Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = Sahagún

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1800 KB  
Article
Response of Solanum lycopersicum L. to Fusarium oxysporum During Germination and Seedling Stages
by Ana Elizabeth Paredes-Cervantes, Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, Santos Gerardo Leyva-Mir, Martha Hernández-Rodríguez and Alma Aurora Deanda-Tovar
Agronomy 2025, 15(9), 2089; https://doi.org/10.3390/agronomy15092089 - 30 Aug 2025
Viewed by 60
Abstract
Due to the widespread distribution of F. oxysporum, the search for mechanisms of tolerance to this disease in Solanum lycopersicum L. is an ongoing endeavor. This research aimed to identify F. oxysporum-tolerant genotypes at the germination and seedling stages in order [...] Read more.
Due to the widespread distribution of F. oxysporum, the search for mechanisms of tolerance to this disease in Solanum lycopersicum L. is an ongoing endeavor. This research aimed to identify F. oxysporum-tolerant genotypes at the germination and seedling stages in order to use them as sources of resistance. Ninety-six tomato lines were inoculated with the F. oxysporum strain with NCBI accession key PQ187438. The germination test was carried out in a germination chamber at a constant temperature of 28 ± 2 °C with 70 ± 5% relative humidity in darkness for the first 3 days and then 7 days with light. Clustering and discriminant analysis identified 14 genotypes with tolerance, showing great seed vigor and lower disease severity. Seedling evaluation was conducted in a floating raft system for 10 days after inoculation. Nine genotypes showed greater tolerance to the pathogen by developing a larger leaf area and accumulating more dry matter (p ≤ 0.05). No genotypes with tolerance were identified at both phenological stages (germination and seedling), indicating that tolerance mechanisms are independent at both phenological stages, so genotype selection should be carried out independently. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

37 pages, 11050 KB  
Article
A Dual-Mode Competitive Risk Framework for Electronic Devices Using the Fréchet-Chen Model
by Luis Carlos Méndez-González, Luis Alberto Rodríguez-Picón, Isidro Jesús González-Hernández, Iván Juan Carlos Pérez-Olguín and Abel Eduardo Quezada-Carreón
Electronics 2025, 14(16), 3276; https://doi.org/10.3390/electronics14163276 - 18 Aug 2025
Viewed by 175
Abstract
Electronic devices (EDs) exhibit complex failure patterns throughout their lifetime, with failure modes (FaM) can be monotonic, non-monotonic, or a combination of both. This complexity is increased by using advanced semiconductors and flexible electronics, which introduce variability in degradation mechanisms. Although multiple reliability [...] Read more.
Electronic devices (EDs) exhibit complex failure patterns throughout their lifetime, with failure modes (FaM) can be monotonic, non-monotonic, or a combination of both. This complexity is increased by using advanced semiconductors and flexible electronics, which introduce variability in degradation mechanisms. Although multiple reliability models exist, many lack flexibility or practical applicability in this context. This work proposes a novel competing risk (CR) model that combines the Fréchet and Chen distributions, called Fréchet-Chen Competitive Risk (FCCR). This model allows for modeling the minimum time to failure between two relevant FaMs. Its key mathematical properties and applicability to real-life scenarios are analyzed. Parameter estimation is performed using maximum likelihood (MLE) and Bayesian inference (BEM) using Hamiltonian Monte Carlo (HMC), which provides a robust basis for analysis. Two case studies with real-life ED data validate the model, demonstrating its superior fit and predictive capability compared to classical models. Furthermore, the effect of FCCR parameters on system behavior is explored, highlighting its usefulness in accurately modeling complex failure patterns in EDs. Full article
Show Figures

Figure 1

19 pages, 1174 KB  
Article
Actuator Fault-Tolerant Control for Mechatronic Systems and Output Regulation with Unknown Reference Signals
by Miguel Amador-Macias, Tonatiuh Hernández-Cortés, Víctor Estrada-Manzo, Jaime González-Sierra and Ricardo Tapia-Herrera
Appl. Sci. 2025, 15(15), 8551; https://doi.org/10.3390/app15158551 - 1 Aug 2025
Viewed by 296
Abstract
Today, mechatronic systems are required to operate reliably and safely. However, actuators can fail, causing the system to malfunction or, in the worst case, resulting in an accident. A clear example of this is the motors of unmanned aerial vehicles. If any of [...] Read more.
Today, mechatronic systems are required to operate reliably and safely. However, actuators can fail, causing the system to malfunction or, in the worst case, resulting in an accident. A clear example of this is the motors of unmanned aerial vehicles. If any of them fail, the vehicle loses control, resulting in a catastrophe and potentially leading to the partial or total loss of the system. Therefore, there is a need to design robust control strategies that allow the system to continue operating even with the loss of one of its actuators. Based on the above, this work presents a controller capable of performing output regulation while tolerating actuator faults in actuated robotic platforms. In contrast to traditional output regulation theory, where a known exosystem provides the reference signal, the proposed approach employs a High-Gain Observer (HGO) to estimate and generate the reference signal from an unknown exosystem. Additionally, an Unknown Input (UI) observer is used to estimate actuator faults, enabling the computation of a fault-tolerant control. The methodology is tested in simulation and real-time experiments on the well-known Furuta pendulum system to illustrate the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Control Systems in Mechatronics and Robotics)
Show Figures

Figure 1

22 pages, 1781 KB  
Article
Gene Expression Profile of the Cerebral Cortex of Niemann-Pick Disease Type C Mutant Mice
by Iris Valeria Servín-Muñoz, Daniel Ortuño-Sahagún, María Paulina Reyes-Mata, Christian Griñán-Ferré, Mercè Pallàs and Celia González-Castillo
Genes 2025, 16(8), 865; https://doi.org/10.3390/genes16080865 - 24 Jul 2025
Viewed by 509
Abstract
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being [...] Read more.
Background/Objectives: Niemann-Pick disease Type C (NPC) represents an autosomal recessive disorder with an incidence rate of 1 in 100,000 live births that belongs to the lysosomal storage diseases (LSDs). NPC is characterized by the abnormal accumulation of unesterified cholesterol, in addition to being an autosomal recessive inherited pathology, which belongs to LSDs. It occurs in 95% of cases due to mutations in the NPC1 gene, while 5% of cases are due to mutations in the NPC2 gene. In the cerebral cortex (CC), the disease shows lipid inclusions, increased cholesterol and multiple sphingolipids in neuronal membranes, and protein aggregates such as hyperphosphorylated tau, α-Synuclein, TDP-43, and β-amyloid peptide. Mitochondrial damage and oxidative stress are some alterations at the cellular level in NPC. Therefore, the aim of this work was to determine the gene expression profile in the CC of NPC1 mice in order to identify altered molecular pathways that may be related to the pathophysiology of the disease. Methods: In this study, we performed a microarray analysis of a 22,000-gene chip from the cerebral cortex of an NPC mutant mouse compared to a WT mouse. Subsequently, we performed a bioinformatic analysis in which we found groups of dysregulated genes, and their expression was corroborated by qPCR. Finally, we performed Western blotting to determine the expression of proteins probably dysregulated. Results: We found groups of dysregulated genes in the cerebral cortex of the NPC mouse involved in the ubiquitination, fatty acid metabolism, differentiation and development, and underexpression in genes with mitochondrial functions, which could be involved in intrinsic apoptosis reported in NPC, in addition, we found a generalized deregulation in the cortical circadian rhythm pathway, which could be related to the depressive behavior that has even been reported in NPC patients. Conclusions: Recognizing that there are changes in the expression of genes related to ubiquitination, mitochondrial functions, and cortical circadian rhythm in the NPC mutant mouse lays the basis for targeting treatments to new potential therapeutic targets. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 2893 KB  
Article
NRP1 and GFAP Expression in the Medulloblastoma Microenvironment: Implications for Angiogenesis and Tumor Progression
by Margarita Belem Santana-Bejarano, María Paulina Reyes-Mata, José de Jesús Guerrero-García, Daniel Ortuño-Sahagún and Marisol Godínez-Rubí
Cancers 2025, 17(15), 2417; https://doi.org/10.3390/cancers17152417 - 22 Jul 2025
Viewed by 434
Abstract
Background/Objectives: Medulloblastoma (MB) is the second leading cause of cancer-related death in children. Its tumor microenvironment (TME) includes endothelial, glial, and immune cells that influence tumor architecture and progression. Neuropilin-1 (NRP1), a co-receptor for semaphorins and vascular endothelial growth factor (VEGF), is [...] Read more.
Background/Objectives: Medulloblastoma (MB) is the second leading cause of cancer-related death in children. Its tumor microenvironment (TME) includes endothelial, glial, and immune cells that influence tumor architecture and progression. Neuropilin-1 (NRP1), a co-receptor for semaphorins and vascular endothelial growth factor (VEGF), is expressed in various cell types during oncogenesis, yet its role in MB progression remains unclear. This study aimed to evaluate the expression and localization of NRP1 and glial fibrillary acidic protein (GFAP) in MB tissue. Methods: We analyzed MB tissue samples using immunohistochemistry, immunofluorescence, and quantitative PCR. Samples were stratified by molecular subgroup (WNT, SHH, non-WNT/non-SHH). We assessed NRP1 expression in tumor-associated microglia/macrophages (TAMs) and endothelial cells, as well as GFAP expression in astrocytes and tumor cells. Histopathological correlations and survival analyses were also conducted. Results: NRP1 was consistently expressed by TAMs across all MB molecular subgroups. Tumor vasculature showed strong endothelial NRP1 expression, while perivascular astrocytic coverage was frequently absent. Astrocytic processes exhibited spatial differences according to tumor histology. In SHH-MBs, a subset of tumor cells showed aberrant GFAP expression, which correlated with tumor recurrence or progression. Conclusions: NRP1 and GFAP display distinct expression patterns within the MB microenvironment, reflecting subgroup-specific biological behavior. Endothelial NRP1 positivity combined with limited vascular-astrocytic interaction and aberrant GFAP expression in SHH-MB may contribute to dysregulated angiogenesis and tumor progression. These findings warrant further investigation to explore their prognostic and therapeutic implications. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Malignant Nervous System Cancers)
Show Figures

Graphical abstract

21 pages, 1875 KB  
Review
Translating Exosomal microRNAs from Bench to Bedside in Parkinson’s Disease
by Oscar Arias-Carrión, María Paulina Reyes-Mata, Joaquín Zúñiga and Daniel Ortuño-Sahagún
Brain Sci. 2025, 15(7), 756; https://doi.org/10.3390/brainsci15070756 - 16 Jul 2025
Viewed by 608
Abstract
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and chronic neuroinflammation. Recent evidence suggests that exosomal microRNAs (miRNAs)—small, non-coding RNAs encapsulated in extracellular vesicles—are key regulators of PD pathophysiology and promising candidates for biomarker development and [...] Read more.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder marked by dopaminergic neuronal loss, α-synuclein aggregation, and chronic neuroinflammation. Recent evidence suggests that exosomal microRNAs (miRNAs)—small, non-coding RNAs encapsulated in extracellular vesicles—are key regulators of PD pathophysiology and promising candidates for biomarker development and therapeutic intervention. Exosomes facilitate intercellular communication, cross the blood–brain barrier, and protect miRNAs from degradation, rendering them suitable for non-invasive diagnostics and targeted delivery. Specific exosomal miRNAs modulate neuroinflammatory cascades, oxidative stress, and synaptic dysfunction, and their altered expression in cerebrospinal fluid and plasma correlates with disease onset, severity, and progression. Despite their translational promise, challenges persist, including methodological variability in exosome isolation, miRNA profiling, and delivery strategies. This review integrates findings from preclinical models, patient-derived samples, and systems biology to delineate the functional impact of exosomal miRNAs in PD. We propose mechanistic hypotheses linking miRNA dysregulation to molecular pathogenesis and present an interactome model highlighting therapeutic nodes. Advancing exosomal miRNA research may transform the clinical management of PD by enabling earlier diagnosis, molecular stratification, and the development of disease-modifying therapies. Full article
(This article belongs to the Special Issue Molecular Insights in Neurodegeneration)
Show Figures

Figure 1

20 pages, 1958 KB  
Article
Comparison and Analysis of the Genomes of Three Strains of Botrytis cinerea Isolated from Pomegranate
by Alberto Patricio-Hernández, Miguel Angel Anducho-Reyes, Alejandro Téllez-Jurado, Rocío Ramírez-Vargas, Andrés Quezada-Salinas and Yuridia Mercado-Flores
Microorganisms 2025, 13(7), 1605; https://doi.org/10.3390/microorganisms13071605 - 8 Jul 2025
Viewed by 542
Abstract
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, [...] Read more.
Gray mold disease, caused by the fungus Botrytis cinerea, affects a wide variety of plants. In this study, we conducted several in vitro tests and genomic analyses on three strains of this fungus (BcPgIs-1, BcPgIs-3, MIC) previously isolated from diseased pomegranate fruits, collected at two geographic locations in Mexico. Our goal was to identify possible differences among these strains. The development of the three strains in distinct culture media, the production of extracellular enzymes, and their effect on the progression of infection in pomegranate fruits were evaluated. The genomes were sequenced using the Illumina platform and analyzed with various bioinformatics tools. All strains possess genetic determinants for virulence and cell wall polymer degradation, but MIC exhibited the highest pectinolytic activity in vitro. This strain also produced sclerotia in a shorter time (7 days) in PDA medium. BcPgls-3 demonstrated the highest conidia production across all the culture media used. Both BcPgls-3 and MIC damaged all the pomegranate fruits 8 days after inoculation, while the BcPgls-1 required up to 9 days. Sequencing of the three strains yielded high-quality sequences, resulting in a total of 17 scaffolds and genomes that exceed 41 million bp, with a GC content of approximately 42%. Phylogenomic analysis indicated that the MIC strain is situated in a group separate from BcPgIs-1 and BcPgIs-3. BcPgIs-3 possesses more coding sequences, but MIC has more genes for CAZymes and peptidases. The three strains share 10,174 genes, while BcPgIs-3 and MIC share 851. These findings highlight the differences among the strains studied, which may reflect their adaptive capacities to their environment. Results contribute to our understanding of the biology of gray mold in pomegranates and could assist in developing more effective control strategies. Full article
(This article belongs to the Special Issue Feature Papers in Plant–Microbe Interactions in North America)
Show Figures

Figure 1

27 pages, 1153 KB  
Review
Integrated Biomimetics: Natural Innovations for Urban Design, Smart Technologies, and Human Health
by Ocotlán Diaz-Parra, Francisco R. Trejo-Macotela, Jorge A. Ruiz-Vanoye, Jaime Aguilar-Ortiz, Miguel A. Ruiz-Jaimes, Yadira Toledo-Navarro, Alejandro Fuentes Penna, Ricardo A. Barrera-Cámara and Julio C. Salgado-Ramirez
Appl. Sci. 2025, 15(13), 7323; https://doi.org/10.3390/app15137323 - 29 Jun 2025
Viewed by 950
Abstract
Biomimetics has emerged as a transformative interdisciplinary approach that harnesses nature’s evolutionary strategies to develop sustainable solutions across diverse fields. This study explores its integrative role in shaping smart cities, advancing artificial intelligence and robotics, innovating biomedical applications, and enhancing computational design tools. [...] Read more.
Biomimetics has emerged as a transformative interdisciplinary approach that harnesses nature’s evolutionary strategies to develop sustainable solutions across diverse fields. This study explores its integrative role in shaping smart cities, advancing artificial intelligence and robotics, innovating biomedical applications, and enhancing computational design tools. By analysing the evolution of biomimetic principles and their technological impact, this work highlights how nature-inspired solutions contribute to energy efficiency, adaptive urban planning, bioengineered materials, and intelligent systems. Furthermore, this paper discusses future perspectives on biomimetics-driven innovations, emphasising their potential to foster resilience, efficiency, and sustainability in rapidly evolving technological landscapes. Particular attention is given to neuromorphic hardware, a biologically inspired computing paradigm that mimics neural processing through spike-based communication and analogue architectures. Key components such as memristors and neuromorphic processors enable adaptive, low-power, task-specific computation, with wide-ranging applications in robotics, AI, healthcare, and renewable energy systems. Furthermore, this paper analyses how self-organising cities, conceptualised as complex adaptive systems, embody biomimetic traits such as resilience, decentralised optimisation, and autonomous resource management. Full article
Show Figures

Figure 1

11 pages, 572 KB  
Article
Relationship Between Oral Intake and Sarcopenia in Patients with Disease-Related Malnutrition
by Paloma Pérez-López, Juan José López-Gómez, Olatz Izaola-Jauregui, Jaime González-Gutiérrez, Lucía Estévez-Asensio, Isabel Pérez-Mellen, Eva López-Andrés, David Primo-Martín, Esther Delgado-García, Rebeca Jiménez-Sahagún, Beatriz Ramos-Bachiller and Daniel Antonio de Luis-Román
Nutrients 2025, 17(13), 2129; https://doi.org/10.3390/nu17132129 - 27 Jun 2025
Viewed by 500
Abstract
Background/Objectives: Assessing oral intake in patients with disease-related malnutrition (DRM) and sarcopenia remains a clinical challenge. This study aimed to evaluate the relationship between oral intake adjusted to nutritional requirements and the presence of sarcopenia in patients with DRM. Methods: This was [...] Read more.
Background/Objectives: Assessing oral intake in patients with disease-related malnutrition (DRM) and sarcopenia remains a clinical challenge. This study aimed to evaluate the relationship between oral intake adjusted to nutritional requirements and the presence of sarcopenia in patients with DRM. Methods: This was a prospective observational study involving 118 outpatients with DRM, diagnosed according to Global Leadership Initiative on Malnutrition criteria. Sarcopenia was assessed using the European Working Group on Sarcopenia in Older People criteria. A 3-day dietary intake record was collected at the beginning of nutritional follow-up. Caloric (kcal/day) and protein (g/day) intakes were calculated. Energy needs were estimated using the Harris-Benedict equation with stress factors, and protein needs were set at 1.5 g/kg/day. Intake was categorized based on whether energy and protein intake exceeded or fell below 70% of requirements. Results: The mean age was 62.2 years, and 58.8% were female. Sarcopenia was present in 42% of patients. No significant difference was found in body mass index between patients with and without sarcopenia. Mean caloric intake was 29.6 kcal/kg/day and protein intake was 1.3 g/kg/day. Average fulfilment was 78.3% for energy and 86.8% for protein. Patients with sarcopenia had significantly lower intake of calories and macronutrients. Sarcopenia was more prevalent in those with <70% fulfilment of caloric and protein requirements. Multivariate analysis showed increased risk of sarcopenia (Odds ratio (OR): 4.27; 95% Confidence Interval (CI): 1.30–14.03; p = 0.017) and severe malnutrition (OR: 5.17; 95% CI: 1.63–16.42; p < 0.01) in patients with low protein intake. Conclusions: In patients with DRM, insufficient intake of calories and protein was associated with a higher prevalence of sarcopenia. There was an increased risk of sarcopenia and severe malnutrition in patients with lower protein intake. Full article
(This article belongs to the Special Issue Protein and Skeletal Muscle Metabolism)
Show Figures

Figure 1

14 pages, 615 KB  
Article
A Study of the Fractal Bending Behavior of Timoshenko Beams Using a Fourth-Order Single Equation
by Alexandro Alcántara, Claudia del C. Gutiérrez-Torres, José Alfredo Jiménez-Bernal, Juan Gabriel Barbosa-Saldaña, Juan B. Pascual-Francisco and Didier Samayoa
Buildings 2025, 15(13), 2172; https://doi.org/10.3390/buildings15132172 - 22 Jun 2025
Viewed by 244
Abstract
In this paper a new generalized fractal equation for studying the behaviour of self-similar beams using the Timoshenko beam theory is introduced. This equation is established in fractal dimensions by applying the concept of fractal continuum calculus Fα-CC introduced recently [...] Read more.
In this paper a new generalized fractal equation for studying the behaviour of self-similar beams using the Timoshenko beam theory is introduced. This equation is established in fractal dimensions by applying the concept of fractal continuum calculus Fα-CC introduced recently by Balankin and Elizarraraz in order to study engineering phenomena in complex bodies. Ultimately, the achieved formulation is a fourth-order fractal single equation generated by superposing a shear deformation on an Euler–Bernoulli beam. A mapping of the Timoshenko principle onto self-similar beams in the integer space into a corresponding principle for fractal continuum space is formulated employing local fractional differential operators. Consequently, the single equation that describes the stress/strain of a fractal Timoshenko beam is solved, which is simple, exact, and algorithmic as an alternative description of the fractal bending of beams. Therefore, the elastic curve function and rotation function can be described. Illustrative examples of classical beams are presented and show both the benefits and the efficiency of the suggested model. Full article
(This article belongs to the Special Issue Structural Engineering in Building)
Show Figures

Figure 1

22 pages, 4523 KB  
Article
Entropy Generation Analysis and Performance Comparison of a Solid Oxide Fuel Cell with an Embedded Porous Pipe Inside of a Mono-Block-Layer-Build Geometry and a Planar Geometry with Trapezoidal Baffles
by J. J. Ramírez-Minguela, J. M. Mendoza-Miranda, V. Pérez-García, J. L. Rodríguez-Muñoz, Z. Gamiño-Arroyo, J. A. Alfaro-Ayala, S. Alonso-Romero and T. Pérez-Segura
Entropy 2025, 27(7), 659; https://doi.org/10.3390/e27070659 - 20 Jun 2025
Viewed by 341
Abstract
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the [...] Read more.
An analysis of entropy generation and a performance comparison are carried out for a solid oxide fuel cell with an embedded porous pipe in the air supply channel of a mono-block-layer-build geometry (MOLB-PPA SOFC) and a planar geometry with trapezoidal baffles inside the fuel and air channels (P-TBFA SOFC). The results for power density at different current densities are discussed. Also, a comparison of the field of species concentration, temperature, and current density on the electrode–electrolyte interface is analyzed at a defined power density. Finally, a comparison of maps of the local entropy generation rate and the global entropy generation due to heat transfer, fluid flow, mass transfer, activation loss, and ohmic loss are studied. The results show that the MOLB-PPA SOFC reaches a 7.5% higher power density than the P-TBFA SOFC. Furthermore, the P-TBFA SOFC has a more homogeneous temperature distribution than the MOLB-type SOFC. The entropy generation analysis indicates that the MOLB-PPA SOFC exhibits lower global entropy generation due to heat transfer compared to the P-TBFA SOFC. The entropy generation due to ohmic losses is predominant for both geometries. Finally, the total irreversibilities are 24.75% higher in the P-TBFA SOFC than in the MOLB-PPA SOFC. Full article
(This article belongs to the Special Issue Advances in Entropy and Computational Fluid Dynamics, 2nd Edition)
Show Figures

Figure 1

16 pages, 9595 KB  
Article
Flexural Behavior of Concrete Slabs Reinforced with Embedded 3D Steel Trusses
by Javier Hernández-Pérez, Juan B. Pascual-Francisco, Alexander López-González, Adán Jiménez-Montoya and Orlando Susarrey-Huerta
Buildings 2025, 15(13), 2144; https://doi.org/10.3390/buildings15132144 - 20 Jun 2025
Viewed by 725
Abstract
This paper presents a proposal for slabs reinforced with 3D steel reinforcements. Two configurations of 3D steel reinforcement, manually fabricated using 4 mm diameter rods, were investigated: cubic and square pyramid truss lattices. Two control groups were produced: a non-reinforced slab and a [...] Read more.
This paper presents a proposal for slabs reinforced with 3D steel reinforcements. Two configurations of 3D steel reinforcement, manually fabricated using 4 mm diameter rods, were investigated: cubic and square pyramid truss lattices. Two control groups were produced: a non-reinforced slab and a linear steel rod-reinforced slab. Three-point bending tests were conducted to assess the flexural behavior of the slabs. The results were analyzed in terms of flexural strength, peak load, mid-span displacement, energy absorption, crack formation, and ductility. The digital image correlation (DIC) technique was employed to capture the full-field principal strain and determine the mid-span displacement at the point of crack initiation. Furthermore, the compression capacity of each slab was evaluated. The results were compared with those of the non-reinforced and linear reinforced slabs, revealing that the slab with the cubic truss lattice configuration exhibited the highest bending moment capacity. While the square pyramid truss slab demonstrated relatively low bending strength, it exhibited exceptional energy absorption characteristics. In terms of ductility, the cubic truss-reinforced slab showed superior performance. When compared to the slabs with linear rod reinforcement, the 3D-reinforced slabs with cubic and square pyramid configurations enhanced the bending strength by approximately 51.19% and 47.32%, respectively. Overall, this study shows that the oblique connectors in the pyramidal reinforcement, compared to the vertical connectors in the cubic reinforcement, provide greater ductility and promote a more uniform distribution of smaller cracks, thereby enhancing energy absorption. Full article
(This article belongs to the Special Issue Experimental and Theoretical Studies on Steel and Concrete Structures)
Show Figures

Figure 1

33 pages, 3924 KB  
Review
Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services
by José M. Liceaga-Ortiz-De-La-Peña, Jorge A. Ruiz-Vanoye, Juan M. Xicoténcatl-Pérez, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Ricardo A. Barrera-Cámara, Daniel Robles-Camarillo, Marco A. Márquez-Vera, Francisco R. Trejo-Macotela and Luis A. Ortiz-Suárez
Energies 2025, 18(12), 3094; https://doi.org/10.3390/en18123094 - 12 Jun 2025
Viewed by 761
Abstract
The transformation of traditional energy systems into smart energy systems has ushered in an era of efficiency, sustainability and technological growth. In this paper, we propose a new definition for “Quality of Energy Service” that focuses on ensuring optimal power-supply quality, encompassing factors [...] Read more.
The transformation of traditional energy systems into smart energy systems has ushered in an era of efficiency, sustainability and technological growth. In this paper, we propose a new definition for “Quality of Energy Service” that focuses on ensuring optimal power-supply quality, encompassing factors such as availability, speed (i.e., the time to restore or adjust supply following interruptions or load changes) and reliability of supply. We explore the integration of advanced algorithms specifically tailored to enhance the Quality of Energy Services. By concentrating on key aspects—reliability, availability and operational efficiency—the study reviews how various algorithmic approaches, from machine learning models to classical optimisation techniques, can significantly improve power grid management. These algorithms are evaluated for their potential to optimise load distribution, predict system failures and manage real-time adjustments in power supply, thereby ensuring higher service quality and grid stability. The findings aim to provide actionable insights for policymakers, engineers and industry stakeholders seeking to advance smart grid technologies and meet global energy standards. Furthermore, we present a case study to demonstrate how these models can be integrated to optimise grid management, forecast energy demand and enhance operational efficiency. We employ multiple machine learning models—including Random Forest, XGBoost version 1.6.1 and Long Short-Term Memory (LSTM) networks—to predict future energy demand. These models are then combined within an ensemble learning framework to improve both the accuracy and robustness of the forecasts. Our ensemble framework not only predicts energy consumption but also optimises battery storage utilisation, ensuring continuous energy availability and reducing reliance on external energy sources. The proposed stacking ensemble achieved a forecasting accuracy of 99.06%, with a Mean Absolute Percentage Error (MAPE) of 0.9364% and a Coefficient of Determination (R2) of 0.998345, highlighting its superior performance compared to each individual base model. Full article
Show Figures

Figure 1

19 pages, 2444 KB  
Article
Tomato Lines Tolerant to Sodium Chloride at Early Growth Stages
by Alma Aurora Deanda-Tovar, Juan Enrique Rodríguez-Pérez, Jaime Sahagún-Castellanos, María Teresa Beryl Colinas-y-León, Paulino Pérez-Rodríguez and Ana Elizabeth Paredes-Cervantes
Horticulturae 2025, 11(5), 532; https://doi.org/10.3390/horticulturae11050532 - 14 May 2025
Viewed by 705
Abstract
High concentrations of sodium chloride (NaCl) in soil and water are increasingly common conditions in tomato (Solanum lycopersicum L.) production that impair the development and yield of this crop, generating the need for tolerant varieties. This research aimed to identify tomato lines [...] Read more.
High concentrations of sodium chloride (NaCl) in soil and water are increasingly common conditions in tomato (Solanum lycopersicum L.) production that impair the development and yield of this crop, generating the need for tolerant varieties. This research aimed to identify tomato lines tolerant to salinity during germination and early seedling development. A standard germination test was carried out in which 93 lines were evaluated under conditions of 0 and 80 mM NaCl for 12 days in a germination chamber with a temperature of 28 ± 1 °C and relative humidity of 80 ± 5%. At the seedling stage, 88 lines were evaluated under conditions of 0 and 150 mM NaCl in a floating raft system. During germination, saline conditions decreased germination percentage (37%), plumule (43%) and radicle (47%) length, dry matter (44%) and germination rate index (70%). At the seedling stage, NaCl decreased (p ≤ 0.05) plant height (44%) and leaf area (50%), without modifying root, aerial and total dry matter or root length. Twenty-eight tolerant lines were identified at germination and twenty-three at the seedling stage, seven of which were tolerant at both stages. This implies that salinity tolerance mechanisms differ in the developmental stages studied and makes it possible to combine these mechanisms to prolong tolerance during plant development. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

10 pages, 2632 KB  
Communication
Nematophagous Fungi Occurrence: Prediction Using Bioclimatic Variables
by Ana Martha Cruz-Avalos, Montserrat Chagoya-Sánchez, César Andres Ángel-Sahagún, Ana Isabel Mireles-Arriaga, Griselda Maki-Díaz, René Loredo-Portales and Jesús Hernández-Ruíz
Microbiol. Res. 2025, 16(5), 98; https://doi.org/10.3390/microbiolres16050098 - 14 May 2025
Viewed by 864
Abstract
This study aimed to identify bioclimatic variables that favour the occurrence of three fungal species of the genus Arthrobotrys. For this purpose, 122 samples were collected from agricultural soils, 41 of which were positive for nematophagous fungi. In total, 13 pure Arthrobotrys [...] Read more.
This study aimed to identify bioclimatic variables that favour the occurrence of three fungal species of the genus Arthrobotrys. For this purpose, 122 samples were collected from agricultural soils, 41 of which were positive for nematophagous fungi. In total, 13 pure Arthrobotrys spp. cultures tested positive for pathogenicity to entomopathogenic nematodes and were identified at the species level based on their morphology and morphometry. The environmental and bioclimatic characteristics of positive sampling sites were evaluated using the maximum entropy algorithm, with 22 bioclimatic variables as predictors; among them, the main variables that promoted the occurrence of Arthrobotrys spp. were moisture regime (35.1%), precipitation of warmest quarter (21.3%), and altitude (20.5%). The total surface area with these conditions was 109,568 ha. In Guanajuato, Mexico, conditions favour the occurrence of nematophagous fungi. The bioclimatic variables that increased the incidence of the genus Arthrobotrys were moisture regime, precipitation of the warmest quarter, and altitude. The municipalities in Guanajuato of Abasolo (001), Irapuato (017), Jaral del progreso (018), León (020), Pueblo Nuevo (024), Salamanca (027), and Valle de Santiago (042) encompass regions conducive to finding nematophagous fungi. Full article
Show Figures

Figure 1

Back to TopTop