Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = SPATCCM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 969 KB  
Review
SLC1A4 and Serine Homeostasis: Implications for Neurodevelopmental and Neurodegenerative Disorders
by Dana Elazar, Natalie Alvarez, Sabrina Drobeck and Teresa M. Gunn
Int. J. Mol. Sci. 2025, 26(5), 2104; https://doi.org/10.3390/ijms26052104 - 27 Feb 2025
Cited by 1 | Viewed by 2370
Abstract
The solute carrier family 1 member 4 (SLC1A4) gene encodes a neutral amino acid transporter, also referred to as alanine-serine-cysteine transporter 1, ASCT1, that helps maintain amino acid balance in the brain and periphery. In the brain, SLC1A4 plays an important [...] Read more.
The solute carrier family 1 member 4 (SLC1A4) gene encodes a neutral amino acid transporter, also referred to as alanine-serine-cysteine transporter 1, ASCT1, that helps maintain amino acid balance in the brain and periphery. In the brain, SLC1A4 plays an important role in transporting levo (L) and dopa (D) isomers of serine. L-serine is required for many cellular processes, including protein and sphingolipid synthesis, while D-serine is a co-agonist required for normal neurotransmission through N-methyl-D-aspartate receptors. Through its roles transporting L-serine across the blood–brain barrier and regulating synaptic D-serine levels, SLC1A4 helps establish and maintain brain health across the lifespan. This review examines the role of SLC1A4 in neurodevelopment and neurodegeneration and assesses the therapeutic potential of serine supplementation to treat neurodevelopmental symptoms associated with mutations in SLC1A4, as well as schizophrenia, depression, traumatic brain injury, and Alzheimer’s and Parkinson’s diseases. Full article
Show Figures

Figure 1

Back to TopTop