Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = Sertoli cell hamartoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 18737 KiB  
Case Report
Androgen Insensitivity Syndrome with Bilateral Gonadal Sertoli Cell Lesions, Sertoli–Leydig Cell Tumor, and Paratesticular Leiomyoma: A Case Report and First Systematic Literature Review
by Apollon I. Karseladze, Aleksandra V. Asaturova, Irina A. Kiseleva, Alina S. Badlaeva, Anna V. Tregubova, Andrew R. Zaretsky, Elena V. Uvarova, Magda Zanelli and Andrea Palicelli
J. Clin. Med. 2024, 13(4), 929; https://doi.org/10.3390/jcm13040929 - 6 Feb 2024
Cited by 3 | Viewed by 2309
Abstract
Androgen insensitivity syndrome (AIS) is a rare Mendelian disorder caused by mutations of the androgen receptor (AR) gene on the long arm of the X chromosome. As a result of the mutation, the receptor becomes resistant to androgens, and hence, karyotypically [...] Read more.
Androgen insensitivity syndrome (AIS) is a rare Mendelian disorder caused by mutations of the androgen receptor (AR) gene on the long arm of the X chromosome. As a result of the mutation, the receptor becomes resistant to androgens, and hence, karyotypically male patients (46,XY) carry a female phenotype. Their cryptorchid gonads are prone to the development of several types of tumors (germ cell, sex cord stromal, and others). Here, we report a 15-year-old female-looking patient with primary amenorrhea who underwent laparoscopic gonadectomy. Histologically, the patient’s gonads showed Sertoli cell hamartomas (SCHs) and adenomas (SCAs) with areas of Sertoli–Leydig cell tumors (SLCTs) and a left-sided paratesticular leiomyoma. Rudimentary Fallopian tubes were also present. The patient’s karyotype was 46,XY without any evidence of aberrations. Molecular genetic analysis of the left gonad revealed two likely germline mutations—a pathogenic frameshift deletion in the AR gene (c.77delT) and a likely pathogenic missense variant in the RAC1 gene (p.A94V). Strikingly, no somatic mutations, fusions, or copy number variations were found. We also performed the first systematic literature review (PRISMA guidelines; screened databases: PubMed, Scopus, Web of Science; ended on 7 December 2023) of the reported cases of patients with AIS showing benign or malignant Sertoli cell lesions/tumors in their gonads (n = 225; age: 4–84, mean 32 years), including Sertoli cell hyperplasia (1%), Sertoli cell nodules (6%), SCHs (31%), SCAs (36%), Sertoli cell tumors (SCTs) (16%), and SLCTs (4%). The few cases (n = 14, 6%; six SCAs, four SCTs, two SLCTs, and two SCHs) with available follow-up (2–49, mean 17 months) showed no evidence of disease (13/14, 93%) or died of other causes (1/14, 7%) despite the histological diagnosis. Smooth muscle lesions/proliferations were identified in 19 (8%) cases (including clearly reported rudimentary uterine remnants, 3 cases; leiomyomas, 4 cases). Rudimentary Fallopian tube(s) were described in nine (4%) cases. Conclusion: AIS may be associated with sex cord/stromal tumors and, rarely, mesenchymal tumors such as leiomyomas. True malignant sex cord tumors can arise in these patients. Larger series with longer follow-ups are needed to estimate the exact prognostic relevance of tumor histology in AIS. Full article
(This article belongs to the Special Issue Advances in Gynecological Diseases)
Show Figures

Figure 1

Back to TopTop