Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2126 KB  
Article
Influence of Cooling Methods on Microstructure and Mechanical Properties of TiB2@Ti/AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Matrix Composites
by Fuqiang Guo, Yajun Zhou, Yayun Shao, Qinggang Jiang and Bo Ren
Coatings 2025, 15(9), 1002; https://doi.org/10.3390/coatings15091002 - 29 Aug 2025
Viewed by 197
Abstract
The present study focused on 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs), which were treated with furnace cooling (FC), air cooling (AC), and water cooling (WC) after being held at 1000 °C for 12 h, aiming to investigate [...] Read more.
The present study focused on 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs), which were treated with furnace cooling (FC), air cooling (AC), and water cooling (WC) after being held at 1000 °C for 12 h, aiming to investigate the effect of cooling methods on their microstructure and mechanical properties. The results showed that the composites in all states consisted of FCC phase, BCC phase, TiB2 phase, and Ti phase. The cooling methods did not change the phase types but affected the diffraction peak characteristics. With the increase in cooling rate, the diffraction peaks of FCC and BCC phases gradually separated from overlapping, and the diffraction peak of the FCC (111) crystal plane shifted to a lower angle (due to the increase in lattice constant caused by Ti element diffusion), while the diffraction peak intensity showed a downward trend. In terms of microstructure, all composites under the three cooling conditions were composed of eutectic matrix, solid solution zone, and grain boundary zone. The cooling rate had little effect on the morphology but significantly affected the element distribution. During slow cooling (FC, AC), Ti and B diffused sufficiently from the grain boundary to the matrix, resulting in higher concentrations of Ti and B in the matrix (Ti in FCC phase: 7.4 at.%, B in BCC phase: 8.1 at.% in FC state). During rapid cooling (WC), diffusion was inhibited, leading to lower concentrations in the matrix (Ti in FCC phase: 4.6 at.%, B in BCC phase: 4.3 at.%), but the element distribution was more uniform. Mechanical properties decreased with the increase in cooling rate: the FC state showed the optimal average hardness (627.0 ± 26.1 HV), yield strength (1574 MPa), fracture strength (2824 MPa), and fracture strain (24.2%); the WC state had the lowest performance (hardness: 543.2 ± 35.4 HV and yield strength: 1401 MPa) but was still better than the as-sintered state. Solid solution strengthening was the main mechanism, and slow cooling promoted element diffusion to enhance lattice distortion, achieving the synergistic improvement of strength and plasticity. Full article
(This article belongs to the Special Issue Innovations, Applications and Advances of High-Entropy Alloy Coatings)
Show Figures

Figure 1

14 pages, 1125 KB  
Article
Influence of Heat Treatment Temperature on Microstructure and Mechanical Properties of TiB2@Ti/AlCoCrFeNi2.1 Eutectic High-Entropy Alloy Matrix Composites
by Fuqiang Guo, Yajun Zhou, Qinggang Jiang, Panfeng Chen and Bo Ren
Metals 2025, 15(7), 757; https://doi.org/10.3390/met15070757 - 5 Jul 2025
Viewed by 398
Abstract
This study systematically investigates the effects of heat treatment at 800–1000 °C on the microstructure and mechanical properties of 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs) prepared by vacuum hot-pressing sintering. The results show that the materials consist [...] Read more.
This study systematically investigates the effects of heat treatment at 800–1000 °C on the microstructure and mechanical properties of 10 wt.% TiB2@Ti/AlCoCrFeNi2.1 eutectic high-entropy alloy matrix composites (EHEAMCs) prepared by vacuum hot-pressing sintering. The results show that the materials consist of FCC, BCC, TiB2, and Ti phases, with a preferred orientation of the (111) crystal plane of the FCC phase. As the temperature increases, the diffraction peak of the BCC phase separates from the main FCC peak and its intensity increases, while the diffraction peak positions of the FCC and BCC phases shift at small angles. This is attributed to the diffusion of TiB2@Ti from the grain boundaries into the matrix, where the Ti solid solution increases the lattice constant of the FCC phase. Microstructural observations reveal that the eutectic region transforms from lamellar to island-like structures, and the solid solution zone narrows. With increasing temperature, the Ti concentration in the solid solution zone increases, while the contents of elements such as Ni decrease. Element diffusion is influenced by binary mixing enthalpy, with Ti and B tending to solidify in the FCC and BCC phase regions, respectively. The mechanical properties improve with increasing temperature. At 1000 °C, the average hardness is 579.2 HV, the yield strength is 1294 MPa, the fracture strength is 2385 MPa, and the fracture strain is 19.4%, representing improvements of 35.5% and 24.9% compared to the as-sintered state, respectively, without loss of plasticity. The strengthening mechanisms include enhanced solid solution strengthening due to the diffusion of Ti and TiB2, improved grain boundary strength due to the diffusion of alloy elements to the grain boundaries, and synergistic optimization of strength and plasticity. Full article
(This article belongs to the Special Issue Feature Papers in Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

Back to TopTop