Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (102)

Search Parameters:
Keywords = Si–Fe–P system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2404 KB  
Communication
Development of a High-Temperature Co-Fe-Si-B Amorphous Wire Fluxgate Magnetometer for Downhole Attitude Measurement in MWD Systems at Temperatures up to 175 °C
by Bin Yan, Wanhua Zhu, Xin Zhuang, Zheng Lu and Guangyou Fang
Sensors 2025, 25(19), 5972; https://doi.org/10.3390/s25195972 - 26 Sep 2025
Abstract
Measurement While Drilling (MWD) systems require high-precision triaxial magnetometers for real-time downhole attitude sensing, yet conventional fluxgates fail to meet the stringent size, noise, bandwidth, and temperature demands of deep reservoirs (>175 °C). To bridge this gap, we present a miniaturized triaxial fluxgate [...] Read more.
Measurement While Drilling (MWD) systems require high-precision triaxial magnetometers for real-time downhole attitude sensing, yet conventional fluxgates fail to meet the stringent size, noise, bandwidth, and temperature demands of deep reservoirs (>175 °C). To bridge this gap, we present a miniaturized triaxial fluxgate magnetometer (23 × 23 × 21 mm3) leveraging Co-Fe-Si-B amorphous wire cores—a material selected for its near-zero magnetostriction and tunable magnetic anisotropy. The sensor achieves breakthrough performance: a 300 Hz bandwidth combined with noise levels below 200 pT/√Hz at 1 Hz when operating at 175 °C while maintaining full functionality with the probe surviving temperatures exceeding 200 °C. This advancement paves the way for more accurate wellbore positioning and steering in high-temperature hydrocarbon and geothermal reservoirs. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

19 pages, 8169 KB  
Article
Preparation of a Porous Tri-n-decylamine Modified Adsorbent for the Efficient Removal of Uranium and Iron from Rare Earth
by Zihang Yi, Lifeng Chen, Shichang Zhang, Juan Liu, Zhifu Ye, Mohammed F. Hamza, Yuezhou Wei and Shunyan Ning
Metals 2025, 15(10), 1064; https://doi.org/10.3390/met15101064 - 23 Sep 2025
Viewed by 69
Abstract
The presence of impurities Fe and trace radioactive U in rare earth elements (REEs) may lead to a significant decline in the performance of high-purity rare earth products. For deep removal from REEs in a green and efficient way, an amine-functionalized silica-based adsorbent, [...] Read more.
The presence of impurities Fe and trace radioactive U in rare earth elements (REEs) may lead to a significant decline in the performance of high-purity rare earth products. For deep removal from REEs in a green and efficient way, an amine-functionalized silica-based adsorbent, TNDA/SiO2-P, was prepared by a simple vacuum impregnation method, which had a high organic loading rate of 31.2 wt.%. The experimental results showed that it exhibited good adsorption selectivity for uranium and iron, with separation factors SFU/REE = 20147 and SFFe/REE = 88128 in 5 M HCl. The adsorption kinetics was fast, with equilibrium obtained in 120 min. The 0.1 M HCl can desorb U and Fe efficiently. The deep removal of U and Fe from REEs including Sc can be achieved through chromatographic column separation with high enrichment. FT-IR, XPS and DFT calculations mutually confirmed that protonated TNDA/SiO2-P exhibited a selective mechanism for uranium and iron in complex anion species in the hydrochloric acid system. This demonstrates its potential for efficiently removing trace impurities U and Fe from REEs. Full article
Show Figures

Graphical abstract

17 pages, 12857 KB  
Article
Andesite and CO2-Saturated Water Interaction at Different Temperatures and Flow Rates Using a Flow-Through Reactor
by Heejun Yang, Akira Ueda, Hideki Kuramitz, Sakurako Satake, Kentaro Masuoka and Amane Terai
Geosciences 2025, 15(9), 351; https://doi.org/10.3390/geosciences15090351 - 5 Sep 2025
Viewed by 301
Abstract
This study aims to elucidate the geochemical reactions between CO2-saturated water and rocks in CO2-enhanced geothermal system (CO2-EGS) reservoirs by focusing on andesite found in island arc regions, such as Japan. Laboratory flow tests of CO2 [...] Read more.
This study aims to elucidate the geochemical reactions between CO2-saturated water and rocks in CO2-enhanced geothermal system (CO2-EGS) reservoirs by focusing on andesite found in island arc regions, such as Japan. Laboratory flow tests of CO2-saturated water (3 wt.% CO2) and rocks (particle size: 0.14–1 mm) were conducted under varying temperature (150–250 °C) and flow rate (0.3 and 1.0 mL/min) conditions using a flow-through reactor. Elevated temperatures enhanced the dissolution of silicate minerals, reflected by increased Na+, K+, Ca2+, and Si concentrations, whereas those of Fe2+ and Al3+ remained low, suggesting secondary mineral precipitation. The dissolution process was dominant at 150 °C. Al-bearing minerals, such as gibbsite and boehmite, as well as clay minerals, including beidellite and kaolinite, were predominant at higher temperatures (200–250 °C). Carbonate minerals were not observed, attributable to low pH and limited availability of divalent cations. Flow rate substantially influenced Si dissolution rates, with lower flow rates promoting longer residence times and higher Si dissolution rates. These results indicate that the test conditions simulate the environment around the injection well, where the fluid is acidic and dissolution is the main reaction in the rock. Although a small amount of secondary minerals precipitated and the Si dissolution rates were of the same order of magnitude as those for labradorite, it may be considered that andesite has less impact on permeability variations than basalt near the injection well in CO2-EGS reservoirs. Full article
Show Figures

Figure 1

16 pages, 2926 KB  
Article
Efficient Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by the Magnetic Laccase Nanoflowers-2,2,6,6-Tetramethylpiperidin-1-Oxyl System
by Lei Yang, Anbang Duan, Zhanyin Liu, Tingying Wei and Chunzhao Liu
Materials 2025, 18(16), 3780; https://doi.org/10.3390/ma18163780 - 12 Aug 2025
Viewed by 381
Abstract
Aiming to address the key challenges of poor enzyme stability, difficult recovery, and difficult synergistic optimization of catalytic efficiency in high-value conversion of biomass, this study utilizes mineralization self-assembly technology to combine laccase with Fe3O4@SiO2-PMIDA-Cu2+ composite, [...] Read more.
Aiming to address the key challenges of poor enzyme stability, difficult recovery, and difficult synergistic optimization of catalytic efficiency in high-value conversion of biomass, this study utilizes mineralization self-assembly technology to combine laccase with Fe3O4@SiO2-PMIDA-Cu2+ composite, constructing magnetic laccase nanoflower (MLac-NFs) materials with a porous structure and superparamagnetism. This synthetic material can efficiently catalyze the selective oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA). The characterization results indicated that MLac-NFs exhibit optimal catalytic activity (63.4 U mg−1) under conditions of pH 6.0 and 40 °C, with significantly enhanced storage stability (retaining 94.26% of activity after 30 days of storage at 4 °C). Apparent kinetic analysis reveals that the substrate affinity and maximum reaction rate of MLac-NFs were increased by 38.3% and 439.6%, respectively. In the laccase–mediator system (LMS), MLac-NFs mediated by 30 mM TEMPO could achieve complete conversion of HMF to FDCA within 24 h. Moreover, due to the introduction of magnetic nanoparticles, the MLac-NFs could be recovered and reused via an external magnetic field, maintaining 53.26% of the initial FDCA yield after six cycles. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

16 pages, 2902 KB  
Article
Heavy Metal Accumulation and Potential Risk Assessment in a Soil–Plant System Treated with Carbonated Argon Oxygen Decarburization Slag
by Liangjin Zhang, Zihao Yang, Yuzhu Zhang, Bao Liu and Shuang Cai
Sustainability 2025, 17(15), 6979; https://doi.org/10.3390/su17156979 - 31 Jul 2025
Viewed by 561
Abstract
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer [...] Read more.
The high pH and heavy metal leaching of argon oxygen decarburization (AOD) slag limit its application in agriculture. Slag carbonation can aid in decreasing slag alkalinity and inhibit heavy metal release; the environmental safety of utilizing carbonated AOD slag (CAS) as a fertilizer remains a topic of significant debate, however. In this work, pakchoi (Brassica chinensis L.) was planted in CAS-fertilized soil to investigate the accumulation and migration behavior of heavy metals in the soil–plant system and perform an associated risk assessment. Our results demonstrated that CAS addition increases Ca, Si, and Cr concentrations but decreases Mg and Fe concentrations in soil leachates. Low rates (0.25–1%) of CAS fertilization facilitate the growth of pakchoi, resulting in the absence of soil contamination and posing no threat to human health. At the optimal slag addition rate of 0.25%, the pakchoi leaf biomass, stem biomass, leaf area, and seedling height increased by 34.2%, 17.2%, 26.3%, and 8.7%, respectively. The accumulation of heavy metals results in diverging characteristics in pakchoi. Cr primarily accumulates in the roots; in comparison, Pb, Cd, Ni, and Hg preferentially accumulate in the leaves. The migration rate of the investigated heavy metals from the soil to pakchoi follows the order of Cr > Cd > Hg > Ni > Pb; in comparison, that from the roots to the leaves follows the order Cd > Ni > Hg > Cr > Pb. Appropriate utilization of CAS as a mineral fertilizer can aid in improving pakchoi yield, achieving sustainable economic benefits, and preventing environmental pollution. Full article
Show Figures

Figure 1

13 pages, 1429 KB  
Article
Rheological Characterization and Shale Inhibition Potential of Single- and Dual-Nanomaterial-Based Drilling Fluids for High-Pressure High-Temperature Wells
by Muhammad Waqiuddin Bin Irfan and Bashir Busahmin
Processes 2025, 13(7), 1957; https://doi.org/10.3390/pr13071957 - 20 Jun 2025
Viewed by 604
Abstract
This study addresses the critical challenge of maintaining drilling fluid performance and wellbore stability in high-pressure, high-temperature (HPHT) environments, where conventional water-based drilling fluids often fail. This research investigates whether the integration of single- and dual-nanomaterial systems into base fluids can significantly enhance [...] Read more.
This study addresses the critical challenge of maintaining drilling fluid performance and wellbore stability in high-pressure, high-temperature (HPHT) environments, where conventional water-based drilling fluids often fail. This research investigates whether the integration of single- and dual-nanomaterial systems into base fluids can significantly enhance rheological behavior and shale inhibition potential. Using secondary experimental datasets and computational modeling, five nanomaterials—SiO2, Al2O3, TiO2, Fe2O3, and Fe3O4—were evaluated individually and in dual combinations with polymers. Key performance metrics, including plastic viscosity, fluid loss, and shale recovery, were analyzed and fitted to the Herschel–Bulkley rheological model. The results showed that single-nanomaterial systems modestly improved viscosity and fluid loss control, with SiO2 and Fe2O3 offering the best standalone performance. Dual systems—particularly SiO2–Al2O3 and Fe3O4–polymer combinations—demonstrated superior rheological performance with reduced viscosity (down to 19 cP), minimized fluid loss (<4 mL/30 min), and enhanced shale recovery (>90%). These improvements suggest synergistic effects between nanomaterials, supporting their use in designing advanced, thermally stable drilling fluids for extreme HPHT wells. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

16 pages, 6051 KB  
Article
Phosphorus Removal in Metallurgical-Grade Silicon via a Combined Approach of Si-Fe Solvent Refining and SiO2-TiO2-CaO-CaF2 Slag Refining
by Yi Zhong, Qing Zhao and Juncheng Li
Metals 2025, 15(6), 668; https://doi.org/10.3390/met15060668 - 16 Jun 2025
Viewed by 375
Abstract
As a critical impurity in the production of solar-grade silicon, the concentration of phosphorus (P) significantly affects photoelectric conversion efficiency. To address the challenge of P removal in solar-grade silicon production, this study proposes a combined process of Si-Fe solvent refining and SiO [...] Read more.
As a critical impurity in the production of solar-grade silicon, the concentration of phosphorus (P) significantly affects photoelectric conversion efficiency. To address the challenge of P removal in solar-grade silicon production, this study proposes a combined process of Si-Fe solvent refining and SiO2-TiO2-CaO-CaF2 slag treatment. Under conditions utilizing collaborative refining with an alloy composition of Si-10 wt. %Fe and a slag composition of 32 wt. %SiO2-48 wt. %CaO-10 wt. %TiO2-10 wt. %CaF2, the removal rate of P in silicon can reach up to 96.8%. This paper investigates the effectiveness of combining solvent refining with slag making under fixed conditions of a Si-10 wt. %Fe alloy paired with various slag systems (no slag addition, binary slag SiO2-TiO2, ternary slag SiO2-CaO-TiO2, and quaternary slag SiO2-TiO2-CaO-CaF2). Based on the experimental results, the optimal TiO2 content in the slag system for maximizing P removal was analyzed and determined. Finally, leveraging both theoretical analysis and experimental findings, the mechanism of P removal was elucidated as a dual process: P is oxidized into Ca3(PO4)2 within the slag phase, and residual P is captured by the Fe-Si-Ti ternary phase. Full article
Show Figures

Figure 1

23 pages, 2876 KB  
Article
Pyrometallurgical Recycling of Electric Motors for Sustainability in End-of-Life Vehicle Metal Separation Planning
by Erdenebold Urtnasan, Jeong-Hoon Park, Yeon-Jun Chung and Jei-Pil Wang
Processes 2025, 13(6), 1729; https://doi.org/10.3390/pr13061729 - 31 May 2025
Viewed by 1113
Abstract
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare [...] Read more.
Rapid progress in lithium-ion batteries and AI-powered autonomous driving is poised to propel electric vehicles to a 50% share of the global automotive market by the year 2035. Today, there is a major focus on recycling electric vehicle motors, particularly on extracting rare earth elements (REEs) from NdFeB permanent magnets (PMs). This research is based on a single-furnace process concept designed to separate metal components within PM motors by exploiting the varying melting points of the constituent materials, simultaneously extracting REEs present within the PMs and transferring them into the slag phase. Thermodynamic modeling, via Factsage Equilib stream calculations, optimized the experimental process. Simulated materials substituted the PM motor, which optimized modeling-directed melting within an induction furnace. The 2FeO·SiO2 fayalite flux can oxidize rare earth elements, resulting in slag. The neodymium oxidation reaction by fayalite exhibits a ΔG° of −427 kJ when subjected to an oxygen partial pressure (PO2) of 1.8 × 10−9, which is lower than that required for FeO decomposition. Concerning the FeO–SiO2 system, neodymium, in Nd3+, exhibits a strong bonding with the SiO44 matrix, leading to its incorporation within the slag as the silicate compound, Nd2Si2O7. When 30 wt.% fayalite flux was added, the resulting experiment yielded a neodymium extraction degree of 91%, showcasing the effectiveness of this fluxing agent in the extraction process. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 5469 KB  
Article
The Interfacial Structure and Bonding Properties of the Al(111)/CrB2(0001) Interface: Insights for Advanced Al-Based Composites
by Jingwen Sun, Mingjie Wang, Ben Wang and Zhongxian Chen
Nanomaterials 2025, 15(7), 529; https://doi.org/10.3390/nano15070529 - 31 Mar 2025
Viewed by 403
Abstract
This research focuses on the structural and bonding characteristics of the Al(111)/CrB2(0001) interface, aiming to clarify the adhesion mechanisms of CrB2 coatings on aluminum composites. Utilizing first-principles calculations grounded in density functional theory (DFT), we systematically examined the interfacial properties of both [...] Read more.
This research focuses on the structural and bonding characteristics of the Al(111)/CrB2(0001) interface, aiming to clarify the adhesion mechanisms of CrB2 coatings on aluminum composites. Utilizing first-principles calculations grounded in density functional theory (DFT), we systematically examined the interfacial properties of both clean and doped Al(111)/CrB2(0001) systems. And key aspects such as binding energy, electron density distribution, and chemical bonding types were thoroughly evaluated. The results demonstrate that the Cr-terminated HCP stacking arrangement at the Al(111)/CrB2(0001) interface achieves the maximum adhesion work and minimal interfacial energy. This is primarily due to the strong covalent interactions between Al-p and Cr-p orbitals, which contribute to exceptional interfacial strength and stability. Furthermore, the incorporation of Fe, Mg, and Mn at the interface not only markedly improves working adhesion but also effectively lowers the interfacial energy for the Cr-terminated HCP stacking configuration. This phenomenon significantly enhances the overall bonding performance of the Al/CrB2 system. Conversely, the addition of Cu, Zn, and Si leads to an increase in interfacial energy, negatively impacting the bonding quality. Analysis of binding energies at the doped interface revealed a consistent trend among the elements: Fe > Mn > Mg > Si > Zn > Cu. These findings offer valuable guidance for the design and optimization of Al-based surface coatings with improved performance. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

11 pages, 4154 KB  
Communication
Degradation Efficiency and Mechanism Exploration of an Fe78Si9B13 Metallic Glass Cathode in the Electro-Fenton Degradation of p-NP
by Jiatao Xie, Shengkang Hu, Mengyuan Wei and Shenghui Xie
Materials 2025, 18(5), 930; https://doi.org/10.3390/ma18050930 - 20 Feb 2025
Viewed by 574
Abstract
Fe-based metallic glass (MG) exhibits excellent performance as a heterogeneous catalyst in degradation but is rarely used as a working electrode in electro-Fenton (EF) systems. We used Fe78Si9B13 MG as the working electrode to investigate the effect of [...] Read more.
Fe-based metallic glass (MG) exhibits excellent performance as a heterogeneous catalyst in degradation but is rarely used as a working electrode in electro-Fenton (EF) systems. We used Fe78Si9B13 MG as the working electrode to investigate the effect of the EF process on the degradation efficiency of p-nitrophenol (p-NP). The EF system had the highest catalytic efficiency (the reaction rate was 3.4 times that of chemical degradation) at a voltage of −1 V (vs. SCE) and showed 95.6% degradation of p-NP within 30 min. The electrode voltage accelerated the generation of hydroxyl radicals (·OH) in the system, thus promoting pollutant degradation. In addition, the Fe78Si9B13 MG cathode demonstrated good structural stability and reusability after 10 cycles. Fe78Si9B13 MG ribbons can serve as a suitable cathode material and provide potential optimization solutions for the degradation of organic pollutants. Full article
Show Figures

Figure 1

18 pages, 11905 KB  
Article
The Structural Evolution of Bimetallic Fe/Ag Mediated by Montmorillonite and Its Effect on Triclosan in the Environment
by Liting Ju, Qunyi Liu, Hongye Feng, Pingxiao Wu, Yiwen Ju, Li Zhang and Junbo Wang
Environments 2025, 12(2), 65; https://doi.org/10.3390/environments12020065 - 14 Feb 2025
Viewed by 990
Abstract
Montmorillonite (Mont) is a natural two-dimensional material with a 2:1 layered silicate crystal structure. It possesses abundant surface groups, cation exchange capacity, and adsorption performance. In addition, it has other advantages such as abundant reserves, environmental friendliness, strong mechanical stability, and a large [...] Read more.
Montmorillonite (Mont) is a natural two-dimensional material with a 2:1 layered silicate crystal structure. It possesses abundant surface groups, cation exchange capacity, and adsorption performance. In addition, it has other advantages such as abundant reserves, environmental friendliness, strong mechanical stability, and a large specific surface area. As such, it shows excellent potential for application in environmental remediation. In the following paper, we focus on the removal of TCS (triclosan) from an aqueous environment by utilizing montmorillonite-supported bimetallic Fe/Ag particles. We use scanning electron microscopy, X-ray diffraction patterns, Fourier-transform infrared spectra, and specific surface area to analyze the structure, morphology, and composition of these nanocomposites. The effects of the pH, different materials, contact time, and different initial concentrations on the degradation efficiency of TCS were studied systematically. Based on the results of our study, montmorillonite-supported bimetallic Fe/Ag nanoparticles (Fe/Ag-Mont) should be categorized as a type of mesoporous material of high uniformity because the pore size of all its catalysts ranges from 10 to 20 nm, and they are well-distributed. The Si-O stretching vibrations of montmorillonite can be changed by adding Fe/Ag. We found that Fe or Ag combined with -O to form a new bond and interacted with Si-O, and the incorporation of Fe/Ag-Mont nanoparticles removed TCS with better reduction rates. By enhancing reduction capacity, the pH was below 4 due to H• species generation by Fe/Ag. H• was the main factor enhancing the redox reaction in reducing TCS. The pH controlled the competition between Fe corrosion and silver formation, which enabled the system to self-regulate. In addition, this study provided a suitable method of efficiently synthesizing clay-supported bimetallic nano-system materials for reduction. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Wastewater Treatment)
Show Figures

Graphical abstract

11 pages, 10097 KB  
Article
Centrifugal Atomization and Characterization of Fe-Si-B Amorphous Alloys
by Sasha A. Cegarra, Héctor Maicas and Jordi Pijuan
Materials 2025, 18(3), 510; https://doi.org/10.3390/ma18030510 - 23 Jan 2025
Viewed by 1103
Abstract
The centrifugal atomization process is a rapid solidification method that achieves high cooling rates. Although this technique is typically used to produce common metal powders, it has not been extensively explored for amorphous powder production, despite its clear advantage of generating nearly perfect [...] Read more.
The centrifugal atomization process is a rapid solidification method that achieves high cooling rates. Although this technique is typically used to produce common metal powders, it has not been extensively explored for amorphous powder production, despite its clear advantage of generating nearly perfect spherical particles, which is beneficial for subsequent powder consolidation. In this paper, a characterization of three iron-based alloys from the Fe-Si-B system, specifically Fe91.72Si5.32B2.96 (wt%), Fe87.37Si6.94B2.49Cr2.46C0.75 (wt%), and Fe89.41Si2.02B1.13P5.89C1.55 (wt%), produced by centrifugal atomization, is presented. The amorphous fractions of the powders were quantified using DSC, with further characterization performed via optical microscopy, SEM, and XRD. The amorphous fractions increased with the addition of Cr, C, and P, reaching up to 90% in the Fe89.41Si2.02B1.13P5.89C1.55 alloy for particles of <100 μm. The onset cooling rates were estimated to be approximately 10⁶ K/s for Fe91.7Si5.32B3, 10⁵ K/s for Fe87.36Si6.9B2.48Cr2.45C0.75, and 10⁴ K/s for Fe89.41Si2.02B1.13P5.89C1.55, respectively. Full article
(This article belongs to the Special Issue Advances in Amorphous Alloy)
Show Figures

Figure 1

27 pages, 8162 KB  
Article
Catalytic Performance of Ti-MCM-22 Modified with Transition Metals (Cu, Fe, Mn) as NH3-SCR Catalysts
by Aleksandra Jankowska, Natalia Kokowska, Klaudia Fidowicz, Małgorzata Rutkowska, Andrzej Kowalczyk, Włodzimierz Mozgawa, Irena Brunarska and Lucjan Chmielarz
Catalysts 2025, 15(1), 60; https://doi.org/10.3390/catal15010060 - 11 Jan 2025
Cited by 2 | Viewed by 1615
Abstract
In the presented work, titanosilicate with the MWW structure (Ti-MWW) was hydrothermally synthesized using boron and titanium precursors, with piperidine as a structure-directing agent. The resulting layered zeolite precursor, with a Si/Ti molar ratio of 50, was treated in an HNO3 solution [...] Read more.
In the presented work, titanosilicate with the MWW structure (Ti-MWW) was hydrothermally synthesized using boron and titanium precursors, with piperidine as a structure-directing agent. The resulting layered zeolite precursor, with a Si/Ti molar ratio of 50, was treated in an HNO3 solution to remove extraframework Ti and B species. The acid-modified zeolite was functionalized with transition metal cations (Cu2+, Fe2+, Mn2+) and trinuclear oligocations (Fe(3) and Mn(3)). The application of this catalytic system is supported by the presence of titanium in the catalytic support structure—similar to a commercial system, V2O5–TiO2. The obtained samples were characterized with respect to their structure (P-XRD, DRIFT), textural parameters (low-temperature N2 sorption), surface acidity (NH3-TPD), transition metal content (ICP-OES) and form (UV–vis DRS) as well as catalyst’s reducibility (H2-TPR). Ti-MWW zeolite samples modified with transition metals were evaluated as catalysts for the selective catalytic reduction of NO with ammonia (NH3-SCR). The effective temperature range for the NO conversion varied depending on the type of active phase used to functionalize the porous support. The catalytic performance was influenced by transition metal content, its form, and accessibility for reactants as well as interactions between the active phase and titanium-containing support. Among the catalysts tested, the copper-modified Ti-MWW zeolite showed the most promising results, maintaining 90% NO conversion rates across a relatively broad temperature range from 200 to 325 °C. This catalyst meets the requirements of modern NH3-SCR installations, which aim to operate in the low-temperature region, below 250 °C. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Figure 1

23 pages, 9067 KB  
Article
Chemistry of Hydrothermally Destabilized Rare-Metal and Radioactive Minerals in Deformed A-Type Granite in the Vicinity of Nugrus Shear Zone, South Eastern Desert, Egypt
by Adel A. Surour, Amira M. El-Tohamy and Gehad M. Saleh
Resources 2025, 14(1), 4; https://doi.org/10.3390/resources14010004 - 26 Dec 2024
Cited by 2 | Viewed by 1409
Abstract
In the Wadi Nugrus area, south Eastern Desert of Egypt, A-type granite is highly deformed in a prominent NW-SE trending shear zone, likely related to the Najd shear system. Deformation of this post-collisional leucogranite allows the propagation of hydrothermal alterations due to fluid [...] Read more.
In the Wadi Nugrus area, south Eastern Desert of Egypt, A-type granite is highly deformed in a prominent NW-SE trending shear zone, likely related to the Najd shear system. Deformation of this post-collisional leucogranite allows the propagation of hydrothermal alterations due to fluid circulation inside the so-called “Nugrus Shear Zone (NSZ)”. This results in the remarkable destabilization of the magmatic dissemination of rare-metal and U-Th minerals in the granite. Relict magmatic minerals that survived destabilization are represented by (1) ferrocolumbite with 14–63–16.39 wt% FeOt, (2) fresh igneous zircon, and (3) thorite. The destabilized ore minerals (hydrothermal) dominate over the fresh magmatic relict minerals. The former comprises the following: (1) altered columbite in the form of three distinct phases of niobates (fergusonite–petscheckite–uranopyrochlore), (2) altered thorite (Ce-bearing and P-F-rich), (3) betafite, (4) altered uranothorite, and (5) sulfides (mainly pyrite). It is evident that the destabilization of magmatic thorite can be distinguished into three stages of hydrothermal alteration, namely low-Zr Ce-bearing thorite (stage I), moderate-Zr Ce-bearing thorite (stage II), and high-Zr U-Nb-Y-bearing thorite (stage III). The two varieties of Ce-bearing thorite are sodic with 1.33–2.28 wt% and 1.51–1.80 wt% Na2O, respectively, whereas the U-Nb-Y-bearing thorite is Na2O-poor (0.06–0.07 wt%). Similarly, thorite in stages I and II are Ca-, P-, F-, and S-rich. Considerable P2O5 content (up to ~17 wt%) is reported in stage II Ce-bearing thorite, whereas stage III thorite is Si-rich (14.56–18.79 wt% SiO2). Upon hydrothermal destabilization, the three niobate minerals replacing the dissemination of magmatic ferrocolumbite become enriched in UO2 (up to 15.24 wt%, 7.86 wt%, and 10.88 wt%, respectively), and similarly, ThO2 (up to 7.13 wt%, 5.71 wt%, and 9.52 wt%, respectively). Hydrothermal destabilization results in the complete dissolution of magmatic fluorite and phosphate minerals at pH = 2–7. This furnishes a source of Ca, P, Ce, Y, F, and Cl in the hydrothermal solution to destabilize/collapse the structure of magmatic ore minerals, particularly ferrocolumbite and thorite. Free elements in the hydrothermal solution are responsible for the crystallization of P- and F-rich Ce-bearing thorite minerals in three stages, as well as abnormal Y2O3 enrichment in three resulting niobates that contain up to 6.03 wt%, 2.93 wt%, and 2.65 wt%, respectively. The fresh undeformed Nugrus leucogranite is sulfide-poor. In contrast, sulfides are enriched in the deformed leucogranite inside the NSZ. Also, the intimate relationship of sulfides with destabilized rare-element minerals indicates the destabilization of these minerals during the hydrothermal stage under reduced conditions. Finally, the proposed paragenetic sequence suggests that most ore minerals are magmatic or hydrothermal primarily. In contrast, supergene minerals such as goethite, Fe-oxyhydroxide, altered betafite, and altered uranothorite are the least abundant. Full article
(This article belongs to the Special Issue Mineral Resource Management 2023: Assessment, Mining and Processing)
Show Figures

Figure 1

25 pages, 6867 KB  
Article
Mineral Heterostructures for Simultaneous Removal of Lead and Arsenic Ions
by Tijana Spasojević, Mirjana Ćujić, Vesna Marjanović, Zlate Veličković, Maja Kokunešoski, Aleksandra Perić Grujić and Maja Đolić
Separations 2024, 11(11), 324; https://doi.org/10.3390/separations11110324 - 9 Nov 2024
Cited by 1 | Viewed by 1476
Abstract
This study focuses on Pb2+ and As(V) adsorption on mineral heterostructures based on a mixture of Si, Fe, and Ti oxides (MOHs). Various techniques were performed to analyze the morphological and structural properties of the synthesized metal oxide samples. In addition to [...] Read more.
This study focuses on Pb2+ and As(V) adsorption on mineral heterostructures based on a mixture of Si, Fe, and Ti oxides (MOHs). Various techniques were performed to analyze the morphological and structural properties of the synthesized metal oxide samples. In addition to the experimental optimization of the parameters determined by the response surface method (RSM), the effects of pH, adsorbent dosage, temperature, and contact duration on the batch and column system adsorption efficiency of single-component and simultaneous lead and arsenate removal were tested. The pseudo-second-order kinetic model and Weber–Morris model were more relevant to the adsorption on the metal(loid)s. The adsorption of Pb2+ was related to the Langmuir isotherm model, while the adsorption of As(V) was fitted to the Freundlich isotherm model. The thermodynamic parameters indicate the spontaneity of the adsorption process with a low endothermic character. The MOHs were more effective in removing Pb2+ and As(V) in the multi-component system (87.7 and 46.1%, respectively) than in the single-component system (56.3 and 23.4%, respectively). This study demonstrates that mineral heterostructures can be effectively used to remove cations and anions from water systems, and due to their fast kinetics, they can be applied to the needs of rapid interventions after pollution. Full article
(This article belongs to the Special Issue Materials from Biomass and Waste for Adsorption Applications)
Show Figures

Graphical abstract

Back to TopTop