Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = Taguchi technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1659 KB  
Article
Fermentation with Pectin Trans-Eliminase to Reduce Cadmium Levels in Nacional and CCN-51 Cocoa Bean Genotypes
by Wiston Javier Morales-Rodriguez, Jaime Morante-Carriel, Mercedes Carranza-Patiño, Darko Ormaza-Vásquez, María Concepción Ayuso-Yuste and María Josefa Bernalte-García
Plants 2025, 14(16), 2553; https://doi.org/10.3390/plants14162553 - 16 Aug 2025
Viewed by 327
Abstract
Cocoa represents a crucial source of income in coastal regions of Ecuador, where the product is exported for the production of high-value chocolates. However, elevated levels of cadmium (Cd) in cocoa beans, attributable to volcanic soils, have the potential to impede international trade, [...] Read more.
Cocoa represents a crucial source of income in coastal regions of Ecuador, where the product is exported for the production of high-value chocolates. However, elevated levels of cadmium (Cd) in cocoa beans, attributable to volcanic soils, have the potential to impede international trade, particularly in accordance with European Union regulations. The main objective of this study was to reduce Cd concentrations in cocoa beans of two genotypes, Nacional and CCN-51, by applying different doses of pectin trans-eliminase (PTE) enzyme during the fermentation process in conjunction with mucilage washing techniques, pre-drying resting periods, and various drying methods. To this end, a Taguchi orthogonal design (L9) was employed to evaluate nine treatments per genotype, complemented with two controls. The most efficacious treatment for Nacional was identified as T7, involving a 0.30 mL·kg−1 PTE dose, the absence of mucilage washing, a 48 h resting period, and drying in a marquee. This treatment resulted in a 68.6% reduction in Cd concentration (from 0.28 to 0.09 mg·kg−1). For CCN-51, T3 (0.10 mL·kg−1 PTE, complete washing, 48 h resting, and splint drying) yielded a 26.4% reduction in Cd (from 0.42 to 0.31 mg·kg−1). It is noteworthy that none of the treatments exceeded the EU regulatory threshold of 0.8 mg·kg−1. A physico-chemical analysis was conducted, which revealed significant treatment effects on pH (ranging from 5.63 to 6.85) and acidity (0.02% to 0.03%). Sensory evaluation indicated enhancements in cocoa and nutty flavors, along with a reduction in undesirable astringency and bitterness, particularly in Nacional samples. The findings of this study demonstrate that the combination of enzyme-assisted fermentation and optimized postharvest techniques represents a pragmatic approach to the mitigation of cadmium in cocoa, while simultaneously preserving or enhancing product quality. Full article
Show Figures

Figure 1

20 pages, 10593 KB  
Article
Optimising WC-25Co Feedstock and Parameters for Laser-Directed Energy Deposition
by Helder Nunes, José Nhanga, Luís Regueiras, Ana Reis, Manuel F. Vieira, Bruno Guimarães, Daniel Figueiredo, Cristina Fernandes and Omid Emadinia
J. Manuf. Mater. Process. 2025, 9(8), 279; https://doi.org/10.3390/jmmp9080279 - 14 Aug 2025
Viewed by 223
Abstract
Laser-Directed Energy Deposition (L-DED) is an additive manufacturing technique used for producing and repairing components, mainly for coating applications, depositing metal matrix composites such as cemented carbides, composed of hard metal carbides and a metallic binder. In this sense, this study evaluated the [...] Read more.
Laser-Directed Energy Deposition (L-DED) is an additive manufacturing technique used for producing and repairing components, mainly for coating applications, depositing metal matrix composites such as cemented carbides, composed of hard metal carbides and a metallic binder. In this sense, this study evaluated the preparation of a ready-to-press WC-25Co powder as a reliable feedstock for L-DED process. This powder required pre-heat treatment studies to prevent fragmentation during powder feeding, due to the absence of metallurgical bonding between WC and Co particles. In the current study, the Taguchi methodology was used, varying laser power, powder feed rate, and scanning speed to reach an optimised deposition window. The best bead morphology resulted from 2400 W laser power, 11 mm/s scanning speed, and 9 g/min feed rate. Moreover, defects such as porosity and cracking were mitigated by applying a remelting strategy of 2400 W and 9 mm/s. Therefore, a perfect deposition is obtained using the optimised processing parameters. Microstructural analysis of the optimised deposited line revealed a fine structure, comprising columnar and equiaxed dendrites of complex carbides. The average hardness of the deposited WC-25Co powder on a AISI 1045 steel was 854 ± 37 HV0.2. These results demonstrate the potential of L-DED for processing high-performance cemented carbide coatings. Full article
Show Figures

Figure 1

16 pages, 5347 KB  
Article
Mitigating Shrinkage in Superplasticizer-Free Natural Hydraulic Lime Grouts for Historic Masonry Conservation: Effects of Composition, Curing, and Expansion Agents
by Yang Wu and Shibing Dai
Materials 2025, 18(16), 3791; https://doi.org/10.3390/ma18163791 - 13 Aug 2025
Viewed by 323
Abstract
Cracking is the most prevalent deterioration issue in historic masonry, and grouting represents one of the most effective intervention techniques. Superplasticizer-free Natural Hydraulic Lime (NHL) grout is recommended for heritage conservation due to its simple composition and compatibility with historic masonry in terms [...] Read more.
Cracking is the most prevalent deterioration issue in historic masonry, and grouting represents one of the most effective intervention techniques. Superplasticizer-free Natural Hydraulic Lime (NHL) grout is recommended for heritage conservation due to its simple composition and compatibility with historic masonry in terms of strength, porosity, and other properties. However, grout shrinkage is frequently observed in practice, often leading to suboptimal reinforcement outcomes. This study focuses on the shrinkage characteristics of NHL grouts. Three sets of experiments were designed to investigate the influence: grout composition, expansive agents, and substrate properties. Using Taguchi’s method, an optimized combination of water, binder, and aggregate was identified. Shrinkage measurements after curing for 28 days demonstrated that calcium oxide (CaO)-based expansive agents was the best choice to compensate for NHL grout shrinkage. In addition, grouting simulation experiments evaluated suitable formulations for common masonry substrates and clarified the significant impact of substrate water absorption on the degree of shrinkage grout. For substrates with a capillary water absorption coefficient greater than 25 kg/m2 h1/2, the use of expansive agents should be strictly controlled. The findings can provide valuable insights for optimizing the grouting reinforcement of historic masonry structures and offer direct material design strategies for practical engineering applications. Full article
(This article belongs to the Special Issue Mortar Materials in Building Conservation)
Show Figures

Figure 1

28 pages, 5794 KB  
Article
Polymers in Sustainable Construction Composites: Rheology, Mechanical Performance, and Durability
by Yahya Kaya, Veysel Kobya, Murteda Ünverdi, Naz Mardani and Ali Mardani
Polymers 2025, 17(16), 2186; https://doi.org/10.3390/polym17162186 - 9 Aug 2025
Viewed by 435
Abstract
Today, various strategies are being adopted to produce more environmentally friendly cementitious systems. A commonly adopted strategy is the enhancement of energy efficiency in the clinker grinding process through the use of grinding aids (GAs). Another approach is to reduce cement consumption by [...] Read more.
Today, various strategies are being adopted to produce more environmentally friendly cementitious systems. A commonly adopted strategy is the enhancement of energy efficiency in the clinker grinding process through the use of grinding aids (GAs). Another approach is to reduce cement consumption by partially replacing cement with mineral additives such as fly ash. The literature has highlighted that the use of GAs during clinker grinding can narrow the particle size distribution, thereby promoting higher rates of mineral additive replacement. Nevertheless, the literature still lacks comprehensive insight into how the combined application of commonly used GAs influences the substitution levels of mineral additives. In this regard, this study thoroughly examined the influence of varying proportions and dosages of Triethanolamine (TEA) and Triisopropanolamine (TIPA)—two commonly employed grinding aids—on the hydration kinetics, compressive strength development, and life cycle performance of fly ash (FA)-blended cementitious systems. The mixtures prepared with the cements produced were analyzed through XRD, TGA, and SEM techniques, and the compressive strength results were evaluated using the Taguchi method. The results demonstrated that, irrespective of the type of additive used, the use of GAs enhanced pozzolanic activity and compressive strength. In particular, the GA combination containing 75% TIPA and 25% TEA proved the most superior results in terms of hydration kinetics, mechanical strength, and environmental performance. It was demonstrated that the combined use of TEA and TIPA in specific proportions creates a synergistic effect, enabling the development of more efficient binder systems. Full article
(This article belongs to the Special Issue Application of Polymers in Cementitious Materials)
Show Figures

Figure 1

17 pages, 3443 KB  
Article
Influence of Dissipated Energy on the Bonding Strength of Cold-Sprayed Titanium Coatings on Selected Metallic Substrates
by Medard Makrenek
Materials 2025, 18(14), 3355; https://doi.org/10.3390/ma18143355 - 17 Jul 2025
Viewed by 296
Abstract
Modern nanoindentation equipment allows for highly precise measurements of mechanical properties such as hardness and elastic modulus, generating detailed load–unload curves using advanced techniques and specialised software. In this study, titanium coatings were deposited on various metallic substrates using cold gas spraying. Before [...] Read more.
Modern nanoindentation equipment allows for highly precise measurements of mechanical properties such as hardness and elastic modulus, generating detailed load–unload curves using advanced techniques and specialised software. In this study, titanium coatings were deposited on various metallic substrates using cold gas spraying. Before deposition, the spraying parameters (temperature, pressure, velocity, and distance) were statistically optimised using the Taguchi method, reducing the number of experiments required from 81 to 9. This approach allowed the identification of optimal spray conditions (T = 731.0 °C, p = 33.0 bar, V = 343.6 mm/s, d = 35.5 mm), which were then applied to substrates including brass, steel, titanium, Al7075, copper, magnesium, and Al2024. Mechanical characterisation included hardness (H), reduced modulus (E), coating adhesion, and dissipated energy, calculated from the area of the load–unload hysteresis loop. Each coating–substrate combination underwent 36 nanoindentation tests, and adhesion was evaluated by pull-off tests. The initial results showed a poor correlation between adhesion and conventional mechanical properties (χ2 of 17.1 for hardness and 16.2 for modulus, both with R2 < 0.24). In contrast, the dissipated energy showed an excellent correlation with adhesion (χ2 = 0.52, R2 = 0.92), suggesting that dynamic deformation mechanisms better describe bonding. This introduces a new perspective to predict and optimise cold-spray adhesion in industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

8 pages, 1970 KB  
Proceeding Paper
Optimization of Accuracy and Repeatability in Laser Micro-Processing Using Experimental Design
by Todor Gavrilov, Todor T. Todorov, Yavor Sofronov, Hristiana Nikolova and Angel Todorov
Eng. Proc. 2025, 100(1), 11; https://doi.org/10.3390/engproc2025100011 - 2 Jul 2025
Viewed by 164
Abstract
This study focuses on optimizing the laser micromachining process to achieve precise geometric features. The main objective is to develop a systematic approach for analyzing the process parameters that influence the repeatability of laser material removal for edge-rounding of 50 and 75 μm [...] Read more.
This study focuses on optimizing the laser micromachining process to achieve precise geometric features. The main objective is to develop a systematic approach for analyzing the process parameters that influence the repeatability of laser material removal for edge-rounding of 50 and 75 μm in radius. The research employs the Taguchi method for the experimental design, allowing the identification of optimal process parameters that ensure high consistency. Repeatability is assessed through the evaluation of eight consecutive layers in depth, where the laser removes material, and the average depth is calculated by dividing the total removed depth by eight. This statistical approach allows for a comprehensive analysis of process stability. A key aspect of this study is the development of a predictive model based on experimental data, allowing a selection of the most influential parameters to achieve the desired outcome. By implementing a structured optimization process, this research aims to enhance process efficiency, minimize deviations, and improve the overall quality of laser micromachining. These findings contribute to the advancement of precision manufacturing techniques by providing a reliable methodology for process control and repeatability enhancement. Full article
Show Figures

Figure 1

42 pages, 5637 KB  
Review
Research Progress on Process Optimization of Metal Materials in Wire Electrical Discharge Machining
by Xinfeng Zhao, Binghui Dong, Shengwen Dong and Wuyi Ming
Metals 2025, 15(7), 706; https://doi.org/10.3390/met15070706 - 25 Jun 2025
Viewed by 821
Abstract
Wire electrical discharge machining (WEDM), as a significant branch of non-traditional machining technologies, is widely applied in fields such as mold manufacturing and aerospace due to its high-precision machining capabilities for hard and complex materials. This paper systematically reviews the research progress in [...] Read more.
Wire electrical discharge machining (WEDM), as a significant branch of non-traditional machining technologies, is widely applied in fields such as mold manufacturing and aerospace due to its high-precision machining capabilities for hard and complex materials. This paper systematically reviews the research progress in WEDM process optimization from two main perspectives: traditional optimization methods and artificial intelligence (AI) techniques. Firstly, it discusses in detail the applications and limitations of traditional optimization methods—such as statistical approaches (Taguchi method and response surface methodology), Adaptive Neuro-Fuzzy Inference Systems, and regression analysis—in parameter control, surface quality improvement, and material removal-rate optimization for cutting metal materials in WEDM. Subsequently, this paper reviews AI-based approaches, traditional machine-learning methods (e.g., neural networks, support vector machines, and random forests), and deep-learning models (e.g., convolutional neural networks and deep neural networks) in aspects such as state recognition, process prediction, multi-objective optimization, and intelligent control. The review systematically compares the advantages and disadvantages of traditional methods and AI models in terms of nonlinear modeling capabilities, adaptability, and generalization. It highlights that the integration of AI by optimization algorithms (such as Genetic Algorithms, particle swarm optimization, and manta ray foraging optimization) offers an effective path toward the intelligent evolution of WEDM processes. Finally, this investigation looks ahead to the key application scenarios and development trends of AI techniques in the WEDM field for cutting metal materials. Full article
Show Figures

Figure 1

20 pages, 2734 KB  
Article
An Intelligent Optimization System Using Neural Networks and Soft Computing for the FMM Etching Process
by Wen-Chin Chen, An-Xuan Ngo and Jun-Fu Zhong
Mathematics 2025, 13(13), 2050; https://doi.org/10.3390/math13132050 - 20 Jun 2025
Viewed by 301
Abstract
The rapid rise of flexible AMOLED displays has prompted manufacturers to advance technologies to meet growing global demand. However, high costs and quality inconsistencies hinder industry competitiveness and sustainability. This study addresses these challenges by developing an intelligent optimization system for the fine [...] Read more.
The rapid rise of flexible AMOLED displays has prompted manufacturers to advance technologies to meet growing global demand. However, high costs and quality inconsistencies hinder industry competitiveness and sustainability. This study addresses these challenges by developing an intelligent optimization system for the fine metal mask (FMM) etching process, a critical step in producing high-resolution AMOLED panels. The system integrates advanced optimization techniques, including the Taguchi method, analysis of variance (ANOVA), back-propagation neural network (BPNN), and a hybrid particle swarm optimization–genetic algorithm (PSO-GA) approach to identify optimal process parameters. Experimental results demonstrate a marked improvement in product yield and process stability while reducing manufacturing costs. By ensuring consistent quality and efficiency, this system overcomes limitations of traditional process control; strengthens the AMOLED industry’s global competitiveness; and provides a scalable, sustainable solution for smart manufacturing in next-generation display technologies. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

22 pages, 948 KB  
Article
Dynamic Identification of Relative Poverty Among Chinese Households Using the Multiway Mahalanobis–Taguchi System: A Sustainable Livelihoods Perspective
by Zhipeng Chang, Yuehua Wang and Wenhe Chen
Sustainability 2025, 17(12), 5384; https://doi.org/10.3390/su17125384 - 11 Jun 2025
Viewed by 393
Abstract
To promote global sustainable development, this paper focuses on the identification of relative poverty. On the one hand, based on the sustainable livelihoods framework, a multi-dimensional relative poverty identification index system is constructed, covering six dimensions—human capital, financial capital, natural capital, physical capital, [...] Read more.
To promote global sustainable development, this paper focuses on the identification of relative poverty. On the one hand, based on the sustainable livelihoods framework, a multi-dimensional relative poverty identification index system is constructed, covering six dimensions—human capital, financial capital, natural capital, physical capital, social capital, and livelihood environment—with a total of 18 indexes. On the other hand, addressing the limitations of traditional relative poverty identification methods in handling dynamic three-dimensional data, the multiway Mahalanobis–Taguchi system (MMTS) is proposed to identify dynamic relative poverty. This method first unfolds dynamic three-dimensional data into two-dimensional data along the sample direction through multiway statistical analysis techniques, then constructs multiway Mahalanobis distances to measure sample differences, and finally uses a Taguchi orthogonal experimental design for dimensionality reduction and noise reduction to optimize the model. Experiments using tracking survey data from 2020 to 2024 in three poverty-stricken counties in China’s Dabie Mountain area show that MMTS performs better than the Two-Way Fixed Effects (Two-way FE) model and Dynamic LSTM. MMTS shows a higher specificity, stronger noise resistance, smaller result fluctuations, better G-means performance, and a better balance between sensitivity and specificity. This proves its scientific validity and practical applicability. Full article
Show Figures

Figure 1

19 pages, 8320 KB  
Article
Optimization of Produced Parameters for PA6/PA6GF30 Composite Produced by 3D Printing with Novel Knitting Method
by Selim Hartomacıoğlu, Mustafa Oksuz, Aysun Ekinci and Murat Ates
Polymers 2025, 17(12), 1590; https://doi.org/10.3390/polym17121590 - 6 Jun 2025
Cited by 1 | Viewed by 875
Abstract
The additive manufacturing sector is rapidly developing, providing alternatives for mass production in the polymer composite industry. Due to the direction-dependent mechanical properties and high cost of fiber-reinforced polymeric materials, it is necessary to take advantage of alternative multi-materials and production technologies. In [...] Read more.
The additive manufacturing sector is rapidly developing, providing alternatives for mass production in the polymer composite industry. Due to the direction-dependent mechanical properties and high cost of fiber-reinforced polymeric materials, it is necessary to take advantage of alternative multi-materials and production technologies. In this study, a special geometric-shaped knitting technique was investigated using two different materials. The main material was polyamide 6 (PA6), and the inner or second material was PA6 with a 30 wt.% glass fiber addition by weight (PA6GF30). The special geometric shape, layer thickness, nozzle temperature, and post-heat treatment time were measured as process parameters in the production of the PA6/PA6GF30 composites with the fused deposition modeling (FDM) technique. The Taguchi design method and L9 fractional experiment were used in the experimental study. The mechanical behaviors of the PA6/PA6GF30 samples were obtained using tensile and impact tests. In addition, scanning electron microscopy (SEM) analyses were performed on the fracture lines of the PA6/PA6GF30 samples, and damage analyses were carried out in more detail. The experimental results were sorted using grey relational analysis (GRA). Moreover, the optimal experimental conditions and their related plots were obtained. As a result, the highest tensile strength of the PA6GF30 composite was 89.89 MPa with the addition of a special geometric shape. In addition, the maximum impact resistance value of the PA6/PA6GF30 composite was 83 kJ/m2. Hence, the developed knitting method presented many advantages when using the FDM technique, and both were successfully used to produce the PA6/PA6GF30 composites. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composite Materials)
Show Figures

Graphical abstract

13 pages, 959 KB  
Article
Use of Mixed Micelles in Micellar Electrokinetic Chromatography Method for Determination of Dexamethasone, Prednisolone and Triamcinolone in Pharmaceutical Formulations
by Karen A. Escamilla-Lara, Israel S. Ibarra, Jorge Lopez-Tellez and Jose A. Rodriguez
Separations 2025, 12(6), 154; https://doi.org/10.3390/separations12060154 - 6 Jun 2025
Viewed by 448
Abstract
The unregulated consumption of corticosteroids causes significant adverse effects on human health. Therefore, it is important to develop methodologies that allow their analysis in pharmaceutical matrices with competitive analysis times and costs. The determination of corticosteroids by micellar electrokinetic chromatography (MEKC) using a [...] Read more.
The unregulated consumption of corticosteroids causes significant adverse effects on human health. Therefore, it is important to develop methodologies that allow their analysis in pharmaceutical matrices with competitive analysis times and costs. The determination of corticosteroids by micellar electrokinetic chromatography (MEKC) using a background electrolyte (BGE) composed of phosphate buffer and a micellar pseudo-stationary phase constituted by a mixture of surfactants is proposed as an alternative quantification technique. The variables involved in the BGE: phosphate concentration, surfactant (sodium dodecyl sulfate (SDS) or sodium lauryl ether sulfate (SLES)), sodium taurocholate (STC) and the pH value were optimized using a Taguchi L9 (34) experimental design. Employing the optimal BGE, the separation of the three corticosteroids is possible in a linear range of 1.05–10.0 mg L−1, with limits of detection (LOD) of 0.28–0.35 mg L−1. The relative standard deviation (RSD) values obtained for the repeatability (n = 3) and intermediate precision (n = 9) were less than 5.0%. Pharmaceutical formulations (ointments, injectable solution and ophthalmic solution) were analyzed using the proposed methodology (MEKC) and the official methodology (high-performance liquid chromatography, HPLC), and no significant differences were found between the corticosteroid contents obtained from both methods. Full article
Show Figures

Graphical abstract

19 pages, 3495 KB  
Article
Experimental Investigation on Thermal Performance Optimization of Na2HPO4·12H2O-Based Gel Phase Change Materials for Solar Greenhouse
by Wenhe Liu, Gui Liu, Wenlu Shi, Xinyang Tang, Xuhui Wu, Jiayang Wu, Zhanyang Xu, Feng Zhang and Mengmeng Yang
Gels 2025, 11(6), 434; https://doi.org/10.3390/gels11060434 - 5 Jun 2025
Viewed by 1184
Abstract
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, [...] Read more.
The content of modified materials in multicomponent gel phase change materials directly affects their performance characteristics. To investigate the influence of different contents of modified materials on the performance features of Na2HPO4·12H2O-based multicomponent Gel Phase Change Materials, four single factors (Na2SiO3·9H2O, C35H49O29, KCl, and nano-α-Fe2O3) and their interactions were selected as influencing factors. Using the Taguchi method with an L27(313) orthogonal array, multi-step melt–blending experiments were conducted to prepare a novel multi-component phase change material. The characteristics of the new multi-component phase change material, including supercooling degree (ΔT), phase change temperature (Tm), latent heat of phase change (ΔHm), and cooling time (CT), were obtained. In addition, characterization techniques such as DSC, SEM, FT-IR, and XRD were employed to analyze its thermal properties, microscopic morphology, chemical stability, and crystal structure. Based on the experimental results, the signal-to-noise ratio (S/N) was used to rank the influence of each factor on the quality characteristics, and the p-value from analysis of variance (ANOVA) was employed to evaluate the significance of each factor on the performance characteristics. Then, the effects of each significant factor on the characteristics of the multiple gel phase change materials were analyzed in detail, and the optimal mixing ratio of the new multiple gel phase change materials was selected. The results showed that Na2SiO3·9H2O, KCl, and α-Fe2O3 were the most critical process parameters. This research work enriches the selection of composite gel phase change materials for solar greenhouses and provides guidance for the selection of different modified material contents using Na2HPO4·12H2O as the starting material. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 3721 KB  
Article
Adsorption of Methylene Blue onto Environmentally Friendly Lignocellulosic Material Obtained from Mature Coltsfoot (Tussilago farfara) Leaves
by Giannin Mosoarca, Cosmin Vancea, Simona Popa, Maria Elena Radulescu-Grad, Mircea Dan, Cristian Tanasie and Sorina Boran
Polymers 2025, 17(11), 1549; https://doi.org/10.3390/polym17111549 - 2 Jun 2025
Viewed by 577
Abstract
The present study investigates the potential of a new lignocellulosic adsorbent material obtained from mature coltsfoot (Tussilago farfara) leaves for the removal of methylene blue from aqueous solutions. The material was obtained after minimal processing of the leaves, without chemical or [...] Read more.
The present study investigates the potential of a new lignocellulosic adsorbent material obtained from mature coltsfoot (Tussilago farfara) leaves for the removal of methylene blue from aqueous solutions. The material was obtained after minimal processing of the leaves, without chemical or thermal treatment. The material was first characterized using several specific techniques (FTIR, color analysis). Then, the mechanism of the adsorption process was investigated through studies related to adsorption equilibrium, kinetics, and thermodynamics. The adsorption process is described by the Sips isotherm and the general kinetic model, while the thermodynamic parameters suggest that physical adsorption is the primary mechanism responsible for dye retention. The Taguchi method was used to optimize the adsorption conditions and to identify the most influential controllable factor. ANOVA was used to calculate the percentage contribution of each controllable factor to the dye removal efficiency. pH had the greatest influence on the process (87.78%), while temperature had the least effect (0.16%). The maximum adsorption capacity determined was 278.1 mg/g, being higher than other similar adsorbents. All the results show that coltsfoot (Tussilago farfara) leaves are a very cheap, environmentally friendly, and effective adsorbent for the removal of methylene blue dye from aqueous solutions. Full article
Show Figures

Figure 1

13 pages, 2931 KB  
Article
Effect of Injection Molding Parameters on the Tensile Strength of Short-Carbon-Fiber-Reinforced Nylon 6
by Runtian Zhao, Xiaodong Li, Zhihui Wang, Ting Wu and Jianguo Liang
Polymers 2025, 17(9), 1264; https://doi.org/10.3390/polym17091264 - 6 May 2025
Viewed by 1136
Abstract
SCF/PA6 composites have gained extensive industrial applications due to their superior processability and moldability, with long-fiber pellet injection molding being the predominant manufacturing technique. However, systematic investigations into injection molding parameter optimization and its mechanistic impacts on tensile strength remain scarce. This study [...] Read more.
SCF/PA6 composites have gained extensive industrial applications due to their superior processability and moldability, with long-fiber pellet injection molding being the predominant manufacturing technique. However, systematic investigations into injection molding parameter optimization and its mechanistic impacts on tensile strength remain scarce. This study employed the Taguchi method to investigate the effects of four critical process parameters—injection pressure, melt temperature, mold temperature, and injection time—on the tensile strength of short-carbon-fiber-reinforced nylon 6 (SCF/PA6), while elucidating their underlying mechanisms. The optimal parameter combination within the experimental range was determined to be an injection pressure of 100 bar, a melt temperature of 280 °C, a mold temperature of 100 °C, and an injection time of 2 s. Under these optimized conditions, the tensile strength reached 184.33 MPa, representing an 8.05% enhancement over baseline values. Mechanistic analysis revealed that melt temperature and injection time (essentially reflecting injection velocity) primarily govern fiber orientation distribution. Notably, melt temperature additionally regulates molecular chain orientation in the amorphous matrix regions. Injection pressure predominantly influences process-induced defect formation and material densification. Mold temperature exhibits a negligible impact on tensile strength. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 8506 KB  
Article
Mitigation of Sink Voids in Thick-Walled Thermoplastic Components via Integrated Taguchi DOE and CAE Simulations
by Feng Wang, Wenbo Luo, Jiling Bu, Bo Zou and Xingwu Ding
Polymers 2025, 17(8), 1126; https://doi.org/10.3390/polym17081126 - 21 Apr 2025
Cited by 1 | Viewed by 488
Abstract
A gauge plate is a typical thick-walled injection-molded component featuring a complex construction used in high-speed railways, and it is prone to sink voids during the injection process. It is difficult to obtain a void-free injection molded part due to uneven cooling-induced localized [...] Read more.
A gauge plate is a typical thick-walled injection-molded component featuring a complex construction used in high-speed railways, and it is prone to sink voids during the injection process. It is difficult to obtain a void-free injection molded part due to uneven cooling-induced localized thermal gradients, crystallization shrinkage of semicrystalline thermoplastics, fiber orientation-induced anisotropic shrinkage, injection parameter-dependent fountain flow, and inconsistent core compensation. This work employed design of experiment (DOE) and computer-aided engineering (CAE) simulations to analyze the influence of injection parameters on the volumetric shrinkage of the gauge plate and to identify the optimal injection process. A Taguchi orthogonal array L9 was applied, in which four injection molding process parameters were varied at three different levels. The fundamental causes of sink void defects in the gauge plate were then examined via MoldFlow analysis on the basis of the optimized injection parameters. The MoldFlow study indicates a high probability of the presence of sink void defects in the injection-molded gauge plate. To minimize sink void defects, a structural optimization design of the gauge plate was implemented to achieve a more uniform wall thickness, and the advantages of this optimization were demonstrated via comparative analysis. The small batch production of the injection-molded gauge plates demonstrates that the optimized gauge plate shows no sink voids, ensuring consistent quality that adheres to the engineering process and technical specifications. Full article
Show Figures

Figure 1

Back to TopTop