Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,780)

Search Parameters:
Keywords = Support Vector Machines (SVM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2109 KB  
Article
Machine Learning Optimization of SWRO Membrane Performance in Wave-Powered Desalination for Sustainable Water Treatment
by Lukka Thuyavan Yogarathinam, Sani I. Abba, Jamilu Usman, Abdulhayat M. Jibrin and Isam H. Aljundi
Water 2025, 17(19), 2896; https://doi.org/10.3390/w17192896 (registering DOI) - 7 Oct 2025
Abstract
Wave-powered desalination systems integrate reverse osmosis (RO) with renewable ocean energy, providing a sustainable and environmentally responsible approach to freshwater production. This study aims to investigate wave-powered RO desalination using supervised and deep machine learning (ML) models to predict the effects of variable [...] Read more.
Wave-powered desalination systems integrate reverse osmosis (RO) with renewable ocean energy, providing a sustainable and environmentally responsible approach to freshwater production. This study aims to investigate wave-powered RO desalination using supervised and deep machine learning (ML) models to predict the effects of variable feed flow on permeate recovery and salt rejection under dynamic hydrodynamic conditions. Multiple ML models, including Gaussian process regression (GPR), support vector machines (SVMs), multi-layer perceptron (MLP), linear regression (LR), and decision trees (DTs) were systematically assessed for the prediction of permeate recovery and salt rejection (%) using three distinct input configurations: limited physicochemical features (M1), flow- and salinity-related parameters (M2), and a comprehensive variable set incorporating temperature (M3). GPR achieved near-perfect predictive accuracy R2 values (~1.00) with minimal errors for permeate recovery and salt rejection, attributed to its flexible kernel and probabilistic design. MLP and SVM also performed well, though they showed greater sensitivity to feature complexity. In contrast, DT models exhibited limited generalization and higher error rates, particularly when key features were excluded. Sensitivity analyses revealed that feed pressure (FP) and brine salinity (BS) were dominant positive influencers of permeate recovery and salt rejection. In contrast, brine flow (BF) and permeate salinity (PS) had negative impacts. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

18 pages, 8400 KB  
Article
An Interpretable Machine Learning Framework for Urban Traffic Noise Prediction in Kuwait: A Data-Driven Approach to Environmental Management
by Jamal Almatawah, Mubarak Alrumaidhi, Hamad Matar, Abdulsalam Altemeemi and Jamal Alhubail
Sustainability 2025, 17(19), 8881; https://doi.org/10.3390/su17198881 - 6 Oct 2025
Abstract
Urban traffic noise has become an increasingly significant environmental and public health issue, with many cities—particularly those experiencing rapid urban growth, such as Kuwait—recording levels that often exceed recommended limits. In this study, we present a detailed, data-driven approach for assessing and predicting [...] Read more.
Urban traffic noise has become an increasingly significant environmental and public health issue, with many cities—particularly those experiencing rapid urban growth, such as Kuwait—recording levels that often exceed recommended limits. In this study, we present a detailed, data-driven approach for assessing and predicting equivalent continuous noise levels (LAeq) in residential neighborhoods. The analysis draws on measurements taken at 12 carefully chosen sites covering different road types and urban settings, resulting in 21,720 matched observations. A range of predictors was considered, including road classification, traffic composition, meteorological variables, spatial context, and time of day. Four predictive models—Linear Regression, Support Vector Machine (SVM), Gaussian Process Regression, and Bagged Trees—were evaluated through 5-fold cross-validation. Among these, the Bagged Trees model achieved the strongest performance (R2 = 0.91, RMSE = 2.13 dB(A)). To better understand how the model made its predictions, we used SHAP (SHapley Additive Explanations) analysis, which showed that road classification, location, heavy vehicle volume, and time of day had the greatest influence on noise levels. The results identify the main determinants of traffic noise in Kuwait’s urban areas and emphasize the role of targeted design and planning in its mitigation. Full article
Show Figures

Figure 1

19 pages, 5024 KB  
Article
A Study on Geometrical Consistency of Surfaces Using Partition-Based PCA and Wavelet Transform in Classification
by Vignesh Devaraj, Thangavel Palanisamy and Kanagasabapathi Somasundaram
AppliedMath 2025, 5(4), 134; https://doi.org/10.3390/appliedmath5040134 - 3 Oct 2025
Abstract
The proposed study explores the consistency of the geometrical character of surfaces under scaling, rotation and translation. In addition to its mathematical significance, it also exhibits advantages over image processing and economic applications. In this paper, the authors used partition-based principal component analysis [...] Read more.
The proposed study explores the consistency of the geometrical character of surfaces under scaling, rotation and translation. In addition to its mathematical significance, it also exhibits advantages over image processing and economic applications. In this paper, the authors used partition-based principal component analysis similar to two-dimensional Sub-Image Principal Component Analysis (SIMPCA), along with a suitably modified atypical wavelet transform in the classification of 2D images. The proposed framework is further extended to three-dimensional objects using machine learning classifiers. To strengthen fairness, we benchmarked against both Random Forest (RF) and Support Vector Machine (SVM) classifiers using nested cross-validation, showing consistent gains when TIFV is included. In addition, we carried out a robustness analysis by introducing Gaussian noise to the intensity channel, confirming that TIFV degrades much more gracefully compared to traditional descriptors. Experimental results demonstrate that the method achieves improved performance compared to traditional hand-crafted descriptors such as measured values and histogram of oriented gradients. In addition, it is found to be useful that this proposed algorithm is capable of establishing consistency locally, which is never possible without partition. However, a reasonable amount of computational complexity is reduced. We note that comparisons with deep learning baselines are beyond the scope of this study, and our contribution is positioned within the domain of interpretable, affine-invariant descriptors that enhance classical machine learning pipelines. Full article
Show Figures

Figure 1

20 pages, 5116 KB  
Article
Design of Portable Water Quality Spectral Detector and Study on Nitrogen Estimation Model in Water
by Hongfei Lu, Hao Zhou, Renyong Cao, Delin Shi, Chao Xu, Fangfang Bai, Yang Han, Song Liu, Minye Wang and Bo Zhen
Processes 2025, 13(10), 3161; https://doi.org/10.3390/pr13103161 - 3 Oct 2025
Abstract
A portable spectral detector for water quality assessment was developed, utilizing potassium nitrate and ammonium chloride standard solutions as the subjects of investigation. By preparing solutions with differing concentrations, spectral data ranging from 254 to 1275 nm was collected and subsequently preprocessed using [...] Read more.
A portable spectral detector for water quality assessment was developed, utilizing potassium nitrate and ammonium chloride standard solutions as the subjects of investigation. By preparing solutions with differing concentrations, spectral data ranging from 254 to 1275 nm was collected and subsequently preprocessed using methods such as multiple scattering correction (MSC), Savitzky–Golay filtering (SG), and standardization (SS). Estimation models were constructed employing modeling algorithms including Support Vector Machine-Multilayer Perceptron (SVM-MLP), Support Vector Regression (SVR), random forest (RF), RF-Lasso, and partial least squares regression (PLSR). The research revealed that the primary variation bands for NH4+ and NO3 are concentrated within the 254–550 nm and 950–1275 nm ranges, respectively. For predicting ammonium chloride, the optimal model was found to be the SVM-MLP model, which utilized spectral data reduced to 400 feature bands after SS processing, achieving R2 and RMSE of 0.8876 and 0.0883, respectively. For predicting potassium nitrate, the optimal model was the 1D Convolutional Neural Network (1DCNN) model applied to the full band of spectral data after SS processing, with R2 and RMSE of 0.7758 and 0.1469, respectively. This study offers both theoretical and technical support for the practical implementation of spectral technology in rapid water quality monitoring. Full article
Show Figures

Figure 1

22 pages, 4631 KB  
Article
Crop Disease Spore Detection Method Based on Au@Ag NRS
by Yixue Zhang, Jili Guo, Fei Bian, Zhaowei Li, Chuandong Guo, Jialiang Zheng and Xiaodong Zhang
Agriculture 2025, 15(19), 2076; https://doi.org/10.3390/agriculture15192076 - 3 Oct 2025
Abstract
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via [...] Read more.
Crop diseases cause significant losses in agricultural production; early capture and identification of disease spores enable disease monitoring and prevention. This study experimentally optimized the preparation of Au@Ag NRS (Gold core@Silver shell Nanorods) sol as a Surface-Enhanced Raman Scattering (SERS) enhancement reagent via a modified seed-mediated growth method. Using an existing microfluidic chip developed by the research group, disease spores were separated and enriched, followed by combining Au@Ag NRS with Crop Disease Spores through electrostatic adsorption. Raman spectroscopy was employed to collect SERS fingerprint spectra of Crop Disease Spores. The spectra underwent baseline correction using Adaptive Least Squares (ALS) and standardization via Standard Normal Variate (SNV). Dimensionality reduction preprocessing was performed using Principal Component Analysis (PCA) and Successive Projections Algorithm combined with Competitive Adaptive Reweighted Sampling (SCARS). Classification was then executed using Support Vector Machine (SVM) and Multilayer Perceptron (MLP). The SCARS-MLP model achieved the highest accuracy at 97.92% on the test set, while SCARS-SVM, PCA-SVM, and SCARS-MLP models attained test set accuracy of 95.83%, 95.24%, and 96.55%, respectively. Thus, the proposed Au@Ag NRS-based SERS technology can be applied to detect airborne disease spores, establishing an early and precise method for Crop Disease detection. Full article
(This article belongs to the Special Issue Spectral Data Analytics for Crop Growth Information)
Show Figures

Figure 1

21 pages, 1538 KB  
Article
SarcoNet: A Pilot Study on Integrating Clinical and Kinematic Features for Sarcopenia Classification
by Muthamil Balakrishnan, Janardanan Kumar, Jaison Jacob Mathunny, Varshini Karthik and Ashok Kumar Devaraj
Diagnostics 2025, 15(19), 2513; https://doi.org/10.3390/diagnostics15192513 - 3 Oct 2025
Abstract
Background and Objectives: Sarcopenia is a progressive loss of skeletal muscle mass and function in elderly adults, posing a significant risk of frailty, falls, and morbidity. The current study designs and evaluates SarcoNet, a novel artificial neural network (ANN)-based classification framework developed in [...] Read more.
Background and Objectives: Sarcopenia is a progressive loss of skeletal muscle mass and function in elderly adults, posing a significant risk of frailty, falls, and morbidity. The current study designs and evaluates SarcoNet, a novel artificial neural network (ANN)-based classification framework developed in order to classify Sarcopenic from non-Sarcopenic subjects using a comprehensive real-time dataset. Methods: This pilot study involved 30 subjects, who were divided into Sarcopenic and non-Sarcopenic groups based on physician assessment. The collected dataset consists of thirty-one clinical parameters like skeletal muscle mass, which is collected using various equipment such as Body Composition Analyser, along with ten kinetic features which are derived from video-based gait analysis of joint angles obtained during walking on three terrain types such as slope, steps, and parallel path. The performance of the designed ANN-based SarcoNet was benchmarked against the traditional machine learning classifiers utilised including Support Vector Machine (SVM), k-Nearest Neighbours (k-NN), and Random Forest (RF), as well as hard and soft voting ensemble classifiers. Results: SarcoNet achieved the highest overall classification accuracy of about 94%, with a specificity and precision of about 100%, an F1-score of about 92.4%, and an AUC of 0.94, outperforming all other models. The incorporation of lower-limb joint kinetics such as knee flexion, extension, ankle plantarflexion and dorsiflexion significantly enhanced predictive capability of the model and thus reflecting the functional deterioration characteristic of muscles in Sarcopenia. Conclusions: SarcoNet provides a promising AI-driven solution in Sarcopenia diagnosis, especially in low-resource healthcare settings. Future work will focus on improving the dataset, validating the model across diverse populations, and incorporating explainable AI to improve clinical adoption. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

24 pages, 1454 KB  
Article
AI-Driven Monitoring for Fish Welfare in Aquaponics: A Predictive Approach
by Jorge Saúl Fandiño Pelayo, Luis Sebastián Mendoza Castellanos, Rocío Cazes Ortega and Luis G. Hernández-Rojas
Sensors 2025, 25(19), 6107; https://doi.org/10.3390/s25196107 - 3 Oct 2025
Abstract
This study addresses the growing need for intelligent monitoring in aquaponic systems by developing a predictive system based on artificial intelligence and environmental sensing. The goal is to improve fish welfare through the early detection of adverse water conditions. The system integrates low-cost [...] Read more.
This study addresses the growing need for intelligent monitoring in aquaponic systems by developing a predictive system based on artificial intelligence and environmental sensing. The goal is to improve fish welfare through the early detection of adverse water conditions. The system integrates low-cost digital sensors to continuously measure key physicochemical variables—pH, dissolved oxygen, and temperature—using these as inputs for real-time classification of fish health status. Four supervised machine learning models were evaluated: linear discriminant analysis (LDA), support vector machines (SVMs), neural networks (NNs), and random forest (RF). A dataset of 1823 instances was collected over eight months from a red tilapia aquaponic setup. The random forest model yielded the highest classification accuracy (99%), followed by NN (98%) and SVM (97%). LDA achieved 82% accuracy. Performance was validated using 5-fold cross-validation and label permutation tests to confirm model robustness. These results demonstrate that sensor-based predictive models can reliably detect early signs of fish stress or mortality, supporting the implementation of intelligent environmental monitoring and automation strategies in sustainable aquaponic production. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

45 pages, 7902 KB  
Review
Artificial Intelligence-Guided Supervised Learning Models for Photocatalysis in Wastewater Treatment
by Asma Rehman, Muhammad Adnan Iqbal, Mohammad Tauseef Haider and Adnan Majeed
AI 2025, 6(10), 258; https://doi.org/10.3390/ai6100258 - 3 Oct 2025
Abstract
Artificial intelligence (AI), when integrated with photocatalysis, has demonstrated high predictive accuracy in optimizing photocatalytic processes for wastewater treatment using a variety of catalysts such as TiO2, ZnO, CdS, Zr, WO2, and CeO2. The progress of research [...] Read more.
Artificial intelligence (AI), when integrated with photocatalysis, has demonstrated high predictive accuracy in optimizing photocatalytic processes for wastewater treatment using a variety of catalysts such as TiO2, ZnO, CdS, Zr, WO2, and CeO2. The progress of research in this area is greatly enhanced by advancements in data science and AI, which enable rapid analysis of large datasets in materials chemistry. This article presents a comprehensive review and critical assessment of AI-based supervised learning models, including support vector machines (SVMs), artificial neural networks (ANNs), and tree-based algorithms. Their predictive capabilities have been evaluated using statistical metrics such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE), with numerous investigations documenting R2 values greater than 0.95 and RMSE values as low as 0.02 in forecasting pollutant degradation. To enhance model interpretability, Shapley Additive Explanations (SHAP) have been employed to prioritize the relative significance of input variables, illustrating, for example, that pH and light intensity frequently exert the most substantial influence on photocatalytic performance. These AI frameworks not only attain dependable predictions of degradation efficiency for dyes, pharmaceuticals, and heavy metals, but also contribute to economically viable optimization strategies and the identification of novel photocatalysts. Overall, this review provides evidence-based guidance for researchers and practitioners seeking to advance wastewater treatment technologies by integrating supervised machine learning with photocatalysis. Full article
Show Figures

Figure 1

32 pages, 2827 KB  
Article
Understanding Post-COVID-19 Household Vehicle Ownership Dynamics Through Explainable Machine Learning
by Mahbub Hassan, Saikat Sarkar Shraban, Ferdoushi Ahmed, Mohammad Bin Amin and Zoltán Nagy
Future Transp. 2025, 5(4), 136; https://doi.org/10.3390/futuretransp5040136 - 2 Oct 2025
Abstract
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first [...] Read more.
Understanding household vehicle ownership dynamics in the post-COVID-19 era is critical for designing equitable, resilient, and sustainable transportation policies. This study employs an interpretable machine learning framework to model household vehicle ownership using data from the 2022 National Household Travel Survey (NHTS)—the first nationally representative U.S. dataset collected after the onset of the pandemic. A binary classification task distinguishes between single- and multi-vehicle households, applying an ensemble of algorithms, including Random Forest, XGBoost, Support Vector Machines (SVM), and Naïve Bayes. The Random Forest model achieved the highest predictive accuracy (86.9%). To address the interpretability limitations of conventional machine learning approaches, SHapley Additive exPlanations (SHAP) were applied to extract global feature importance and directionality. Results indicate that the number of drivers, household income, and vehicle age are the most influential predictors of multi-vehicle ownership, while contextual factors such as housing tenure, urbanicity, and household lifecycle stage also exert substantial influence highlighting the spatial and demographic heterogeneity in ownership behavior. Policy implications include the design of equity-sensitive strategies such as targeted mobility subsidies, vehicle scrappage incentives, and rural transit innovations. By integrating explainable artificial intelligence into national-scale transportation modeling, this research bridges the gap between predictive accuracy and interpretability, contributing to adaptive mobility strategies aligned with the United Nations Sustainable Development Goals (SDGs), particularly SDG 11 (Sustainable Cities), SDG 10 (Reduced Inequalities), and SDG 13 (Climate Action). Full article
Show Figures

Figure 1

27 pages, 6007 KB  
Article
Research on Rice Field Identification Methods in Mountainous Regions
by Yuyao Wang, Jiehai Cheng, Zhanliang Yuan and Wenqian Zang
Remote Sens. 2025, 17(19), 3356; https://doi.org/10.3390/rs17193356 - 2 Oct 2025
Abstract
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant [...] Read more.
Rice is one of the most important staple crops in China, and the rapid and accurate extraction of rice planting areas plays a crucial role in the agricultural management and food security assessment. However, the existing rice field identification methods faced the significant challenges in mountainous regions due to the severe cloud contamination, insufficient utilization of multi-dimensional features, and limited classification accuracy. This study presented a novel rice field identification method based on the Graph Convolutional Networks (GCN) that effectively integrated multi-source remote sensing data tailored for the complex mountainous terrain. A coarse-to-fine cloud removal strategy was developed by fusing the synthetic aperture radar (SAR) imagery with temporally adjacent optical remote sensing imagery, achieving high cloud removal accuracy, thereby providing reliable and clear optical data for the subsequent rice mapping. A comprehensive multi-feature library comprising spectral, texture, polarization, and terrain attributes was constructed and optimized via a stepwise selection process. Furthermore, the 19 key features were established to enhance the classification performance. The proposed method achieved an overall accuracy of 98.3% for the rice field identification in Huoshan County of the Dabie Mountains, and a 96.8% consistency compared to statistical yearbook data. The ablation experiments demonstrated that incorporating terrain features substantially improved the rice field identification accuracy under the complex topographic conditions. The comparative evaluations against support vector machine (SVM), random forest (RF), and U-Net models confirmed the superiority of the proposed method in terms of accuracy, local performance, terrain adaptability, training sample requirement, and computational cost, and demonstrated its effectiveness and applicability for the high-precision rice field distribution mapping in mountainous environments. Full article
Show Figures

Figure 1

16 pages, 2455 KB  
Article
Classification of Hemiplegic Gait and Mimicked Hemiplegic Gait: A Treadmill Gait Analysis Study in Stroke Patients and Healthy Individuals
by Young-ung Lee, Seungwon Kwon, Cheol-Hyun Kim, Jeong-Woo Seo and Sangkwan Lee
Bioengineering 2025, 12(10), 1074; https://doi.org/10.3390/bioengineering12101074 - 2 Oct 2025
Abstract
Differentiating genuine hemiplegic gait (HG) in stroke survivors from hemiplegic-like gait voluntarily imitated by healthy adults (MHG) is essential for reliable assessment and intervention planning. Treadmill-based gait data were obtained from 79 participants—39 stroke patients (HG) and 40 healthy adults—instructed to mimic HG [...] Read more.
Differentiating genuine hemiplegic gait (HG) in stroke survivors from hemiplegic-like gait voluntarily imitated by healthy adults (MHG) is essential for reliable assessment and intervention planning. Treadmill-based gait data were obtained from 79 participants—39 stroke patients (HG) and 40 healthy adults—instructed to mimic HG (MHG). Forty-eight spatiotemporal and force-related variables were extracted. Random Forest, support vector machine (SVM), and logistic regression classifiers were trained with (i) the full feature set and (ii) the 10 most important features selected via Random Forest Gini importance. Performance was assessed with 5-fold stratified cross-validation and an 80/20 hold-out test, using accuracy, F1-score, and the area under the receiver operating characteristic curve (AUC). All models achieved high discrimination (AUC > 0.93). The SVM attained perfect discrimination (AUC = 1.000, test set) with the full feature set and maintained excellent accuracy (AUC = 0.983) with only the top 10 features. Temporal asymmetries, delayed vertical ground reaction force peaks, and mediolateral spatial instability ranked highest in importance. Reduced-feature models showed negligible performance loss, highlighting their parsimony and interpretability. Supervised machine learning algorithms can accurately distinguish true hemiplegic gait from mimicked patterns using a compact subset of gait features. The findings support data-driven, time-efficient gait assessments for clinical neurorehabilitation and for validating experimental protocols that rely on gait imitation. Full article
(This article belongs to the Special Issue Biomechanics and Motion Analysis)
Show Figures

Figure 1

18 pages, 1460 KB  
Article
AI-Based Severity Classification of Dementia Using Gait Analysis
by Gangmin Moon, Jaesung Cho, Hojin Choi, Yunjin Kim, Gun-Do Kim and Seong-Ho Jang
Sensors 2025, 25(19), 6083; https://doi.org/10.3390/s25196083 - 2 Oct 2025
Abstract
This study aims to explore the utility of artificial intelligence (AI) in classifying dementia severity based on gait analysis data and to examine how machine learning (ML) can address the limitations of conventional statistical approaches. The study included 34 individuals with mild cognitive [...] Read more.
This study aims to explore the utility of artificial intelligence (AI) in classifying dementia severity based on gait analysis data and to examine how machine learning (ML) can address the limitations of conventional statistical approaches. The study included 34 individuals with mild cognitive impairment (MCI), 25 with mild dementia, 26 with moderate dementia, and 54 healthy controls. A support vector machine (SVM) classifier was employed to categorize dementia severity using gait parameters. As complexity and high dimensionality of gait data increase, traditional statistical methods may struggle to capture subtle patterns and interactions among variables. In contrast, ML techniques, including dimensionality reduction methods such as principal component analysis (PCA) and gradient-based feature selection, can effectively identify key gait features relevant to dementia severity classification. This study shows that ML can complement traditional statistical analyses by efficiently handling high-dimensional data and uncovering meaningful patterns that may be overlooked by conventional methods. Our findings highlight the promise of AI-based tools in advancing our understanding of gait characteristics in dementia and supporting the development of more accurate diagnostic models for complex or large datasets. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 3209 KB  
Article
A Preliminary Data-Driven Approach for Classifying Knee Instability During Subject-Specific Exercise-Based Game with Squat Motions
by Priyanka Ramasamy, Poongavanam Palani, Gunarajulu Renganathan, Koji Shimatani, Asokan Thondiyath and Yuichi Kurita
Sensors 2025, 25(19), 6074; https://doi.org/10.3390/s25196074 - 2 Oct 2025
Abstract
Lower limb functional degeneration has become prevalent, notably reducing the core strength that drives motor control. Squats are frequently used in lower limb training, improving overall muscle strength. However, performing continuously with improper techniques can lead to dynamic knee instability. It worsens with [...] Read more.
Lower limb functional degeneration has become prevalent, notably reducing the core strength that drives motor control. Squats are frequently used in lower limb training, improving overall muscle strength. However, performing continuously with improper techniques can lead to dynamic knee instability. It worsens with little to no motivation to perform these power training motions. Hence, it is crucial to have a gaming-based exercise tracking system to adaptively enhance the user experience without causing injury or falls. In this work, 28 healthy subjects performed exergame-based squat training, and dynamic kinematic features were recorded. The five features acquired from a depth camera-based inertial measurement unit (IMU) (1—Knee shakiness, 2—Knee distance, and 3—Squat depth) and an Anima forceplate sensor (4—Sway velocity and 5—Sway area) were assessed using a Spearman correlation coefficient-based feature selection method. An input vector that defines knee instability is used to train and test the Long Short-Term Memory (LSTM) and Support Vector Machine (SVM) models for binary classification. The results showed that knee instability events can be successfully classified and achieved a high accuracy of 96% in both models with sets 1, 2, 3, 4, and 5 and 1, 2, and 3. The feature selection results indicate that the LSTM network with the proposed combination of input features from multimodal sensors can successfully perform real-time tracking of knee instability. Furthermore, the findings demonstrate that this multimodal approach yields improved classifier performance with enhanced accuracy compared to using features from a single modality during lower limb therapy. Full article
Show Figures

Figure 1

14 pages, 2241 KB  
Article
Passive Brain–Computer Interface Using Textile-Based Electroencephalography
by Alec Anzalone, Emily Acampora, Careesa Liu and Sujoy Ghosh Hajra
Sensors 2025, 25(19), 6080; https://doi.org/10.3390/s25196080 - 2 Oct 2025
Abstract
Background: Passive brain–computer interface (pBCI) systems use a combination of electroencephalography (EEG) and machine learning (ML) to evaluate a user’s cognitive and physiological state, with increasing applications in both clinical and non-clinical scenarios. pBCI systems have been limited by their traditional reliance on [...] Read more.
Background: Passive brain–computer interface (pBCI) systems use a combination of electroencephalography (EEG) and machine learning (ML) to evaluate a user’s cognitive and physiological state, with increasing applications in both clinical and non-clinical scenarios. pBCI systems have been limited by their traditional reliance on sensor technologies that cannot easily be integrated into non-laboratory settings where pBCIs are most needed. Advances in textile-electrode-based EEG show promise in overcoming the operational limitations; however, no study has demonstrated their use in pBCIs. This study presents the first application of fully textile-based EEG for pBCIs in differentiating cognitive states. Methods: Cognitive state comparisons between eyes-open (EO) and eyes-closed (EC) conditions were conducted using publicly available data for both novel textile and traditional dry-electrode EEG. EO vs. EC differences across both EEG sensor technologies were assessed in delta, theta, alpha, and beta EEG power bands, followed by the application of a Support Vector Machine (SVM) classifier. The SVM was applied to each EEG system separately and in a combined setting, where the classifier was trained on dry EEG data and tested on textile EEG data. Results: The textile EEG system accurately captured the characteristic increase in alpha power from EO to EC (p < 0.01), but power values were lower than those of dry EEG across all frequency bands. Classification accuracies for the standalone dry and textile systems were 96% and 92%, respectively. The cross-sensor generalizability assessment resulted in a 91% classification accuracy. Conclusions: This study presents the first use of textile-based EEG for pBCI applications. Our results indicate that textile-based EEG can reliably capture changes in EEG power bands between EO and EC, and that a pBCI system utilizing non-traditional textile electrodes is both accurate and generalizable. Full article
Show Figures

Figure 1

27 pages, 8112 KB  
Article
Detection of Abiotic Stress in Potato and Sweet Potato Plants Using Hyperspectral Imaging and Machine Learning
by Min-Seok Park, Mohammad Akbar Faqeerzada, Sung Hyuk Jang, Hangi Kim, Hoonsoo Lee, Geonwoo Kim, Young-Son Cho, Woon-Ha Hwang, Moon S. Kim, Insuck Baek and Byoung-Kwan Cho
Plants 2025, 14(19), 3049; https://doi.org/10.3390/plants14193049 - 2 Oct 2025
Abstract
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to [...] Read more.
As climate extremes increasingly threaten global food security, precision tools for early detection of crop stress have become vital, particularly for root crops such as potato (Solanum tuberosum L.) and sweet potato (Ipomoea batatas L. Lam.), which are especially susceptible to environmental stressors throughout their life cycles. In this study, plants were monitored from the initial onset of seasonal stressors, including spring drought, heat, and episodes of excessive rainfall, through to harvest, capturing the full range of physiological and biochemical responses under seasonal, simulated conditions in greenhouses. The spectral data were obtained from regions of interest (ROIs) of each cultivar’s leaves, with over 3000 data points extracted per cultivar; these data were subsequently used for model development. A comprehensive classification framework was established by employing machine learning models, Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), and Partial Least Squares-Discriminant Analysis (PLS-DA), to detect stress across various growth stages. Furthermore, severity levels were objectively defined using photoreflectance indices and principal component analysis (PCA) data visualizations, which enabled consistent and reliable classification of stress responses in both individual cultivars and combined datasets. All models achieved high classification accuracy (90–98%) on independent test sets. The application of the Successive Projections Algorithm (SPA) for variable selection significantly reduced the number of wavelengths required for robust stress classification, with SPA-PLS-DA models maintaining high accuracy (90–96%) using only a subset of informative bands. Furthermore, SPA-PLS-DA-based chemical imaging enabled spatial mapping of stress severity within plant tissues, providing early, non-invasive insights into physiological and biochemical status. These findings highlight the potential of integrating hyperspectral imaging and machine learning for precise, real-time crop monitoring, thereby contributing to sustainable agricultural management and reduced yield losses. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

Back to TopTop