Ash and Natural Sorbents During Temperature Change and Thermal–Alkaline Treatment
by Anna Ďuricová, Veronika Štefanka Prepilková, Michal Sečkár, Marián Schwarz, Dagmar Samešová, Tomáš Murajda, Peter Andráš, Adriana Eštoková, Miriama Čambál Hološová, Juraj Poništ, Andrea Zacharová, Jarmila Schmidtová, Darina Veverková and Adrián Biroň
Materials 2025, 18(19), 4552; https://doi.org/10.3390/ma18194552 - 30 Sep 2025
Viewed by 357
Abstract
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of [...] Read more.
Mine effluents represent a serious environmental problem on a global scale. Therefore, the effective treatment of this water is a serious issue in the scientific field. The adsorption process seems to be one of the attractive methods, especially due to the simplicity of design, affordability or high efficiency. The latest scientific knowledge has shown that the use of waste and natural adsorbents is economical and effective. This study aimed to evaluate the efficiency of the adsorption process of natural and waste materials—zeolite, bentonite and fly ash—under the influence of temperature and modification of these adsorbents. The novelty of this study resides in an adjustment of the modification method of adsorbents compared to previous research: thermal–alkaline treatment versus hydrothermal one. Another novelty is the use of modified fly ash from biomass combustion as an adsorbent in comparison with the previously used fly ash from coal combustion. The modification of the adsorbents made the adsorption process more effective at all experimental concentrations. The characterisation of adsorbent samples was performed using X-ray diffraction (XRD). The parameters of the adsorption isotherms, Langmuir, Freundlich and Temkin, were estimated by nonlinear regression analysis. The adsorption capacity of Cu(II) of fly ash was comparable to natural adsorbents. Adsorption processes were better described by pseudo-second-order kinetics. At the end of this study, the suitability of using the adsorbents to reduce the concentration of Cu(II) in neutral mine effluents was observed in the following order at 30 °C: unmodified fly ash > modified bentonite > unmodified zeolite. At the temperatures of 20 °C and 10 °C, the same trend of the suitability of adsorbents use was confirmed: modified bentonite > modified zeolite > modified fly ash. The practical applicability of this study lies in the expansion of knowledge in the field of adsorption processes and in the improvement of waste management efficiency of heating plants not only in Slovakia, but also globally. Full article
(This article belongs to the Special Issue Materials for Heavy Metals Removal from Waters (2nd Edition))
Show Figures

Figure 1

20 pages, 1640 KB  
Review
The Removal of Arsenic from Contaminated Water: A Critical Review of Adsorbent Materials from Agricultural Wastes to Advanced Metal–Organic Frameworks
by Mohammed A. E. Elmakki, Soumya Ghosh, Mokete Motente, Timothy Oladiran Ajiboye, Johan Venter and Adegoke Isiaka Adetunji
Minerals 2025, 15(10), 1037; https://doi.org/10.3390/min15101037 - 30 Sep 2025
Viewed by 422
Abstract
Arsenic pollution in potable water is a significant worldwide health concern. This study systematically evaluates current progress in adsorption technology, the most promising restorative approach, to provide a definitive framework for future research and use. The methodology entailed a rigorous evaluation of 91 [...] Read more.
Arsenic pollution in potable water is a significant worldwide health concern. This study systematically evaluates current progress in adsorption technology, the most promising restorative approach, to provide a definitive framework for future research and use. The methodology entailed a rigorous evaluation of 91 peer-reviewed studies (2012–2025), classifying adsorbents into three generations: (1) Natural adsorbents (e.g., agricultural/industrial wastes), characterized by cost-effectiveness but limited capacities (0.1–5 mg/g); (2) Engineered materials (e.g., metal oxides, activated alumina), which provide dependable performance (84–97% removal); and (3) Advanced hybrids (e.g., MOFs, polymer composites), demonstrating remarkable capacities (60–300 mg/g). The primary mechanisms of removal are confirmed to be surface complexation, electrostatic interactions, and redox precipitation. Nevertheless, the critical analysis indicates that despite significant laboratory efficacy, substantial obstacles to field implementation persist, including scalability limitations (approximately 15% of materials are evaluated beyond laboratory scale), stability concerns (e.g., structural collapse of MOFs at extreme pH levels), and elevated costs (e.g., MOFs priced at approximately $230/kg compared to $5/kg for alumina). The research indicates that the discipline must transition from only materials innovation to application science. Primary objectives include the development of economical hybrids (about $50/kg), the establishment of uniform WHO testing standards, and the implementation of AI-optimized systems. The primary objective is to attain sustainable solutions costing less than $0.10 per cubic meter that satisfy worldwide deployment standards via multidisciplinary cooperation. Full article
Show Figures

Figure 1

18 pages, 1656 KB  
Article
Assessment of Organic and Inorganic Waste Suitability for Functionalization with Aminosilanes: A Comparative Study of APTMS and PEI
by Mariana G. Peña-Juarez, Angelica M. Bello, Albino Martinez-Sibaja, Rubén Posada-Gómez, José P. Rodríguez-Jarquin and Alejandro Alvarado-Lassman
Processes 2025, 13(10), 3117; https://doi.org/10.3390/pr13103117 - 29 Sep 2025
Viewed by 284
Abstract
Waste materials have emerged as attractive low-cost feedstocks for adsorbent development in environmental remediation and materials engineering. Organic wastes are particularly rich in cellulose, hemicellulose, lignin, and pectin, which provide reactive oxygenated groups such as hydroxyls and carboxyls. While inorganic wastes offer stability, [...] Read more.
Waste materials have emerged as attractive low-cost feedstocks for adsorbent development in environmental remediation and materials engineering. Organic wastes are particularly rich in cellulose, hemicellulose, lignin, and pectin, which provide reactive oxygenated groups such as hydroxyls and carboxyls. While inorganic wastes offer stability, lower water retention makes them promising candidates. This study explores the functionalization of waste-derived organic and inorganic matrices using two amine-based agents: 3-aminopropyltrimethoxysilane (APTMS) and polyethylenimine (PEI). The materials were categorized as organic (orange peel, corn cob) or inorganic (silica gel, eggshell) and subjected to a pretreatment process involving drying, grinding, and sieving; inorganic substrates additionally underwent acid activation with citric acid. Surface modification was carried out in ethanolic (APTMS) or aqueous (PEI) media. To assess their suitability and processability as particulate sorbents, drying kinetics, physicochemical properties (FTIR, ζ-potential, pH, conductivity, Boehm titration), and flow characteristics (Carr and Hausner indices) were evaluated. The findings enable a comparative analysis of the functionalization efficiency and elucidate the relationship between substrate type (organic vs. inorganic) and its performance as a modified adsorbent. This approach advances the development of novel sorbent matrices for greenhouse gas mitigation while reinforcing circular economy principles through the valorization of low-cost, readily available waste materials. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Figure 1

15 pages, 2038 KB  
Article
Drying Model and Mechanism of Sugar Beet Pulp Based on Its Crosslinking with Ca2+ and Cu2+
by Guili Jiang, Yanxia Zhang, Donghui Luo, Siming Zhu, Yutao Wang and Wanzhi Li
Foods 2025, 14(19), 3362; https://doi.org/10.3390/foods14193362 - 28 Sep 2025
Viewed by 280
Abstract
Sugar beet pulp (SBP) is a by-product from the sugar industry with low value. As a feed, SBP needs to be dried. However, the drying process takes too much energy, leading to potential environmental issues caused by coal use. This paper raised and [...] Read more.
Sugar beet pulp (SBP) is a by-product from the sugar industry with low value. As a feed, SBP needs to be dried. However, the drying process takes too much energy, leading to potential environmental issues caused by coal use. This paper raised and tried a crosslinking method to shorten the drying process, save energy consumption, and increase the value of SBP. This paper aimed to reduce the water-holding ability of SBP while obtaining animal feed with higher nutritional value. First, the crosslinking method was used to evaluate its dryness–strengthening effect. Second, three factors were evaluated: operating temperature, solution pH, and cationic concentration. Third, a kinetic study was performed on the drying process of SBP through its crosslinking with macro-elements (Ca2+, Cu2+) using drying models; the characterization of Ca2+-SBP and Cu2+-SBP using FTIR, SEM, and XRD; and possible drying mechanisms, which were discussed using an egg box model and a simple quantum chemical calculation. Results showed that the dryness–strengthening and value-adding idea is more practical through a Ca2+-crosslinking method, rather than through crosslinking with Cu2+. Under experimental conditions, wet SBP with 2 g of dry base reacts to Ca2+ under optimized conditions of 1000 mg/L Ca2+ solution at pH 6.0 and 40 °C for 135 min, with a moisture content of 5.23 g/g as a water-holding index. Compared with SBP, the moisture content of the crosslinking SBP on a dry basis was reduced by ~30–40%. The Midilli–Kucuk model was the most suitable model to describe the hot-air drying process of SBP, while Ca2+ or Cu2+ can crosslink to the galacturonic acid in pectin and form an “egg-box” model. SBP binds with Ca2+ or Cu2+ through its carboxyl groups, as testified by a combination analysis of FTIR, SEM, and XRD. As a result, the SBP dried through the Ca2+-crosslinking or Cu2+-crosslinking method can be directly used as a feed additive with good economic benefit and without the post-treatment problem as a bio-sorbent. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 5707 KB  
Article
Fabrication of Spinel Magnesium Aluminate Doped with Divalent-First-Row Transition-Metal Oxides as Efficient Sorbents for Pharmaceutical Contaminants
by Mutaz Salih, Tarig G. Ibrahim, Rasha S. Ramadan, Naif Alarifi and Babiker Y. Abdulkhair
Processes 2025, 13(10), 3095; https://doi.org/10.3390/pr13103095 - 27 Sep 2025
Viewed by 228
Abstract
Herein, nanoscale MgAl2O4 (MOA), 10%CuO@MgAl2O4 (10Cu@MOA), 10%NiO@MgAl2O4 (10Ni@MOA), and 10%CoO@MgAl2O4 (10Co@MOA) were synthesized employing butylated hydroxytoluene (the food additive BHT) as a capping agent. The SEM images illustrated average sizes of [...] Read more.
Herein, nanoscale MgAl2O4 (MOA), 10%CuO@MgAl2O4 (10Cu@MOA), 10%NiO@MgAl2O4 (10Ni@MOA), and 10%CoO@MgAl2O4 (10Co@MOA) were synthesized employing butylated hydroxytoluene (the food additive BHT) as a capping agent. The SEM images illustrated average sizes of 38.8, 30.0, 40.8, and 32.7 nm for MOA, 10Cu@MOA, 10Ni@MOA, and 10Co@MOA, respectively, and their BET surface area were 84.4, 141.8, 126.7, and 105.3, respectively. Doxycycline DXC removal was studied employing the MOA, 10Cu@MOA, 10Ni@MOA, and 10Co@MOA, which resulted in qt values of 57.3, 106.1, 97.7, and 73.9 mg g−1, respectively. The pseudo-second order model best described the DXC sorption onto MOA, 10Cu@MOA, 10Ni@MOA, and 10Co@MOA, and both film diffusion models influenced the DXC sorptions onto the sorbents. The DXC sorption onto the 10Cu@MOA fitted the Freundlich model. The thermodynamics implied endothermic-spontaneous DXC sorption onto the10Cu@MOA. The pH study exposed that the DXC removal by 10Cu@MOA was more effective in a mildly acidic medium (pH = 6.0). Furthermore, the 10Cu@MOA effectiveness in treating surface water contaminated by 5.0 and 10.0 mg L−1 DXC was 99.9% and 98.1%, respectively, while it was 94.7% and 92.5% in treating the concentrations above in seawater, respectively. The reusability study showed a 10% reduction in the 10Cu@MOA’s removal efficiency at the fourth cycle, which is encouraging for real-life applications. Full article
Show Figures

Figure 1

30 pages, 3245 KB  
Article
The Effect of Organic Materials on the Response of the Soil Microbiome to Bisphenol A
by Magdalena Zaborowska, Jadwiga Wyszkowska, Mirosława Słaba, Agata Borowik, Jan Kucharski and Przemysław Bernat
Molecules 2025, 30(19), 3868; https://doi.org/10.3390/molecules30193868 - 24 Sep 2025
Viewed by 461
Abstract
In view of the increasing environmental pollution caused by bisphenol A (BPA), understanding its impact on the microbiological properties of soil, which play a key role in maintaining soil fertility and consequently ecosystem stability, is particularly important. Therefore, the aim of this study [...] Read more.
In view of the increasing environmental pollution caused by bisphenol A (BPA), understanding its impact on the microbiological properties of soil, which play a key role in maintaining soil fertility and consequently ecosystem stability, is particularly important. Therefore, the aim of this study was to assess the sensitivity of the soil microbiome to this xenobiotic and to evaluate the potential of organic materials such as starch (St), grass compost (Co), and fermented bark (B) to restore the balance of soil cultivated with Zea mays. The negative effects of BPA on the abundance, diversity, and structure of bacterial and fungal communities in soil contaminated with 500 and 1000 mg kg−1 d.m. of soil were confirmed. Changes in the phospholipid profile, including phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylglycerol (PG), and ergosterol (E), were also assessed. BPA applied at 1000 mg kg−1 d.m. of soil inhibited the proliferation of organotrophic bacteria and actinomycetes, while stimulating fungal growth. This xenobiotic’s impact is also reflected by a decrease in PC and PG levels in soil under BPA pressure. Through amplification of the V3-V4 16S rRNA region (for bacteria) and the ITS1 region (for fungi), the dominant bacterial phylum Proteobacteria was identified, with genera including Cellulosimicrobium, Caulobacter, Rhodanobacter, Sphingomonas, Mucilaginibacter, and Pseudomonas. Among fungi, Ascomycota dominated, primarily represented by the genus Penicillium. Of all the organic materials tested for mitigating BPA’s negative effects, grass compost was identified as the most promising, not only restoring soil homeostasis but also enhancing the growth and development of Zea mays cultivated in BPA-contaminated soil. Full article
Show Figures

Figure 1

21 pages, 1837 KB  
Review
Removal of Heavy Metals from Galvanic Industry Wastewater: A Review of Different Possible Methods
by Anna Kowalik-Klimczak
Sustainability 2025, 17(19), 8562; https://doi.org/10.3390/su17198562 - 24 Sep 2025
Viewed by 630
Abstract
The galvanic industry requires considerable amounts of water and produces significant quantities of wastewater. Two types of wastewater are created in the processes of the galvanic application of metal coatings: used galvanic baths and wastewater generated while rinsing coated elements. The composition and [...] Read more.
The galvanic industry requires considerable amounts of water and produces significant quantities of wastewater. Two types of wastewater are created in the processes of the galvanic application of metal coatings: used galvanic baths and wastewater generated while rinsing coated elements. The composition and amount of wastewater depend on the type of process, the plant’s operational system, and the quantity of water utilised to rinse the coated elements. In this article, the possibilities of using different techniques, such as chemical precipitation, coagulation and flocculation, ion exchange, adsorption, and membrane filtration, to remove heavy metals from galvanic wastewater were analysed and assessed. It was determined that the use of physicochemical methods (i.e., chemical precipitation, coagulation, and flocculation) to remove heavy metals has significant disadvantages, including operational costs connected with the purchase of chemical reagents and the emergence of metal complexes requiring management/utilisation. On the other hand, the processes of ion exchange and adsorption can be used only for wastewater characterised by a low heavy metal concentration, with organic matter preliminarily removed. In addition, waste polluted with heavy metals in the form of used regenerative baths and used sorbents is generated during these processes. In turn, the advanced techniques of membrane filtration allow for the removal of different types of organic pollutants and heavy metals. The processes of membrane wastewater treatment exhibit a range of advantages compared to traditional technologies, including the complete, environmentally friendly removal of permanent organic pollution, easy integration into conventional technologies, a limited amount of residue, a high level of separation, and a shorter process time. The efficiency of membrane wastewater treatment depends on many parameters, including, most of all, the composition, pH, and type of membrane, as well as process conditions. The possibility of using new types of membranes to remove heavy metals from spent galvanic baths was analysed, and the possibility of using the processes in wastewater treatment systems according to the circular economy model was assessed. The assessment of the efficiency of heavy metal removal in hybrid systems combining specific individual processes and the development of state-of-the-art material solutions to realise these processes may be an interesting direction of research in this field. Full article
Show Figures

Graphical abstract

21 pages, 3697 KB  
Article
Heavy Metal Removal from Produced Water Using Waste Materials: A Comparative Study
by Neetu Bansal, Md Maruf Mortula and Sameer Al-Asheh
Water 2025, 17(18), 2789; https://doi.org/10.3390/w17182789 - 22 Sep 2025
Viewed by 670
Abstract
Produced water, a typical byproduct of oil and gas extraction, is considered a significant environmental and health problem due to its heavy metals content. The objective of this study is to evaluate and compare the efficiency of seven low-cost, waste-derived adsorbents in removing [...] Read more.
Produced water, a typical byproduct of oil and gas extraction, is considered a significant environmental and health problem due to its heavy metals content. The objective of this study is to evaluate and compare the efficiency of seven low-cost, waste-derived adsorbents in removing Cr3+, Cu2+, Fe2+, Zn2+, and Pb2+ from simulated produced water. The sorbents include gypsum, neem leaves, mandarin peels, pistachio shells, date seed powder, date seed ash, and activated carbon from date seeds. Adsorption experiments were performed using 2.5 and 5 g/L of the adsorbent. SEM and EDX analyses were used to confirm morphological changes and metal deposition after adsorption. Results showed that date seed ash exhibited the highest efficiency (85–100% across all metals), followed by activated carbon (25–98%), with strong Fe and Cu removal but a lower Pb uptake. Neem leaves, mandarin peels, and date seed powder showed moderate efficiencies (30–97%), while gypsum and pistachio shells were the least effective (0–81%). Lignocellulosic peels also showed good results due to the abundance of –OH and –COOH functional groups. Gypsum performed poorly across most metals. Integrating these waste-based adsorbents into secondary or tertiary treatment stages is an economical and sustainable solution for oil wastewater treatment. The results revealed the potential for valorizing agro-industrial and construction waste for circular economic applications in heavy metal pollution control. Full article
Show Figures

Graphical abstract

24 pages, 1470 KB  
Review
Recent Trends in Solid-Phase Microextraction for the Monitoring of Drugs of Abuse in Wastewater
by Pedro Dinis, Eugenia Gallardo and Cláudia Margalho
Separations 2025, 12(9), 256; https://doi.org/10.3390/separations12090256 - 22 Sep 2025
Viewed by 891
Abstract
Wastewater analysis plays a central role in monitoring patterns of drug use within specific populations. It provides objective and real-time estimates of consumption, with minimal ethical concerns. In the current European context, drugs of abuse continue to be detected in wastewater, with varying [...] Read more.
Wastewater analysis plays a central role in monitoring patterns of drug use within specific populations. It provides objective and real-time estimates of consumption, with minimal ethical concerns. In the current European context, drugs of abuse continue to be detected in wastewater, with varying incidences across countries. Their monitoring enables the prioritisation of public health and legal interventions by healthcare professionals and drug monitoring agencies. Therefore, the development and implementation of efficient methodologies for monitoring drugs of abuse in wastewater samples is of critical importance. This systematic review aims to explore the use of miniaturised sample extraction techniques based on solid-phase microextraction for the determination of drugs of abuse in wastewater. In fact, the extraction procedure must be fast, effective, and selective in order to retain the analytes of interest. Miniaturised techniques have thus emerged as promising alternatives to conventional methods. Magnetic solid-phase extraction (MSPE) and molecularly imprinted polymers (MIPs) represent the most widely applied solid-phase microextraction techniques in recent years for the analysis of drugs of abuse in wastewater. Looking ahead, future perspectives include the development of eco-friendly workflows, automated and time-efficient techniques, increasingly selective sorbents, and robust analytical methods. Full article
Show Figures

Figure 1

Back to TopTop