Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (55)

Search Parameters:
Keywords = Self Sovereign Identity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 876 KB  
Article
Blockchain-Based Self-Sovereign Identity Management Mechanism in AIoT Environments
by Jingjing Ren, Jie Zhang, Yongjun Ren and Jiang Xu
Electronics 2025, 14(19), 3954; https://doi.org/10.3390/electronics14193954 - 8 Oct 2025
Abstract
With the rapid growth of Artificial Intelligence of Things (AIoT), identity management and trusted communication have become critical for system security and reliability. Continuous AI learning and large-scale device connectivity introduce challenges such as permission drift, cross-domain access, and fine-grained API calls. Traditional [...] Read more.
With the rapid growth of Artificial Intelligence of Things (AIoT), identity management and trusted communication have become critical for system security and reliability. Continuous AI learning and large-scale device connectivity introduce challenges such as permission drift, cross-domain access, and fine-grained API calls. Traditional identity management often fails to balance privacy protection with efficiency, leading to risks of data leakage and misuse. To address these issues, this paper proposes a blockchain-based self-sovereign identity (SSI) management mechanism for AIoT. By integrating SSI with a zero-trust framework, it achieves decentralized identity storage and continuous verification, effectively preventing unauthorized access and misuse of identity data. The mechanism employs selective disclosure (SD) technology, allowing users to submit only necessary attributes, thereby ensuring user control over self-sovereign identity information and guaranteeing the privacy and integrity of undisclosed attributes. This significantly reduces verification overhead. Additionally, this paper designs a context-aware dynamic permission management that generates minimal permission sets in real time based on device requirements and environmental changes. Combined with the zero-trust principles of continuous verification and least privilege, it enhances secure interactions while maintaining flexibility. Performance experiments demonstrate that, compared with conventional approaches, the proposed zero-trust architecture-based SSI management mechanism better mitigates the risk of sensitive attribute leakage, improves identity verification efficiency under SD, and enhances the responsiveness of dynamic permission management, providing robust support for secure and efficient AIoT operations. Full article
(This article belongs to the Topic Recent Advances in Security, Privacy, and Trust)
Show Figures

Figure 1

36 pages, 2113 KB  
Article
Self-Sovereign Identities and Content Provenance: VeriTrust—A Blockchain-Based Framework for Fake News Detection
by Maruf Farhan, Usman Butt, Rejwan Bin Sulaiman and Mansour Alraja
Future Internet 2025, 17(10), 448; https://doi.org/10.3390/fi17100448 - 30 Sep 2025
Viewed by 450
Abstract
The widespread circulation of digital misinformation exposes a critical shortcoming in prevailing detection strategies, namely, the absence of robust mechanisms to confirm the origin and authenticity of online content. This study addresses this by introducing VeriTrust, a conceptual and provenance-centric framework designed to [...] Read more.
The widespread circulation of digital misinformation exposes a critical shortcoming in prevailing detection strategies, namely, the absence of robust mechanisms to confirm the origin and authenticity of online content. This study addresses this by introducing VeriTrust, a conceptual and provenance-centric framework designed to establish content-level trust by integrating Self-Sovereign Identity (SSI), blockchain-based anchoring, and AI-assisted decentralized verification. The proposed system is designed to operate through three key components: (1) issuing Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs) through Hyperledger Aries and Indy; (2) anchoring cryptographic hashes of content metadata to an Ethereum-compatible blockchain using Merkle trees and smart contracts; and (3) enabling a community-led verification model enhanced by federated learning with future extensibility toward zero-knowledge proof techniques. Theoretical projections, derived from established performance benchmarks, suggest the framework offers low latency and high scalability for content anchoring and minimal on-chain transaction fees. It also prioritizes user privacy by ensuring no on-chain exposure of personal data. VeriTrust redefines misinformation mitigation by shifting from reactive content-based classification to proactive provenance-based verification, forming a verifiable link between digital content and its creator. VeriTrust, while currently at the conceptual and theoretical validation stage, holds promise for enhancing transparency, accountability, and resilience against misinformation attacks across journalism, academia, and online platforms. Full article
(This article belongs to the Special Issue AI and Blockchain: Synergies, Challenges, and Innovations)
Show Figures

Figure 1

33 pages, 1483 KB  
Article
From Model to Mechanism: Enforcing Delegated Authority in SSI with Language-Based Security
by Muhamed Turkanović, Vid Keršič, Alen Horvat, Dominik Beron and Špela Čučko
Mathematics 2025, 13(18), 2971; https://doi.org/10.3390/math13182971 - 14 Sep 2025
Viewed by 773
Abstract
Delegation of authority remains a critical yet insufficiently addressed capability in Self-Sovereign Identity (SSI) systems. Building on an existing delegation model that introduced the concept of a Verifiable Mandate (VM) for expressing authority and access rights, this paper extends the approach with a [...] Read more.
Delegation of authority remains a critical yet insufficiently addressed capability in Self-Sovereign Identity (SSI) systems. Building on an existing delegation model that introduced the concept of a Verifiable Mandate (VM) for expressing authority and access rights, this paper extends the approach with a rigorous formalization of delegation semantics, enabling unambiguous reasoning over roles, grants, and constraints. The formal model is aligned with standards from the World Wide Web Consortium (W3C), and its constructs are embedded into an extended credential schema that preserves compatibility with the Verifiable Credentials (VC) data model while introducing delegation-specific attributes. A generalized VM schema is defined, supporting both generic and business-specific instantiations, and ensuring structural and semantic interoperability. Policy compliance is operationalized through a policy-based enforcement architecture, where rules are authored in the Rego language and evaluated at runtime by the Open Policy Agent (OPA). The architecture incorporates trusted registries for schema and policy distribution, allowing verifiers to define and enforce context-specific delegation rules in a modular and interoperable manner. Validation through realistic scenarios, such as postal service and academic use cases, demonstrates how formal semantics, schema validation, and language-based policy enforcement can be combined to enable secure, verifiable, and context-aware delegation in SSI ecosystems. Full article
(This article belongs to the Special Issue Applied Cryptography and Blockchain Security)
Show Figures

Figure 1

33 pages, 1260 KB  
Review
Identity Management Systems: A Comprehensive Review
by Zhengze Feng, Ziyi Li, Hui Cui and Monica T. Whitty
Information 2025, 16(9), 778; https://doi.org/10.3390/info16090778 - 8 Sep 2025
Viewed by 642
Abstract
Blockchain technology has introduced new paradigms for identity management systems (IDMSs), enabling users to regain control over their identity data and reduce reliance on centralized authorities. In recent years, numerous blockchain-based IDMS solutions have emerged across both practical application domains and academic research. [...] Read more.
Blockchain technology has introduced new paradigms for identity management systems (IDMSs), enabling users to regain control over their identity data and reduce reliance on centralized authorities. In recent years, numerous blockchain-based IDMS solutions have emerged across both practical application domains and academic research. However, prior reviews often focus on single application areas, provide limited cross-domain comparison, and insufficiently address security challenges such as interoperability, revocation, and quantum resilience. This paper bridges these gaps by presenting the first comprehensive survey that examines IDMSs from three complementary perspectives: (i) historical evolution from centralized and federated models to blockchain-based decentralized architectures; (ii) a cross-domain taxonomy of blockchain-based IDMSs, encompassing both general-purpose designs and domain-specific implementations; and (iii) a security analysis of threats across the full identity lifecycle. Drawing on a systematic review of 47 studies published between 2019 and 2025 and conducted in accordance with the PRISMA methodology, the paper synthesizes academic research and real-world deployments to identify unresolved technical, economic, and social challenges, and to outline directions for future research. The findings aim to serve as a timely reference for both researchers and practitioners working toward secure, interoperable, and sustainable blockchain-based IDMSs. Full article
Show Figures

Figure 1

20 pages, 1759 KB  
Article
Entropy Extraction from Wearable Sensors for Secure Cryptographic Key Generation in Blockchain and IoT Systems
by Miljenko Švarcmajer, Mirko Köhler, Zdravko Krpić and Ivica Lukić
Sensors 2025, 25(17), 5298; https://doi.org/10.3390/s25175298 - 26 Aug 2025
Viewed by 887
Abstract
The increasing demand for decentralized and user-controlled cryptographic key management in blockchain ecosystems has created interest in alternative entropy sources that do not rely on dedicated hardware. This study investigates whether commercial smartwatches can generate sufficient entropy for secure local key generation by [...] Read more.
The increasing demand for decentralized and user-controlled cryptographic key management in blockchain ecosystems has created interest in alternative entropy sources that do not rely on dedicated hardware. This study investigates whether commercial smartwatches can generate sufficient entropy for secure local key generation by utilizing their onboard sensors. An open-source Wear OS application was developed to harvest sensor data in two acquisition modes: still mode, where the device remains stationary, and shake mode, where data collection is triggered by motion events exceeding a predefined acceleration threshold. A total of 4800 still-mode and 4800 shake-mode samples were collected, each producing 11,400 bits of sensor-generated data. Entropy was evaluated using statistical metrics commonly employed in entropy analysis, including Shannon entropy, min-entropy, Markov dependency analysis, and compression-based redundancy estimation. The shake mode achieved Shannon entropy of 0.997 and min-entropy of 0.918, outperforming the still mode (0.991 and 0.851, respectively) and approaching the entropy levels of software-based random number generators. These results demonstrate that smartwatches can act as practical entropy sources for cryptographic applications, provided that appropriate post-processing, such as cryptographic hashing, is applied. The method offers a low-cost, transparent, and user-friendly alternative to specialized hardware wallets, aligning with the principles of decentralization and self-sovereign identity. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

36 pages, 1010 KB  
Article
SIBERIA: A Self-Sovereign Identity and Multi-Factor Authentication Framework for Industrial Access
by Daniel Paredes-García, José Álvaro Fernández-Carrasco, Jon Ander Medina López, Juan Camilo Vasquez-Correa, Imanol Jericó Yoldi, Santiago Andrés Moreno-Acevedo, Ander González-Docasal, Haritz Arzelus Irazusta, Aitor Álvarez Muniain and Yeray de Diego Loinaz
Appl. Sci. 2025, 15(15), 8589; https://doi.org/10.3390/app15158589 - 2 Aug 2025
Cited by 1 | Viewed by 708
Abstract
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust [...] Read more.
The growing need for secure and privacy-preserving identity management in industrial environments has exposed the limitations of traditional, centralized authentication systems. In this context, SIBERIA was developed as a modular solution that empowers users to control their own digital identities, while ensuring robust protection of critical services. The system is designed in alignment with European standards and regulations, including EBSI, eIDAS 2.0, and the GDPR. SIBERIA integrates a Self-Sovereign Identity (SSI) framework with a decentralized blockchain-based infrastructure for the issuance and verification of Verifiable Credentials (VCs). It incorporates multi-factor authentication by combining a voice biometric module, enhanced with spoofing-aware techniques to detect synthetic or replayed audio, and a behavioral biometrics module that provides continuous authentication by monitoring user interaction patterns. The system enables secure and user-centric identity management in industrial contexts, ensuring high resistance to impersonation and credential theft while maintaining regulatory compliance. SIBERIA demonstrates that it is possible to achieve both strong security and user autonomy in digital identity systems by leveraging decentralized technologies and advanced biometric verification methods. Full article
(This article belongs to the Special Issue Blockchain and Distributed Systems)
Show Figures

Figure 1

26 pages, 2806 KB  
Article
The YouGovern Secure Blockchain-Based Self-Sovereign Identity (SSI) Management and Access Control
by Nikos Papatheodorou, George Hatzivasilis and Nikos Papadakis
Appl. Sci. 2025, 15(12), 6437; https://doi.org/10.3390/app15126437 - 7 Jun 2025
Cited by 2 | Viewed by 1912
Abstract
Self-sovereign identity (SSI) is an emerging model for digital identity management that empowers individuals to control their credentials without reliance on centralized authorities. This work presents YouGovern, a blockchain-based SSI system deployed on Binance Smart Chain (BSC) and compliant with W3C Decentralized Identifier [...] Read more.
Self-sovereign identity (SSI) is an emerging model for digital identity management that empowers individuals to control their credentials without reliance on centralized authorities. This work presents YouGovern, a blockchain-based SSI system deployed on Binance Smart Chain (BSC) and compliant with W3C Decentralized Identifier (DID) standards. The architecture includes smart contracts for access control, decentralized storage using the Inter Planetary File System (IPFS), and long-term persistence via Web3.Storage. YouGovern enables users to register, share, and revoke identities while preserving privacy and auditability. The system supports role-based permissions, verifiable claims, and cryptographic key rotation. Performance was evaluated using Ganache and Hardhat under controlled stress tests, measuring transaction latency, throughput, and gas efficiency. Results indicate an average DID registration latency of 0.94 s and a peak throughput of 12.5 transactions per second. Compared to existing SSI systems like Sovrin and uPort, YouGovern offers improved revocation handling, lower operational costs, and seamless integration with decentralized storage. The system is designed for portability and real-world deployment in academic, municipal, or governmental settings. Full article
Show Figures

Figure 1

21 pages, 1109 KB  
Article
Trusted Traceability Service: A Novel Approach to Securing Supply Chains
by A S M Touhidul Hasan, Rakib Ul Haque, Larry Wigger and Anthony Vatterott
Electronics 2025, 14(10), 1985; https://doi.org/10.3390/electronics14101985 - 13 May 2025
Cited by 1 | Viewed by 1248
Abstract
Counterfeit products cause financial losses for both the manufacturer and the enduser; e.g., fake foods and medicines pose significant risks to the public’s health. Moreover, it is challenging to ensure trust in a product’s supply chain, preventing counterfeit goods from being distributed throughout [...] Read more.
Counterfeit products cause financial losses for both the manufacturer and the enduser; e.g., fake foods and medicines pose significant risks to the public’s health. Moreover, it is challenging to ensure trust in a product’s supply chain, preventing counterfeit goods from being distributed throughout the network. However, fake product detection methods are expensive and need to be more scalable, whereas a unified traceability system for packaged products is not available. Therefore, this research proposes a product traceability system, named Trusted Traceability Service (TTS), using Blockchain and Self-Sovereign Identity (SSI). The TTS can be incorporated across diverse industries because of its generic and manageable four-layer product packaging strategy. Blockchain-enabled SSI empowers distributed nodes, to verify them without a centralized client–server authorization architecture. Moreover, due to its distributed nature, the proposed TTS framework is scalable and robust, with the use of web3.0 distributed application development. The adoption of Fantom, a public blockchain infrastructure, allows the proposed system to handle thousands of successful transactions more cost-effectively than the Ethereum network. The deployment of the proposed framework in both public and private blockchain networks demonstrated its superiority in execution time and number of successful transactions. Full article
Show Figures

Figure 1

31 pages, 1997 KB  
Article
Leveraging Blockchain Technology for Secure 5G Offloading Processes
by Cristina Regueiro, Santiago de Diego and Borja Urkizu
Future Internet 2025, 17(5), 197; https://doi.org/10.3390/fi17050197 - 29 Apr 2025
Cited by 1 | Viewed by 1351
Abstract
This paper presents a secure 5G offloading mechanism leveraging Blockchain technology and Self-Sovereign Identity (SSI). The advent of 5G has significantly enhanced the capabilities of all sectors, enabling innovative applications and improving security and efficiency. However, challenges such as limited infrastructure, signal interference, [...] Read more.
This paper presents a secure 5G offloading mechanism leveraging Blockchain technology and Self-Sovereign Identity (SSI). The advent of 5G has significantly enhanced the capabilities of all sectors, enabling innovative applications and improving security and efficiency. However, challenges such as limited infrastructure, signal interference, and high upgrade costs persist. Offloading processes already address these issues but they require more transparency and security. This paper proposes a Blockchain-based marketplace using Hyperledger Fabric to optimize resource allocation and enhance security. This marketplace facilitates the exchange of services and resources among operators, promoting competition and flexibility. Additionally, the paper introduces an SSI-based authentication system to ensure privacy and security during the offloading process. The architecture and components of the marketplace and authentication system are detailed, along with their data models and operations. Performance evaluations indicate that the proposed solutions do not significantly degrade offloading times, making them suitable for everyday applications. As a result, the integration of Blockchain and SSI technologies enhances the security and efficiency of 5G offloading. Full article
(This article belongs to the Special Issue 5G Security: Challenges, Opportunities, and the Road Ahead)
Show Figures

Figure 1

19 pages, 1061 KB  
Article
Decentralized Trace-Resistant Self-Sovereign Service Provisioning for Next-Generation Federated Wireless Networks
by Efat Fathalla and Mohamed Azab
Information 2025, 16(3), 159; https://doi.org/10.3390/info16030159 - 20 Feb 2025
Cited by 1 | Viewed by 999
Abstract
With the advent of NextG wireless networks, the reliance on centralized identity and service management systems poses significant challenges, including limited interoperability, increased privacy vulnerabilities, and the risk of unauthorized tracking or monitoring of user activity. To address these issues, there is a [...] Read more.
With the advent of NextG wireless networks, the reliance on centralized identity and service management systems poses significant challenges, including limited interoperability, increased privacy vulnerabilities, and the risk of unauthorized tracking or monitoring of user activity. To address these issues, there is a critical need for a decentralized framework that empowers users with self-sovereignty over their subscription information while maintaining trust and privacy among network entities. This article presents a novel framework to enable Self-Sovereign Federated NextG (SSFXG) wireless communication networks. The SSFXG framework separates identity management from the service management layer typically controlled by network operators to foster interoperability functionalities with enhanced privacy and trace-resistant assurances in the NextG landscape. The proposed model relies on blockchain technology as an infrastructure to enable single-authority-free service provisioning and boost mutual trust among federated network components. Further, the SSFXG framework facilitates subscribers’ self-sovereignty over their subscription information while ensuring anonymity and enhanced privacy preservation, avoiding unnecessary network activity monitoring or tracking. Preliminary evaluations demonstrated the effectiveness and efficiency of the proposed framework, making it a promising solution for advancing secure and interoperable NextG wireless networks. Full article
(This article belongs to the Special Issue Cybersecurity, Cybercrimes, and Smart Emerging Technologies)
Show Figures

Figure 1

22 pages, 658 KB  
Article
An SSI-Based Solution to Support Lawful Interception
by Francesco Buccafurri, Aurelio Loris Canino, Vincenzo De Angelis, Annunziata Laurenda and Gianluca Lax
Appl. Sci. 2025, 15(4), 2206; https://doi.org/10.3390/app15042206 - 19 Feb 2025
Cited by 1 | Viewed by 1134
Abstract
Lawful Interception refers to the acquisition of the contents of communications between private individuals or organizations by subjects authorized by law. It involves three actors: the network operator (NO), the Law Enforcement Agency (LEA), and the Law Enforcement Monitoring Facility (LEMF). In the [...] Read more.
Lawful Interception refers to the acquisition of the contents of communications between private individuals or organizations by subjects authorized by law. It involves three actors: the network operator (NO), the Law Enforcement Agency (LEA), and the Law Enforcement Monitoring Facility (LEMF). In the literature, standards and scientific solutions are proposed for the interception procedure and the interaction between the NO and the LEMF. However, no standard has been proposed for the interaction between the LEMF and the LEA. The absence of standards for controlling LEA (or a delegated agency) access to intercepted contents stored by the LEMF is a significant gap that should be overcome. This prevents the implementation of secure, interoperable, and automated procedures, leading to inefficiencies and security risks. In this paper, we propose to cover the above gap by adopting the Self-Sovereign Identity (SSI) paradigm. The adopted research methodology follows a multi-phase approach that includes studying existing solutions, system design, and technical feasibility testing. The study first examines existing standards and identity management frameworks and their limitations. Next, an SSI-based architecture is proposed to manage the interactions between LEA (or a delegated agency) and LEMF. Finally, a proof of concept of the proposed solution written in Python and using the Hyperledger Indy blockchain has been implemented to assess whether our proposal is technically feasible. The proposed solution enhances automation, security, and interoperability in lawful interception. Indeed, it enables machine-readable authorizations, reducing errors and improving efficiency by eliminating manual operations. Additionally, verifiable credentials and decentralized identifiers strengthen security and standardize interactions across jurisdictions, ensuring privacy-preserving identity management. By standardizing interactions between LEA and LEMF, this research contributes to a more secure, privacy-preserving, and legally compliant lawful interception process. Full article
Show Figures

Figure 1

37 pages, 735 KB  
Review
Blockchain-Assisted Self-Sovereign Identities on Education: A Survey
by Weilin Chan, Keke Gai, Jing Yu and Liehuang Zhu
Blockchains 2025, 3(1), 3; https://doi.org/10.3390/blockchains3010003 - 11 Feb 2025
Cited by 3 | Viewed by 3949
Abstract
The education sector has witnessed a significant shift towards digitising student records, with relevant data now stored in centralized data repositories. While traditional identity management solutions in education are functional, they often face various challenges, including data privacy concerns, limited portability, and reliability [...] Read more.
The education sector has witnessed a significant shift towards digitising student records, with relevant data now stored in centralized data repositories. While traditional identity management solutions in education are functional, they often face various challenges, including data privacy concerns, limited portability, and reliability challenges. As the volume of student data continues to grow, inadequate data management practices have led to several problems. These include students losing control and empowerment over their educational information, increased vulnerability to potential data breaches and unauthorized access, a lack of transparency and accountability, data silos and inconsistencies, and administrative inefficiencies. To address these limitations, the implementation of a blockchain-assisted self-sovereign identity (Ba-SSI) concept in the education system presents a viable solution. Self-sovereign identity (SSI) represents a paradigm shift from traditional centralized identity systems, allowing individuals to maintain full control of their identity data without relying on centralized authorities. By leveraging the decentralized nature, SSI frameworks can ensure security, interoperability, and scalability, thereby improving user-centric identity management. This survey paper explores the potential of Ba-SSI within the context of education. It thoroughly reviews the current state of digital identity management in education, highlighting the limitations of conventional systems and the emerging role of blockchain technology in addressing these challenges. The paper discusses the fundamental principles of blockchain technology and how it can be utilized to enhance security, interoperability, and scalability in identity management. Additionally, it examines the insights and benefits of this approach for the education system. Finally, the paper concludes by addressing the issues, challenges, benefits, and future research directions in this domain, underscoring the potential of Ba-SSI solutions to revolutionize the management and empowerment of student data within the education sector. Full article
(This article belongs to the Special Issue Feature Papers in Blockchains)
Show Figures

Figure 1

24 pages, 17120 KB  
Article
A Self-Sovereign Identity Blockchain Framework for Access Control and Transparency in Financial Institutions
by Hsia-Hung Ou, Guan-Yu Chen and Iuon-Chang Lin
Cryptography 2025, 9(1), 9; https://doi.org/10.3390/cryptography9010009 - 28 Jan 2025
Viewed by 3585
Abstract
In recent years, with the development of blockchain technology and increased awareness of personal privacy, Self-Sovereign Identity (SSI) has become a hot topic. SSI gives customers more autonomy over their personal information, allowing them to control who can access and use their personal [...] Read more.
In recent years, with the development of blockchain technology and increased awareness of personal privacy, Self-Sovereign Identity (SSI) has become a hot topic. SSI gives customers more autonomy over their personal information, allowing them to control who can access and use their personal information. This provides customers with higher levels of privacy protection, as their data are no longer controlled by centralized institutions. To address the credit assessment needs of financial institutions, this paper proposes a Customer Self-Sovereign Identity and access-control framework (CSSI) based on SSI technology. Customers can securely store assessable assets and credit data on the blockchain using this framework. These data are then linked to a digital account address. With customer authorization, financial institutions processing loan applications can comprehensively evaluate customers’ repayment capabilities and conduct risk management by accessing this credit data. CSSI assists financial institutions in optimizing complex and repetitive processes involved in customer credit assessment and loan origination through SSI and access control, thereby reducing unnecessary risks. Full article
Show Figures

Figure 1

27 pages, 962 KB  
Article
Zero-Trust Access Control Mechanism Based on Blockchain and Inner-Product Encryption in the Internet of Things in a 6G Environment
by Shoubai Nie, Jingjing Ren, Rui Wu, Pengchong Han, Zhaoyang Han and Wei Wan
Sensors 2025, 25(2), 550; https://doi.org/10.3390/s25020550 - 18 Jan 2025
Cited by 8 | Viewed by 4222
Abstract
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they [...] Read more.
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption. By using smart contracts for automated access control, a reputation-based trust model for decentralized identity management, and inner-product encryption for fine-grained access control, the framework ensures data security and efficiency. Firstly, smart contracts are employed to automate access control, and software-defined boundaries are defined for different application domains. Secondly, through a trust model based on a consensus algorithm of node reputation values and a registration-based inner-product encryption algorithm supporting fine-grained access control, zero-trust self-sovereign enhanced identity management in the 6G environment of the Internet of Things is achieved. Furthermore, the use of multiple auxiliary chains for storing data across different application domains not only mitigates the risks associated with data expansion but also achieves micro-segmentation, thereby enhancing the efficiency of access control. Finally, empirical evidence demonstrates that, compared with the traditional methods, this paper’s scheme improves the encryption efficiency by 14%, reduces the data access latency by 18%, and significantly improves the throughput. This mechanism ensures data security while maintaining system efficiency in environments with large-scale data interactions. Full article
Show Figures

Figure 1

30 pages, 3916 KB  
Communication
Empowering Global Supply Chains Through Blockchain-Based Platforms: New Evidence from the Coffee Industry
by Tommaso Agnola, Luca Ambrosini, Edoardo Beretta and Giuliano Gremlich
FinTech 2025, 4(1), 3; https://doi.org/10.3390/fintech4010003 - 10 Jan 2025
Cited by 2 | Viewed by 3217
Abstract
Global supply chains, especially in commodity trading, are plagued by fragmentation, lack of transparency, and trust deficits among participants. These issues lead to inefficiencies, increased costs, and an over-reliance on intermediaries. The present Communication describes a blockchain-based platform that leverages Self-Sovereign Identity (SSI) [...] Read more.
Global supply chains, especially in commodity trading, are plagued by fragmentation, lack of transparency, and trust deficits among participants. These issues lead to inefficiencies, increased costs, and an over-reliance on intermediaries. The present Communication describes a blockchain-based platform that leverages Self-Sovereign Identity (SSI) and Verifiable Credentials (VCs) to address these challenges in supply chain management. Developed in collaboration with coffee industry stakeholders, our approach proposes a platform with an integrated marketplace for seller discovery, enables precise order definition with detailed terms and conditions, and actively guides both buyers and sellers throughout the shipping process, managing financial guarantees and ensuring a secure transaction flow. The platform is compatible with both traditional banking infrastructure and modern crypto-based systems, enabling seamless financial transactions. In cases where disputes arise, we empower users to easily collect all communications and documents to present to legal authorities, expediting the resolution process. The platform is implemented using the Internet Computer Protocol (ICP) for secure, on-chain storage and application hosting, and is integrated with the Ethereum blockchain to leverage its extensive decentralized finance (DeFi) ecosystem, significant liquidity, and robust stablecoin infrastructure, thereby facilitating secure financial transactions. Moreover, we introduce an SSI-based authentication and authorization framework that spans across the entire platform, including both the Ethereum Virtual Machine (EVM) and Internet Computer Protocol (ICP), enabling unified role-based access control through verifiable credentials. A value-added of the present Communication, the framework is demonstrated by means of a detailed case study in the coffee industry, highlighting the technical challenges addressed during implementation. While quantitative efficiency metrics will be established through upcoming real-world testing with industry partners, the platform’s design aims to streamline operations by reducing intermediary dependencies and automating key processes. Finally, the Communication provides insights into its adaptability to other industries facing comparable supply chain challenges, presenting an approach focused on enhancing trust and reducing reliance on intermediaries. Full article
Show Figures

Figure 1

Back to TopTop