Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Sinai thermochronology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 11397 KB  
Article
Tectonic Evolution of Wadi Hebran Area on the Suez Rift Eastern Flank, Sinai, Egypt
by Sherif Mansour, Amr Elkelish, Abdullah S. Alawam, Mohamed A. Gharib, Akihiro Tamura and Noriko Hasebe
Minerals 2025, 15(6), 655; https://doi.org/10.3390/min15060655 - 18 Jun 2025
Viewed by 710
Abstract
Continental rifts represent one of the most important settings geologically and economically. The Suez Rift represents more than 74% of the Egyptian crude oil. It represents the northern end of the Red Sea, which understanding is vital to reconstructing the tectonics, dynamics, and [...] Read more.
Continental rifts represent one of the most important settings geologically and economically. The Suez Rift represents more than 74% of the Egyptian crude oil. It represents the northern end of the Red Sea, which understanding is vital to reconstructing the tectonics, dynamics, and time–temperature history of the whole region. An effective method to reveal rift-related history is by studying its flanks, which are represented here by the Arabian-Nubian Shield Neoproterozoic basement rocks. We applied an approach integrating new fission-track thermochronology data, new time–temperature modeling, stratigraphic information, and geological knowledge, which has proven its effectiveness in such geological settings. The collected samples from the Wadi Hebran area on the eastern flank of the Suez rift showed two differentiated cooling histories: The first has a Carboniferous zircon fission-track and a Cretaceous apatite fission-track age, and the second has a Triassic zircon fission-track and an Oligocene–Miocene apatite fission-track age. The time–temperature history modeling supported four distinct cooling events activated through the Neoproterozoic post-accretion erosional event, Variscan tectonic event, Gondwana disintegration, and the Suez Rift initiation. The rock uplift that accompanied the Suez Rift reaches up to 4 km, explaining the extraordinary elevations of the Catherina region, and supports an active rift component in the southern segment of the Suez Rift eastern flank. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

18 pages, 4461 KB  
Article
Thermochronological Constraints on the Tectonic History of the Arabian–Nubian Shield’s Northern Tip, Sinai, Egypt
by Sherif Mansour, Khaled M. Abdelfadil, Noriko Hasebe, Akihiro Tamura, Kamal Abdelrahman, Mohamed A. Gharib, Mohammed S. Fnais and Amer A. Shehata
Minerals 2024, 14(12), 1246; https://doi.org/10.3390/min14121246 - 6 Dec 2024
Cited by 5 | Viewed by 1622
Abstract
The effects of different regional tectonic events on the Neoproterozoic basement rocks of the Arabian–Nubian Shield in Sinai, as well as the Egyptian unstable and stable shelves, remain uncertain. Coupling fission-track thermochronometry findings with the modeling of the time–temperature history has proved to [...] Read more.
The effects of different regional tectonic events on the Neoproterozoic basement rocks of the Arabian–Nubian Shield in Sinai, as well as the Egyptian unstable and stable shelves, remain uncertain. Coupling fission-track thermochronometry findings with the modeling of the time–temperature history has proved to be an effective method for tackling these issues. The obtained zircon fission-track ages were differentiated into two groups from the Ediacaran–Cambrian and the Ordovician–Carboniferous periods, while the apatite fission-track data revealed two separate groups of cooling ages of the Carboniferous–Triassic and Late Cretaceous ages. The integration of these cooling ages and modeling of the time–temperature history revealed four discrete cooling pulses during the Neoproterozoic, Devonian–Carboniferous, Cretaceous, and Oligocene–Miocene eras. After integrating our findings with the regional tectonic historical and sedimentological records, these could be identified as cooling/exhumation pulses activated in response to the post-accretional event of erosion, Variscan tectonism, the disintegration of Gondwana, and the Gulf of Suez rifting, respectively. Furthermore, the southern border of the Egyptian unstable shelf was found to extend southward to South Sinai and south of the Bahariya depression. Full article
Show Figures

Figure 1

15 pages, 3982 KB  
Article
Reconstructing the Tectonic History of the Arabian–Nubian Shield in Sinai: Low-Temperature Thermochronology Implications on Wadi Agar Area
by Sherif Mansour, Noriko Hasebe, Kamal Abdelrahman, Mohammed S. Fnais and Akihiro Tamura
Minerals 2023, 13(4), 574; https://doi.org/10.3390/min13040574 - 20 Apr 2023
Cited by 11 | Viewed by 2775
Abstract
The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain. Integration of [...] Read more.
The Arabian–Nubian Shield envelops the entire regional tectonic history from its formation during the Ediacaran to the Red Sea/Gulf of Suez rifting in the Oligocene–Miocene. The occurrence and extent of the expected successive tectonic events on Sinai basement rocks remain uncertain. Integration of thermochronological techniques with time–temperature modelling has proven to be a powerful tool for thermal-tectonic history reconstruction. Therefore, we collected representative samples from the Arabian–Nubian Shield basement rocks of the Wadi Agar area at the eastern flank of the Suez rift. Zircon fission-track data show two cooling age possibilities of Ediacaran and Devonian ages. Meanwhile, apatite fission-track data represent three cooling age spans of Carboniferous, Triassic, and Cretaceous. The integration of these data with the modelled time–temperature histories reveals four different cooling events synchronous with the regional events; (1) the Neoproterozoic post-accretion erosional event that causes near-surface rock uplift, (2) the Devonian–Carboniferous Hercynian tectonic event which affected the region with rocks exhumation of ca. 4.2 ± 1.4 km, (3) the Triassic Gondwana breakup initiation, and (4) the Oligocene–Miocene Gulf of Suez rifting which caused flanks uplift in the studied region of ca. 1.2 ± 0.4 km. The Gulf of Suez is a passive rift with a dominant mechanical component that is divided into two differently exhumed northern and southern segments, where an additional far-field thermal overprint was restricted to the southern segment. Full article
Show Figures

Figure 1

Back to TopTop