Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (205)

Search Parameters:
Keywords = Ti3C2Tx MXene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2596 KB  
Article
A Sensitive Electrochemical Cholinesterase-Inhibiting Biosensor for Organophosphorus Pesticides Based on Ti3C2TX MXene Quantum Dots
by Nisha Makani, Jett Wu, Jose Florentino, Cecilia F. Chafin, Bhoj Gautam, Shirley Chao and Shubo Han
Biosensors 2025, 15(9), 575; https://doi.org/10.3390/bios15090575 - 2 Sep 2025
Abstract
Organophosphorus pesticides (OPs) pose significant environmental and health risks due to their widespread use and toxicity, primarily by inhibiting acetylcholinesterase. Traditional detection methods are often slow and costly, highlighting the urgent need for advanced, sensitive, and accessible technologies. This study developed a highly [...] Read more.
Organophosphorus pesticides (OPs) pose significant environmental and health risks due to their widespread use and toxicity, primarily by inhibiting acetylcholinesterase. Traditional detection methods are often slow and costly, highlighting the urgent need for advanced, sensitive, and accessible technologies. This study developed a highly sensitive electrochemical cholinesterase-inhibiting biosensor for OP pesticides, utilizing Ti3C2Tx MXene Quantum Dots (MQDs), which was synthesized via a hydrothermal method. The biosensor’s performance was characterized using electrochemical impedance spectroscopy, differential pulse voltammetry (DPV), and cyclic voltammetry. DPV proved to be the optimal technique, exhibiting an ultralow detection limit of 1 × 10−17 M and a wide linear range (10−14–10−8 M) for chlorpyrifos (a model OP) with an estimated inhibition constant of 62 nM. The biosensor demonstrated high selectivity for OPs (chlorpyrifos, acephate, glyphosate) over a non-target pyrethroid (permethrin), confirmed by distinct electrochemical signatures and compared to in vitro cholinergic activity assays in bean beetle homogenates. The enhanced performance is attributed to the high surface-to-volume ratio, quantum confinement effects, and superior conductivity of the MQDs, as well as the robust enzyme immobilization facilitated by glutaraldehyde cross-linking and a chitosan matrix. This work presents a promising platform for rapid, sensitive, and selective detection of OP pesticides, with potential applications in environmental monitoring and public health protection. Full article
(This article belongs to the Section Biosensor Materials)
Show Figures

Figure 1

16 pages, 30066 KB  
Article
High Corrosion Resistance of Ti3C2Tx/Al6061 Composites Achieved via Equal Channel Angular Pressing
by Jianchao Chen, Wenjie Hu, Qihong Hu, Zhibin Liu and Hong Yan
Metals 2025, 15(9), 954; https://doi.org/10.3390/met15090954 - 28 Aug 2025
Viewed by 297
Abstract
This study systematically investigates the synergistic corrosion resistance enhancement mechanisms in aluminum matrix composites (AMCs) through the combined implementation of equal channel angular pressing (ECAP) and Ti3C2Tx MXene reinforcement. The results demonstrate that ECAP treatment significantly refines the [...] Read more.
This study systematically investigates the synergistic corrosion resistance enhancement mechanisms in aluminum matrix composites (AMCs) through the combined implementation of equal channel angular pressing (ECAP) and Ti3C2Tx MXene reinforcement. The results demonstrate that ECAP treatment significantly refines the microstructure, reducing grain sizes to an average of 8.7 µm after three passes, while improving mechanical properties such as hardness by 40.6–45.1%. Additionally, the incorporation of Ti3C2Tx enhances corrosion resistance by establishing a physical barrier that impedes the diffusion of corrosive mediators and prevents localized corrosion. Electrochemical tests reveal that the composite subjected to three ECAP passes exhibits the lowest corrosion current density (Icorr) and a remarkable 3.4-fold increase in charge transfer resistance (Rct) compared to untreated material. These findings highlight the potential of synergistically integrating ECAP and Ti3C2Tx to develop high-performance AMCs with enhanced mechanical strength and corrosion resistance, offering significant implications for applications in marine equipment, aerospace, and new energy vehicles. Full article
(This article belongs to the Special Issue Design and Development of Metal Matrix Composites (2nd Edition))
Show Figures

Figure 1

19 pages, 3620 KB  
Article
Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights
by Tăchiță Vlad-Bubulac, Diana Serbezeanu, Elena Perju, Dana Mihaela Suflet, Daniela Rusu, Gabriela Lisa, Tudor-Alexandru Filip and Marius-Andrei Olariu
Nanomaterials 2025, 15(16), 1251; https://doi.org/10.3390/nano15161251 - 14 Aug 2025
Viewed by 464
Abstract
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular [...] Read more.
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular interactions, as confirmed with FTIR spectroscopy. Morphological and optical analyses revealed a transition from homogeneous to phase-separated structures with birefringent textures in ChLC-rich films. Thermal studies demonstrated improved stability and increased glass transition and melting temperatures, particularly in samples with higher ChLC content. Mechanical and dielectric evaluations highlighted the tunability of stiffness, flexibility, permittivity, and dielectric losses depending on MXene and ChLC ratios. These multifunctional films exhibit flame-retardant behavior and show promise for use in stimuli-responsive, sustainable electronic devices such as flexible displays and sensors. Full article
Show Figures

Figure 1

15 pages, 3400 KB  
Article
Ti3C2TX MXene/Polyaniline-Modified Nylon Fabric Electrode for Wearable Non-Invasive Glucose Monitoring in Sweat
by Lichao Wang, Meng Li, Shengnan Ya, Hang Tian, Kerui Li, Qinghong Zhang, Yaogang Li, Hongzhi Wang and Chengyi Hou
Biosensors 2025, 15(8), 531; https://doi.org/10.3390/bios15080531 - 14 Aug 2025
Viewed by 568
Abstract
Sweat-based electrochemical sensors for wearable applications have attracted substantial interest due to their non-invasive nature, compact design, and ability to provide real-time data. Remarkable advancements have been made in integrating these devices into flexible platforms. While thin-film polymer substrates are frequently employed for [...] Read more.
Sweat-based electrochemical sensors for wearable applications have attracted substantial interest due to their non-invasive nature, compact design, and ability to provide real-time data. Remarkable advancements have been made in integrating these devices into flexible platforms. While thin-film polymer substrates are frequently employed for their durability, the prolonged buildup of sweat on such materials can disrupt consistent sensing performance and adversely affect skin comfort over extended periods. Therefore, investigating lightweight, comfortable, and breathable base materials for constructing working electrodes is essential for producing flexible and breathable sweat electrochemical sensors. In this study, nylon fabric was chosen as the base material for constructing the working electrode. The electrode is prepared using a straightforward printing process, incorporating Ti3C2TX MXene/polyaniline and methylene blue as modification materials in the electronic intermediary layer. The synergistic effect of the modified layer and the multi-level structure of the current collector enhances the electrochemical kinetics on the electrode surface, improves electron transmission efficiency, and enables the nylon fabric-based electrode to accurately and selectively measure glucose concentration in sweat. It exhibits a wide linear range (0.04~3.08 mM), high sensitivity (3.11 μA·mM−1), strong anti-interference capabilities, and high stability. This system can monitor glucose levels and trends in sweat, facilitating the assessment of daily sugar intake for personal health management. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

20 pages, 4241 KB  
Article
Strontium-Doped Ti3C2Tx MXene Coatings on Titanium Surfaces: Synergistic Osteogenesis Enhancement and Antibacterial Activity Evaluation
by Yancheng Lai and Anchun Mo
Coatings 2025, 15(7), 847; https://doi.org/10.3390/coatings15070847 - 19 Jul 2025
Viewed by 535
Abstract
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations [...] Read more.
To improve implant osseointegration while preventing infection, we developed a strontium (Sr)-doped Ti3C2Tx MXene coating on titanium, aiming to synergistically enhance bone integration and antibacterial performance. MXene is a family of two-dimensional transition-metal carbides/nitrides whose abundant surface terminations endow high hydrophilicity and bioactivity. The coating was fabricated via anodic electrophoretic deposition (40 V, 2 min) of Ti3C2Tx nanosheets, followed by SrCl2 immersion to incorporate Sr2+. The coating morphology, phase composition, chemistry, hydrophilicity, mechanical stability, and Sr2+ release were characterized. In vitro bioactivity was assessed with rat bone marrow mesenchymal stem cells (BMSCs)—with respect to viability, proliferation, migration, alkaline phosphatase (ALP) staining, and Alizarin Red S mineralization—while the antibacterial efficacy was evaluated against Staphylococcus aureus (S. aureus) via live/dead staining, colony-forming-unit enumeration, and AlamarBlue assays. The Sr-doped MXene coating formed a uniform lamellar structure, lowered the water-contact angle to ~69°, and sustained Sr2+ release (0.36–1.37 ppm). Compared to undoped MXene, MXene/Sr enhanced BMSC proliferation on day 5, migration by 51%, ALP activity and mineralization by 47%, and reduced S. aureus viability by 49% within 24 h. Greater BMSCs activity accelerates early bone integration, whereas rapid bacterial suppression mitigates peri-implant infection—two critical requirements for implant success. Sr-doped Ti3C2Tx MXene thus offers a simple, dual-function surface-engineering strategy for dental and orthopedic implants. Full article
(This article belongs to the Section Surface Coatings for Biomedicine and Bioengineering)
Show Figures

Figure 1

18 pages, 3495 KB  
Article
Next-Generation Light Harvesting: MXene (Ti3C2Tx)-Based Metamaterial Absorbers for a Broad Wavelength Range from 0.3 μm to 18 μm
by Abida Parveen, Deepika Tyagi, Vijay Laxmi, Naeem Ullah, Faisal Ahmad, Ahsan Irshad, Keyu Tao and Zhengbiao Ouyang
Materials 2025, 18(14), 3273; https://doi.org/10.3390/ma18143273 - 11 Jul 2025
Viewed by 577
Abstract
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3 [...] Read more.
Electromagnetic wave (EMW) absorption materials are crucial for a wide range of applications, yet most existing materials suffer from complex fabrication and narrow absorption bands, particularly under harsh environmental conditions. In this study, we introduce a broadband metamaterial absorber based on Ti3C2O2 MXene, a novel two-dimensional material that uniquely combines high electrical and metallic conductivity with hydrophilicity, biocompatibility, and an extensive surface area. Through advanced finite-difference time-domain (FDTD) simulations, the proposed absorber achieves over 95% absorption from 0.3 µm to 18 µm. Additionally, other MXene variants, including Ti3C2F2 and Ti3C2(OH)2, demonstrate robust absorption above 85%. This absorber not only outperforms previously reported structures in terms of efficiency and spectral coverage but also opens avenues for integration into applications such as infrared sensing, energy harvesting, wearable electronics, and Internet of Things (IoT) systems. Full article
Show Figures

Figure 1

12 pages, 2279 KB  
Article
Electrostatic Self-Assembly of Heterostructured In2O3/Ti3C2Tx Nanocomposite for High-Selectivity NO2 Gas Sensing at Room Temperature
by Yongjing Guo, Zhengxin Zhang, Hangshuo Feng, Qingfu Dai, Qiuni Zhao, Zaihua Duan, Shenghui Guo, Li Yang, Ming Hou and Yi Xia
Chemosensors 2025, 13(7), 249; https://doi.org/10.3390/chemosensors13070249 - 10 Jul 2025
Viewed by 469
Abstract
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O [...] Read more.
Owing to high electrical conductivity, layered structure, and abundant surface functional groups, transition metal carbides/nitrides (MXenes) have received enormous interest in the field of gas sensors at room temperature. In this work, we synthesize a heterostructured nanocomposite with indium oxide (In2O3) decorated on titanium carbide (Ti3C2Tx) nanosheets by electrostatic self-assembly and develop it for high-selectivity NO2 gas sensing at room temperature. Self-assembly formation of multiple heterojunctions in the In2O3/Ti3C2Tx composite provide abundant NO2 gas adsorption sites and high electron transfer activity, which is conducive to improving the gas-sensing response of the In2O3/Ti3C2Tx gas sensor. Assisted by rich adsorption sites and hetero interface, the as-fabricated In2O3/Ti3C2Tx gas sensor exhibits the highest response to NO2 among various interference gases. Meanwhile, a detection limit of 0.3 ppm, and response/recovery time (197.62/93.84 s) is displayed at room temperature. Finally, a NO2 sensing mechanism of In2O3/Ti3C2Tx gas sensor is constructed based on PN heterojunction enhancement and molecular adsorption. This work not only expands the gas-sensing application of MXenes, but also demonstrates an avenue for the rational design and construction of NO2-sensing materials. Full article
(This article belongs to the Special Issue Functional Nanomaterial-Based Gas Sensors and Humidity Sensors)
Show Figures

Figure 1

15 pages, 2102 KB  
Article
MXene-Based Flexible Paper Chip for Glucose Detection in Sweat in Low-Temperature Environments
by Yandong Yang, Yajun Zhu, Yifei Wu, Fan Chang, Xu Zhu, Xinyue Zhang, Ning Ma, Yushu Wang and Alaa S. Abd-El-Aziz
Sensors 2025, 25(14), 4273; https://doi.org/10.3390/s25144273 - 9 Jul 2025
Viewed by 580
Abstract
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a [...] Read more.
In enzymatic reaction glucose detection chips, the enzyme can easily dislodge from the electrode, which harms both the chip and test stability. Additionally, enzyme activity significantly decreases at low temperatures. Consequently, immobilizing the enzyme at the appropriate substrate and ambient temperature is a critical step for improving the chip. To address this issue, an electrochemical detection chip was modified using the nanomaterial MXene, known for its large specific surface area, excellent adsorption, good dispersion, and high conductivity. Meanwhile, AgNO3 solution was added to the Ti3C2Tx MXene nanosheet solution, and the AgNP@MXene material was prepared by heating in a water bath. This process further enhances photothermal conversion efficiency due to the localized surface plasmon resonance effect of silver nanoparticles and MXene. This MXene-based photothermally enhanced paper chip exhibits outstanding photothermal conversion performance and sensitive photoelectrochemical responsiveness, along with good cycling stability. Moreover, improved glucose detection sensitivity at low winter temperatures has been achieved, and the ambient temperature range of the paper chip has been expanded to 25–37 °C. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices: 2nd Edition)
Show Figures

Figure 1

12 pages, 7657 KB  
Article
Cation Vacancies Anchored Transition Metal Dopants Based on a Few-Layer Ti3C2Tx Catalyst for Enhanced Hydrogen Evolution
by Xiangjie Liu, Xiaomin Chen, Chunlan Huang, Sihan Sun, Ding Yuan and Yuhai Dou
Catalysts 2025, 15(7), 663; https://doi.org/10.3390/catal15070663 - 7 Jul 2025
Viewed by 493
Abstract
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ [...] Read more.
This study addresses the efficiency and cost challenges of hydrogen evolution reaction (HER) catalysts in the context of carbon neutrality strategies by employing a synergistic approach that combines cation vacancy anchoring and transition metal doping on two-dimensional (2D) MXenes. Using an in situ LiF/HCl etching process, the aluminum layers in Ti3AlC2 were precisely removed, resulting in a few-layer Ti3C2Tx MXene with an increased interlayer spacing of 12.3 Å. Doping with the transition metals Fe, Co, Ni, and Cu demonstrated that Fe@Ti3C2 provided the optimal HER performance, characterized by an overpotential (η10) of 81 mV at 10 mA cm−2, a low Tafel slope of 33.03 mV dec−1, and the lowest charge transfer resistance (Rct = 5.6 Ω cm2). Mechanistic investigations revealed that Fe’s 3d6 electrons induce an upward shift in the d-band center of MXene, improving hydrogen adsorption free energy and reducing lattice distortion. This research lays a solid foundation for the design of non-precious metal catalysts using MXenes and highlights future avenues in bimetallic synergy and scalability. Full article
Show Figures

Graphical abstract

21 pages, 4577 KB  
Review
Recent Advances in Tantalum Carbide MXenes: Synthesis, Structure, Properties, and Novel Applications
by Mingfeng Li, Li Xu, Mengdi Guo, Hao Shang, Xiao Luo and Yanan Ma
Crystals 2025, 15(6), 558; https://doi.org/10.3390/cryst15060558 - 11 Jun 2025
Viewed by 1038
Abstract
Tantalum carbide MXenes, notably Ta4C3Tx and Ta2CTx, exhibit distinctive physicochemical properties that distinguish them from the well-studied Ti3C2Tx MXene. The combination of exceptional electrochemical properties, efficient photothermal conversion, and [...] Read more.
Tantalum carbide MXenes, notably Ta4C3Tx and Ta2CTx, exhibit distinctive physicochemical properties that distinguish them from the well-studied Ti3C2Tx MXene. The combination of exceptional electrochemical properties, efficient photothermal conversion, and tunable surface terminations highlights the versatility of Ta-MXenes. These characteristics render them highly valuable for versatile applications. This minireview summarizes recent progress in tantalum carbide MXenes and their composites, focusing on applications in energy storage, conversion, sensing, and biomedicine. First, synthesis methods for tantalum carbide MXenes are summarized. Subsequently, their key properties are discussed, followed by a systematic review of diverse applications. Finally, this review offers a summary and outlook on the challenges and opportunities in the field of tantalum carbide MXenes research. Full article
Show Figures

Figure 1

16 pages, 2741 KB  
Article
Preparation of Highly Antibacterial MXene Nanofiltration Membranes and Investigation of Their Separation Performance
by Na Meng, Jinxin Liu, Jialing Mi, Xuan Chen, Rong Rong, Junjie Hang and Zihan Jiang
Polymers 2025, 17(11), 1493; https://doi.org/10.3390/polym17111493 - 27 May 2025
Cited by 1 | Viewed by 549
Abstract
In this study, polyethersulfone (PES)/sulfonated polyethersulfone (SPES) composite nanofiltration membranes doped with different contents of monolayer titanium carbide nanosheets (Ti3C2TX) were prepared by the nonsolvent induced phase inversion (NIPS) method. The effects of Ti3C2 [...] Read more.
In this study, polyethersulfone (PES)/sulfonated polyethersulfone (SPES) composite nanofiltration membranes doped with different contents of monolayer titanium carbide nanosheets (Ti3C2TX) were prepared by the nonsolvent induced phase inversion (NIPS) method. The effects of Ti3C2TX on membrane structure, separation performance and antibacterial activity were investigated systematically. The results demonstrated that the viscosity of the casting solution increased significantly with the increasing content of Ti3C2TX. In addition, the pore size of the membrane surface first decreased and then increased; porosity and hydrophilicity were optimized synchronously; and the density of negative charges on the surface increased. The M2 membrane showed a rejection rate of more than 90% for Metanil yellow (MY) and methylene blue (MEB). The order of salt ion rejection rates was magnesium sulfate (MgSO4) > sodium sulfate (Na2SO4) > sodium chloride (NaCl), and water flux reached the peak (18.5 L/m2·h·bar). The antibacterial activity of the M2 membrane was significantly enhanced, and its antibacterial rate against Bacillus subtilis increased from 15% (M0) to 58%. This phenomenon was attributed to the synergistic mechanism of the Ti3C2TX physical capture effect, reactive oxygen species (ROS) generation and sharp edge damage to bacterial cell membranes. This study provides theoretical support and a technical path for the development of MXene composite membranes with high separation efficiency and excellent antibacterial properties. Full article
(This article belongs to the Special Issue Polymer-Based Membranes: Innovation in Separation Technology)
Show Figures

Figure 1

17 pages, 5073 KB  
Article
Bio-Inspired Synthesis of Injectable, Self-Healing PAA-Zn-Silk Fibroin-MXene Hydrogel for Multifunctional Wearable Capacitive Strain Sensor
by Rongjie Wang, Boming Jin, Jiaxin Li, Jing Li, Jingjing Xie, Pengchao Zhang and Zhengyi Fu
Gels 2025, 11(5), 377; https://doi.org/10.3390/gels11050377 - 21 May 2025
Cited by 2 | Viewed by 1021
Abstract
Conductive hydrogels have important application prospects in the field of wearable sensing, which can identify various biological signals for human motion monitoring. However, the preparation of flexible conductive hydrogels with high sensitivity and stability to achieve reliable signal recording remains a challenge. Herein, [...] Read more.
Conductive hydrogels have important application prospects in the field of wearable sensing, which can identify various biological signals for human motion monitoring. However, the preparation of flexible conductive hydrogels with high sensitivity and stability to achieve reliable signal recording remains a challenge. Herein, we prepared a conductive hydrogel by introducing conductive Ti3C2Tx MXene nanosheets into a dual network structure formed by Zn2+ crosslinked polyacrylic acid and silk fibroin for use as a wearable capacitive strain sensor. The prepared injectable hydrogel has a uniform porous structure and good flexibility, and the elongation at break can reach 1750%. A large number of ionic coordination bonds and hydrogen bond interactions make the hydrogel exhibit good structural stability and a fast self-healing property (30 s). In addition, the introduction of Ti3C2Tx MXene as a conductive medium in hydrogel improves the conductivity. Due to the high conductivity of 0.16 S/m, the capacitive strain sensor assembled from this hydrogel presents a high gauge factor of 1.78 over a wide strain range of 0–200%, a fast response time of 0.2 s, and good cycling stability. As a wearable sensor, the hydrogel can accurately monitor the activities of different joints in real-time. This work is expected to provide a new approach for wearable hydrogel electronic devices. Full article
Show Figures

Figure 1

18 pages, 6394 KB  
Article
Highly Sensitive Titanium-Based MXene-Reduced Graphene Oxide Composite for Efficient Electrochemical Detection of Cadmium and Copper Ions in Water
by Dharshini Mohanadas, Rosiah Rohani, Siti Fatimah Abdul Rahman, Ebrahim Mahmoudi and Yusran Sulaiman
J. Compos. Sci. 2025, 9(5), 232; https://doi.org/10.3390/jcs9050232 - 4 May 2025
Viewed by 1077
Abstract
An electrochemically active and promising binary composite that is made up of titanium-based MXene (Ti3C2Tx) and rGO is developed to simultaneously detect the Cd2+ and Cu2+, in water. XRD, FTIR, Raman, XPS, FESEM, elemental [...] Read more.
An electrochemically active and promising binary composite that is made up of titanium-based MXene (Ti3C2Tx) and rGO is developed to simultaneously detect the Cd2+ and Cu2+, in water. XRD, FTIR, Raman, XPS, FESEM, elemental mapping, and EDX analysis affirmed the successful formation of the Ti3C2Tx-rGO composite. The produced Ti3C2Tx-rGO electrode exhibited a homogeneous rGO sheet covering the Ti3C2Tx MXene plates with all the detailed Ti2p, C1s, and O1s XPS peaks. The high-performance Ti3C2Tx-rGO composite was successfully tested for the Cd2+ and Cu2+ ions via differential pulse voltammetry (DPV), altering the pH, concentration, and the real water sample’s quality. The electrochemical performances revealed that the proposed Ti3C2Tx-rGO composite depicted excellent detection and quantification limits (LOD and LOQ) for both Cd2+ (LOD = 0.31 nM, LOQ = 1.02 nM) and Cu2+ (LOD = 0.18 nM, LOQ = 0.62 nM) ions, where the result is highly comparable with the reported literature. The Ti3C2Tx-rGO was proven highly sensitive towards Cd2+ (0.345 μMμA−1) and Cu2+ (0.575 μMμA−1) with great repeatability and reproducibility properties. The Ti3C2Tx-rGO electrode also exhibited excellent stability over four weeks with a retention of 97.86% and 98.01% for Cd2+ and Cu2+, respectively. This simple modification of Ti3C2Tx with rGO can potentially be advantageous in the development of highly sensitive electrochemical sensors for the simultaneous detection of heavy metal ions. Full article
(This article belongs to the Section Carbon Composites)
Show Figures

Graphical abstract

18 pages, 4287 KB  
Article
Plasma–Liquid Synthesis of Titanium- and Molybdenum-Containing MXenes and Their Photocatalytic Properties
by Nikolay Sirotkin, Anna Khlyustova, Valeriya Shibaeva and Alexander Agafonov
Catalysts 2025, 15(5), 445; https://doi.org/10.3390/catal15050445 - 2 May 2025
Viewed by 666
Abstract
Previous studies have demonstrated that underwater low-temperature plasma is effective for synthesizing nanomaterials by generating plasma discharges between metal electrodes submerged in water. This study extends this approach to the one-step synthesis of MXenes containing titanium, molybdenum, and titanium–molybdenum composites through pulsed discharges [...] Read more.
Previous studies have demonstrated that underwater low-temperature plasma is effective for synthesizing nanomaterials by generating plasma discharges between metal electrodes submerged in water. This study extends this approach to the one-step synthesis of MXenes containing titanium, molybdenum, and titanium–molybdenum composites through pulsed discharges in carbon tetrachloride, an oxygen-free, non-flammable solvent characterized by a high boiling point and low permittivity. By employing titanium and molybdenum electrodes in various configurations, three MXene samples were synthesized: Ti2CTX, Mo2CTX, and Mo2TiC2TX. Characterization techniques, including UV-Vis spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy, confirmed the successful synthesis of high-purity MXenes with distinct structural and optical properties. Notably, the bandgap values of the synthesized MXenes were determined as 1.71 eV for Ti2CTX, 1.42 eV for Mo2TiC2TX, and 1.07 eV for Mo2CTX. The photocatalytic performance of the synthesized MXenes was evaluated, showing a removal efficiency of 65% to 98% for dye mixtures, with methylene blue showing the highest degradation rate. This plasma-assisted method offers a scalable, precursor-free route for the synthesis of MXenes with potential applications in energy storage, environmental remediation, and optoelectronics due to their tunable bandgaps and high catalytic activity. Full article
Show Figures

Figure 1

17 pages, 2749 KB  
Article
Low MXene Loading of Epoxy Composite with Enhanced Hydrothermal Resistance
by Mengke Jing, Shujie Zhang, Sichang Zhang, Mingzhou Li, Fan Chen, Yuchen Ma and Bo Sun
Polymers 2025, 17(9), 1229; https://doi.org/10.3390/polym17091229 - 30 Apr 2025
Viewed by 574
Abstract
This work focuses on the hydrothermal aging of two-dimensional layered Ti3C2Tx (MXene)/epoxy (EP) nanocomposites. MXene/EP composites were successfully prepared by homogeneously dispersing multilayer MXene (m-MXene) and few-layer MXene (f-MXene) into the curing agent, methyl nadic anhydride (MNA). Considering [...] Read more.
This work focuses on the hydrothermal aging of two-dimensional layered Ti3C2Tx (MXene)/epoxy (EP) nanocomposites. MXene/EP composites were successfully prepared by homogeneously dispersing multilayer MXene (m-MXene) and few-layer MXene (f-MXene) into the curing agent, methyl nadic anhydride (MNA). Considering the application, the MXene loading was designed to be 0.1 wt.%. Characterization included the characteristics of MXene, the water absorption behavior of the resin and composite samples, the glass transition temperatures (Tg) in various states, and the tensile strength evolution during aging. The curing behavior of the MXene composites was also discussed to facilitate an understanding of the processability. The results showed that MNA can chemically bond with MXene to obtain a stable suspension. The addition of MXene increased the curing characteristic temperature of the system, but the change in the activation energy of the curing reaction was minimal. The addition of MXene decreased the crosslink density of the epoxy resin, leading to a decrease in the Tg value of the initial samples. After hydrothermal aging, the Tg of pure EP decreased by 46.9 °C, and re-drying the samples did not fully restore the Tg. However, the Tg of the MXene/EP system decreased by only 8.9 °C (m-MXene) and 9.5 °C (f-MXene), respectively, and the Tg values of the samples were fully restored to their pre-aging levels via re-drying. Experiments with immersion at 25 °C and 100 °C showed that the difference in water absorption behavior between the MXene/EP and pure EP systems was minimal. Tensile tests showed that the addition of MXene increased the initial strength of the resin system by 14.7% (m-MXene) and 20.9% (f-MXene). After 400 h of hydrothermal aging, the tensile strength retention of the pure EP samples was 69.1%, while the strength retention of the MXene/EP samples was 85.3% (m-MXene) and 83.0% (f-MXene). The combined results demonstrate that the addition of MXene with a low loading of only 0.1% can effectively improve the hydrothermal resistance of epoxy resins. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop