Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = TiOSO4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2633 KB  
Article
A Comparative Study of Supported Sulfonic Acids Derived from CdO and CaO for the Reactive Adsorption of o-Xylene
by Hongmei Wang, Xiaoxu Zhang, Yifei Niu and Zichuan Ma
Inorganics 2025, 13(8), 275; https://doi.org/10.3390/inorganics13080275 - 20 Aug 2025
Viewed by 313
Abstract
The recovery and control of volatile organic compounds (VOCs) have gained significant attention. Supported sulfonic acid materials show potential in converting aromatic VOCs into non-volatile sulfonic acid derivatives. However, their effectiveness is closely tied to the anchoring state of the sulfonic acid groups. [...] Read more.
The recovery and control of volatile organic compounds (VOCs) have gained significant attention. Supported sulfonic acid materials show potential in converting aromatic VOCs into non-volatile sulfonic acid derivatives. However, their effectiveness is closely tied to the anchoring state of the sulfonic acid groups. In this study, two supported sulfonic acids, SSA@CdO and SSA@CaO, were synthesized via the respective reactions of CdO and CaO with chlorosulfonic acid to investigate how the properties of the supports influence sulfonic acid anchoring and reactivity toward o-xylene. Comprehensive characterization and performance tests revealed that sulfonic acid groups on CdO were covalently bonded, forming positively charged sites ([O0.5Cd–O]ɗ−–SO3Hɗ+) with high loading (9.7 mmol/g), enabling excellent o-xylene removal (≥95.6%) and adsorption capacity (51.67–91.59 mg/g) at 130–150 °C. In contrast, ion-paired bonding on CaO formed negatively charged sites ([O0.5Ca]+:OSO3H), which were inactive in electrophilic sulfonation. This work provides new insights for enhancing supported sulfonic acid materials in VOC treatment. Full article
Show Figures

Graphical abstract

16 pages, 4103 KB  
Article
Full-Component Acetylation of Corncob Residue into Acetone-Dissolvable Composite Resin by Titanium Oxysulfate Reagent
by Chenhang Zhang, Xuejuan Zhao, Zhenyu Wu, Na Ma, Erdong Gao and Licheng Li
Catalysts 2025, 15(6), 587; https://doi.org/10.3390/catal15060587 - 13 Jun 2025
Viewed by 614
Abstract
Herein, all components of corncob residues were acetylated to synthesize an acetone-soluble resin material. Moreover, titanium oxysulfate (TiOSO4), a low-cost intermediate for the industrial production of TiO2, was first used as an acetylation reagent. Through optimizing reagent dosages and [...] Read more.
Herein, all components of corncob residues were acetylated to synthesize an acetone-soluble resin material. Moreover, titanium oxysulfate (TiOSO4), a low-cost intermediate for the industrial production of TiO2, was first used as an acetylation reagent. Through optimizing reagent dosages and reaction times, above 90% of hydroxyl groups in the corncob residue can be substituted by acetyl groups. During the acetylation reaction, TiOSO4 was transformed into TiO2 and uniformly distributed within the acetylated corncob residue. The resulting product, owing to its solubility in acetone, can be employed to fabricate a composite film with excellent mechanical properties, achieving an increase of 85% in tensile strength and 90% in strain rate compared to commercial cellulose acetate film. By this preparation technique, the industrial-grade corncob residue as raw material can be converted to acetylated composite films. Further analysis indicates that the coexistence of acetylated lignin and TiO2 plays a pivotal role in enhancing the mechanical properties of acetylated corncob residue composite film. Additionally, this material exhibits substantial degradation within 28 days under natural environmental conditions, whereas commercial cellulose acetate shows no significant changes even after 60 days. The present achievements are a significant breakthrough in the high-value technologies for the conversion of corncob residues. Full article
(This article belongs to the Special Issue Polyoxometalates (POMs) as Catalysts for Biomass Conversion)
Show Figures

Graphical abstract

17 pages, 2309 KB  
Article
Cerium-Doped Titanium Dioxide (CeT) Hybrid Material, Characterization and Spiramycin Antibiotic Photocatalytic Activity
by Hayat Khan
Catalysts 2025, 15(6), 512; https://doi.org/10.3390/catal15060512 - 23 May 2025
Viewed by 736
Abstract
Recently, aquatic life and human health are seriously threatened by the release of pharmaceutical drugs. For a sustainable ecosystem, emerging contaminants like antibiotics must be removed from drinking water and wastewater. To address this issue pure and cerium-doped titanium dioxide (CeT) nanoparticles were [...] Read more.
Recently, aquatic life and human health are seriously threatened by the release of pharmaceutical drugs. For a sustainable ecosystem, emerging contaminants like antibiotics must be removed from drinking water and wastewater. To address this issue pure and cerium-doped titanium dioxide (CeT) nanoparticles were produced with stable tetragonal (anatase) lattices by room temperature sol–gel method and employing the inorganic titanium oxysulfate (TiOSO4) as titanium precursor. The structural analysis by X-ray diffraction (XRD) revealed that at calcination temperature of 600 °C all (un and doped) powders were composed of crystalline anatase TiO2 with the crystallite sizes in the range of 13.5–11.3 nm. UV–vis DRS spectroscopy revealed that the most narrowed bandgap value of 2.75 eV was calculated for the 0.5CeT sample containing the optimum dopant content of 0.5 weight ratio. X-ray spectroscopy (XPS) confirmed the presence of the impurity level Ce3+/Ce4+, which became responsible for the decrease in bandgap as well as for the photoinduced carriers recombination rate. Photocatalytic tests showed that the maximum decomposition of the model spiramycin (SPR) antibiotic pollutant was 88.0% and 77.0%, under UV and visible light, respectively. According to the reaction kinetics, SPR decomposition adhered to the Langmuir–Hinshelwood (L–H) model and via ROS experiments mainly hydroxyl radicals (OH) followed by photogenerated holes (h+s) become responsible for the pollutant degradation. In summary, this study elaborates on the role of xCeT nanoparticles as an efficient photocatalyst for the elimination of organic contaminants in wastewater. Full article
Show Figures

Graphical abstract

16 pages, 971 KB  
Article
Sol-Gel Synthesis of TiO2 from TiOSO4 (Part 2): Kinetics and Photocatalytic Efficiency of Methylene Blue Degradation Under UV Irradiation
by Hayat Khan
Catalysts 2025, 15(1), 64; https://doi.org/10.3390/catal15010064 - 13 Jan 2025
Cited by 4 | Viewed by 2044
Abstract
The sol-gel process was used to create titanium dioxide (TiO2) nanoparticles, a nanocrystalline semiconductor. How several synthesis factors, such as titanium precursor concentration, annealing temperature, and peptization temperature, affected the structural and morphological properties of TiO2 nanoparticles were thoroughly explored. [...] Read more.
The sol-gel process was used to create titanium dioxide (TiO2) nanoparticles, a nanocrystalline semiconductor. How several synthesis factors, such as titanium precursor concentration, annealing temperature, and peptization temperature, affected the structural and morphological properties of TiO2 nanoparticles were thoroughly explored. X-ray diffraction (XRD), infrared spectroscopy (IR), scanning electron microscopy (SEM), measurements of the specific surface area and pore size using the BET method, and UV-visible diffuse reflectance spectroscopy were all used in this investigation. The specific surface area determined by BET analysis decreased with increasing calcination temperature. The XRD analysis showed that a composite sample consisting mainly of anatase with minor brookite phases was obtained when the titanium precursor concentration ranged between 0.2 and 0.4 M, whereas a concentration of 0.5 M resulted in the formation of pure anatase. The photocatalytic activity of the synthesized TiO2 powders under different operational parameters was evaluated for the common commercial textile dye, i.e., methylene blue (MB). It was experimented that the model pollutant decoloration follows the Langmuir–Hinshelwood (L-H) model. In view of this detailed research work, it was observed that the TiO2 produced with a titanium precursor concentration of 0.3 M, a pH value of 5 during the peptization step, and an annealing temperature of 600 °C were found to be the best conditions for this catalytic degradation process. When used in conjunction with a TiO2 concentration of 0.04 g/L and a reactor suspension pH value of 6.0, the TiO2 catalyst produced a stunning 98% degradation of methylene blue under these circumstances. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

19 pages, 9493 KB  
Article
IrO2 Oxygen Evolution Catalysts Prepared by an Optimized Photodeposition Process on TiO2 Substrates
by Angeliki Banti, Christina Zafeiridou, Michail Charalampakis, Olga-Niki Spyridou, Jenia Georgieva, Vasileios Binas, Efrosyni Mitrousi and Sotiris Sotiropoulos
Molecules 2024, 29(10), 2392; https://doi.org/10.3390/molecules29102392 - 19 May 2024
Cited by 5 | Viewed by 4608
Abstract
Preparing high-performance oxygen evolution reaction (OER) catalysts with low precious metal loadings for water electrolysis applications (e.g., for green hydrogen production) is challenging and requires electrically conductive, high-surface-area, and stable support materials. Combining the properties of stable TiO2 with those of active [...] Read more.
Preparing high-performance oxygen evolution reaction (OER) catalysts with low precious metal loadings for water electrolysis applications (e.g., for green hydrogen production) is challenging and requires electrically conductive, high-surface-area, and stable support materials. Combining the properties of stable TiO2 with those of active iridium oxide, we synthesized highly active electrodes for OER in acidic media. TiO2 powders (both commercially available Degussa P-25® and hydrothermally prepared in the laboratory from TiOSO4, either as received/prepared or following ammonolysis to be converted to titania black), were decorated with IrO2 by UV photodeposition from Ir(III) aqueous solutions of varied methanol scavenger concentrations. TEM, EDS, FESEM, XPS, and XRD measurements demonstrate that the optimized version of the photodeposition preparation method (i.e., with no added methanol) leads to direct deposition of well-dispersed IrO2 nanoparticles. The electroactive surface area and electrocatalytic performance towards OER of these catalysts have been evaluated by cyclic voltammetry (CV), Linear Sweep Voltammetry (LSV), and Electrochemical Impedance Spectroscopy (EIS) in 0.1 M HClO4 solutions. All TiO2-based catalysts exhibited better mass-specific (as well as intrinsic) OER activity than commercial unsupported IrO2, with the best of them (IrO2 on Degussa P-25® ΤiO2 and laboratory-made TiO2 black) showing 100 mAmgIr−1 at an overpotential of η = 243 mV. Chronoamperometry (CA) experiments also proved good medium-term stability of the optimum IrO2/TiO2 electrodes during OER. Full article
Show Figures

Graphical abstract

14 pages, 4663 KB  
Article
Co-Removal of Fe/V Impurity in H2TiO3 Synthesized from Ti-Bearing Blast Furnace Slag
by Fan Yang, Qiugui Peng, Jing Wang and Lan Xiang
Nanomaterials 2024, 14(1), 12; https://doi.org/10.3390/nano14010012 - 20 Dec 2023
Cited by 4 | Viewed by 1322
Abstract
Ti-bearing blast furnace slag (TBFS) can be converted to impurity bearing TiOSO4 solution for TiO2 pigment production. However, the H2TiO3 (MTA) hydrolyzed from the solution has too high Fe/V impurity to meet the standard for TiO2 pigment. [...] Read more.
Ti-bearing blast furnace slag (TBFS) can be converted to impurity bearing TiOSO4 solution for TiO2 pigment production. However, the H2TiO3 (MTA) hydrolyzed from the solution has too high Fe/V impurity to meet the standard for TiO2 pigment. In this study, we found that Fe3+ and V3+ were easily hydrolyzed and entered the MTA lattice, and hence could not be removed by washing. Furthermore, Fe/V was hard to co-remove by the traditional reduction method. Therefore, the Fe/V non-hydrolysis condition (Ti3+ = 0.01 M, F = 3.0, T = 130 °C; Ti3+ = 0.01 M, F = 3.5, T = 150 °C) was determined by thermodynamic calculations. However, at these conditions, the Ti hydrolysis ratio was low or the reaction time was long. Therefore, a new two-step hydrothermal hydrolysis process was proposed. Step 1 (130 °C, 2 h) ensured the non-hydrolysis of V3+, and Ti was partially hydrolyzed to increase the H2SO4 concentration. Step 2 (150 °C, 2 h) ensured a high Ti hydrolysis ratio (>0.95) and short total reaction time (4–6 h). Finally, a high-purity MTA was obtained (Fe = 21 ppm, V = 145 ppm). These results provide new insights into the control of the hydrolysis of impurity ions in solutions and help to optimize the process of TiO2 pigment preparation from TBFS. Full article
Show Figures

Figure 1

17 pages, 4022 KB  
Article
Microwave-Assisted Synthesis of Titanosilicates Using a Precursor Produced from Titanium Ore Concentrate
by Galina O. Kalashnikova, Darya V. Gryaznova, Alexander E. Baranchikov, Sergey N. Britvin, Victor N. Yakovenchuk, Gleb O. Samburov, Varvara O. Veselova, Aleksandra Y. Pulyalina, Yakov A. Pakhomovsky, Ayya V. Bazai, Margarita Y. Glazunova, Anna A. Shirokaya, Irina V. Kozerozhets, Anatoly I. Nikolaev and Vladimir K. Ivanov
ChemEngineering 2023, 7(6), 118; https://doi.org/10.3390/chemengineering7060118 - 15 Dec 2023
Cited by 2 | Viewed by 2496
Abstract
Titanosilicates comprise a broad class of materials with promising technological applications. The typical obstacle that restricts their industrial applicability is the high manufacturing cost due to the use of specific organotitanium precursors. We herein report a new approach to the synthesis of titanosilicates [...] Read more.
Titanosilicates comprise a broad class of materials with promising technological applications. The typical obstacle that restricts their industrial applicability is the high manufacturing cost due to the use of specific organotitanium precursors. We herein report a new approach to the synthesis of titanosilicates using an inexpensive inorganic precursor, ammonium titanyl sulfate (ATS or STA), (NH4)2TiO(SO4)2∙H2O. The latter is an intermediate in the processing of titanium-bearing concentrates produced from apatite-nepheline ores. In this paper, the new synthetic approach is exemplified by the microwave-assisted synthesis of IONSIVE-911, one of the most effective Cs-ion scavengers. The method can be modified to synthesize various titanosilicate compounds. Full article
Show Figures

Figure 1

19 pages, 14140 KB  
Article
Enhancing TiO2 Precipitation Process through the Utilization of Solution-Gas-Solid Multiphase CFD Simulation and Experiments
by Junhee Han, Minchul Ha, Junteak Lee, Donghyun Kim and Dohyung Lee
Processes 2023, 11(11), 3110; https://doi.org/10.3390/pr11113110 - 30 Oct 2023
Cited by 1 | Viewed by 1522
Abstract
Ensuring uniform particle size distribution is a crucial role in the precipitation process of manufacturing white pigment. This study presents a comprehensive investigation that combines multiphase computational fluid dynamics (CFD) simulations with experimental research to effectively address the challenge of achieving uniform particle [...] Read more.
Ensuring uniform particle size distribution is a crucial role in the precipitation process of manufacturing white pigment. This study presents a comprehensive investigation that combines multiphase computational fluid dynamics (CFD) simulations with experimental research to effectively address the challenge of achieving uniform particle distribution during TiO2 precipitation. The objective of this study was to enhance three-phase CFD simulations involving the mixing process of TIOSO₄ solution, steam as a gas phase, and solid seed particles. By analyzing the trajectories of the seed particles using CFD, the optimal injection position for the seed particles within the mixing process was determined. Subsequently, a lab scale test and real field test were conducted based on the insights gained from the CFD simulations. The particle size distribution of two different types of seed inlets was analyzed and compared using Transmission Electron Microscopy (TEM) and Scanning Electron Microscope (SEM). The findings of this study demonstrate that the developed multiphase CFD simulation can effectively enhance the precipitation process for the production of anatase titanium dioxide particles. Additionally, using the developed multiphase CFD solver, the real physics involved in the precipitation process were identified, leading to a better understanding of the process itself. Furthermore, TiO2 particles with uniform particle size had a positive impact on the washing and bleaching processes following the precipitation process, resulting in a significant reduction in the annual defect production rate. Full article
Show Figures

Figure 1

13 pages, 5112 KB  
Article
The Ultrasound-Assisted Preparation of Crystal Seeds for the Hydrolysis of TiOSO4 to H2TiO3
by Ruifang Lu, Feifan Li, Xianglan Li and Lichun Dong
Crystals 2023, 13(11), 1553; https://doi.org/10.3390/cryst13111553 - 30 Oct 2023
Cited by 2 | Viewed by 1514
Abstract
The hydrolysis of an industrial titanyl sulfate (TiOSO4) solution to metatitanic acid (H2TiO3) is the crucial step in the production of titanium dioxide (TiO2) using the sulfuric acid process, and the extra-adding seeded route is [...] Read more.
The hydrolysis of an industrial titanyl sulfate (TiOSO4) solution to metatitanic acid (H2TiO3) is the crucial step in the production of titanium dioxide (TiO2) using the sulfuric acid process, and the extra-adding seeded route is generally adopted in industry, in which the quality of the crystal seeds plays a critical role. In this study, the optimal process conditions for preparing the crystal seeds via the NaOH neutralization method were first investigated. Then, the ultrasound-assisted preparation of crystal seeds was studied to explore the effect of the ultrasonic time and intensity on the particle size and particle size distribution of crystal seeds. The results demonstrated that ultrasonic assistance is helpful in obtaining crystal seeds with smaller particle sizes and more uniform particle size distribution, and the quality of the hydrolysis product of H2TiO3, i.e., the particle size and its distribution, is strictly correlated with those of the crystal seeds. Under the optimal process conditions for preparing the hydrolytic seeds, the average particle of the hydrolytic seeds prepared without ultrasonic assistance is 25.50 nm. In contrast, the introduction of ultrasonic assistance in the preservation stage could significantly decrease the particle size and narrow the particle size distribution of the hydrolytic seeds. When the ultrasonic time is 4 min and the ultrasonic intensity is 40 W, the average particle of the hydrolytic seeds is decreased to 23.48 nm. Therefore, the quality of the crystal seeds, as well as that of H2TiO3 products, could be significantly improved by introducing ultrasonic assistance with a suitable intensity at a suitable time in the preparation process of crystal seeds via the NaOH neutralization method. Full article
Show Figures

Figure 1

14 pages, 2963 KB  
Article
Preparation of Hydrated TiO2 Particles by Hydrothermal Hydrolysis of Mg/Al-Bearing TiOSO4 Solution
by Shuyu Lin, Fan Yang, Zhuoying Yang, Jing Wang and Lan Xiang
Nanomaterials 2023, 13(7), 1179; https://doi.org/10.3390/nano13071179 - 25 Mar 2023
Cited by 10 | Viewed by 2383
Abstract
As the byproduct in the smelting process of vanadium titano-magnetite, titanium-bearing blast furnace slag (TBFS) can be converted to a titanyl sulfate (TiOSO4) solution containing MgSO4 and Al2(SO4)3 impurities via dissociation by concentrated H2 [...] Read more.
As the byproduct in the smelting process of vanadium titano-magnetite, titanium-bearing blast furnace slag (TBFS) can be converted to a titanyl sulfate (TiOSO4) solution containing MgSO4 and Al2(SO4)3 impurities via dissociation by concentrated H2SO4 (80–95%) at 80–200 °C, followed by leaching with H2O at 60–85 °C. In this study, hydrated TiO2 was prepared by hydrothermal hydrolysis of a Mg/Al-bearing TiOSO4 solution at 120 °C and the hydrolysis law was investigated. The experimental results indicate that MgSO4 and Al2(SO4)3 accelerated the hydrolysis and significantly affected the particle size (increasing the primary agglomerate size from 40 to 140 nm) and dispersion (reducing the aggregate size from 12.4 to 1.5 μm) of hydrated TiO2. A thermodynamic equilibrium calculation showed TiOSO4 existed as TiO2+ and SO42− in the solution, and MgSO4 and Al2(SO4)3 led to little change of [TiO2+], but an obvious decrease of [H+], which favored the hydrolysis process. At the same time, the coordination–dissociation mechanism of SO42− and Al(SO4)2 facilitated the lap bonding of Ti-O-Ti, promoting the growth of hydrated TiO2 synergistically. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

23 pages, 5090 KB  
Article
Visible-Light-Active N-Doped TiO2 Photocatalysts: Synthesis from TiOSO4, Characterization, and Enhancement of Stability Via Surface Modification
by Nikita Kovalevskiy, Dmitry Svintsitskiy, Svetlana Cherepanova, Stanislav Yakushkin, Oleg Martyanov, Svetlana Selishcheva, Evgeny Gribov, Denis Kozlov and Dmitry Selishchev
Nanomaterials 2022, 12(23), 4146; https://doi.org/10.3390/nano12234146 - 23 Nov 2022
Cited by 22 | Viewed by 3324
Abstract
This paper describes the chemical engineering aspects for the preparation of highly active and stable nanocomposite photocatalysts based on N-doped TiO2. The synthesis is performed using titanium oxysulfate as a low-cost inorganic precursor and ammonia as a precipitating agent, as well [...] Read more.
This paper describes the chemical engineering aspects for the preparation of highly active and stable nanocomposite photocatalysts based on N-doped TiO2. The synthesis is performed using titanium oxysulfate as a low-cost inorganic precursor and ammonia as a precipitating agent, as well as a source of nitrogen. Mixing the reagents under a control of pH leads to an amorphous titanium oxide hydrate, which can be further successfully converted to nanocrystalline anatase TiO2 through calcination in air at an increased temperature. The as-prepared N-doped TiO2 provides the complete oxidation of volatile organic compounds both under UV and visible light, and the action spectrum of N-doped TiO2 correlates to its absorption spectrum. The key role of paramagnetic nitrogen species in the absorption of visible light and in the visible-light-activity of N-doped TiO2 is shown using the EPR technique. Surface modification of N-doped TiO2 with copper species prevents its intense deactivation under highly powerful radiation and results in a nanocomposite photocatalyst with enhanced activity and stability. The photocatalysts prepared under different conditions are discussed regarding the effects of their characteristics on photocatalytic activity under UV and visible light. Full article
(This article belongs to the Special Issue Synthesis of Nanocomposites and Catalysis Applications II)
Show Figures

Graphical abstract

21 pages, 4209 KB  
Article
Synthesis of Sorption Materials from Low Grade Titanium Raw Materials
by Lidia G. Gerasimova, Marina V. Maslova and Ekaterina S. Shchukina
Materials 2022, 15(5), 1922; https://doi.org/10.3390/ma15051922 - 4 Mar 2022
Cited by 6 | Viewed by 2212
Abstract
In this paper, a universal technology is proposed for processing low-titanium mineral raw material—apatite-nepheline ore waste, including its treatment with sulfuric or hydrochloric acid in a two-stage mode with a sequential increase in the concentration. This technique allowed us to remove nepheline and [...] Read more.
In this paper, a universal technology is proposed for processing low-titanium mineral raw material—apatite-nepheline ore waste, including its treatment with sulfuric or hydrochloric acid in a two-stage mode with a sequential increase in the concentration. This technique allowed us to remove nepheline and apatite in the first stage and achieve a titanium mineral content of TiO2 of more than 30%; in the second stage, we were able to convert the titanium into its precursors—titanyl sulfate monohydrate TiOSO4·H2O and a hybrid rutile-silica composition. The key stage in the sorbent synthesis is the reaction of the precursor with a phosphoric acid solution. The preferred sequence of operations begins with the mechanical activation of the precursor, causing morphological changes in it, and subsequent treatment with phosphoric acid at different concentrations under atmospheric conditions and in an autoclave, accompanied by phase transformations. Conditions for the chemical reactions which regulated the composition and structure of the final product and, accordingly, its sorption activity were found. With the help of XFA, the phase compositions of the sorbents were identified, including the individual crystalline phase α-TiP obtained from TS or the crystalline phase αTi(HPO4)2∙H2O, which is in an amorphous silica matrix obtained from a rutile–silica composition. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

13 pages, 3034 KB  
Article
Effect of Ultrasound Irradiation on the Synthesis of Hydroxyapatite/Titanium Oxide Nanocomposites
by A. K. Sánchez-Hernández, J. Martínez-Juárez, J. J. Gervacio-Arciniega, R. Silva-González and M. J. Robles-Águila
Crystals 2020, 10(11), 959; https://doi.org/10.3390/cryst10110959 - 22 Oct 2020
Cited by 16 | Viewed by 3579
Abstract
Bioceramic materials, such as hydroxyapatite, Ca10(PO4)6(OH)2, (HAp), can be chemically bound to bone tissue; since they are bioactive and biocompatible. HAp, titanium oxide (TiO2), and hydroxyapatite/titanium oxide (HAp/TiO2) nanocomposite nanoparticles were [...] Read more.
Bioceramic materials, such as hydroxyapatite, Ca10(PO4)6(OH)2, (HAp), can be chemically bound to bone tissue; since they are bioactive and biocompatible. HAp, titanium oxide (TiO2), and hydroxyapatite/titanium oxide (HAp/TiO2) nanocomposite nanoparticles were obtained by ultrasound irradiation assisted by sol-gel and co-precipitation methods at different time intervals, using Ca(NO3)2•4H2O, (NH4)2HPO4, and TiOSO4•xH2O as calcium, phosphorus, and titanium sources, respectively. HAp, TiO2, and HAp/TiO2 nanocomposite powders were characterized by X-ray Diffraction (XRD) and Raman Spectroscopy. The percentages of anatase phase for TiO2 and of monoclinic and hexagonal phases for HAp were quantified by Rietveld refinement. Furthermore, sample crystallinity in each material was enhanced by increasing the ultrasound irradiation time. The nanoparticle shape was semi-spherical, agglomerated, and between 17 and 20 nm in size. The agglomeration of particles in the samples was corroborated with a Field Emission Scanning Electron Microscope (FESEM). Full article
(This article belongs to the Special Issue Hydroxyapatite Base Nanocomposites)
Show Figures

Graphical abstract

18 pages, 4444 KB  
Article
Low Temperature Synthesis of Photocatalytic Mesoporous TiO2 Nanomaterials
by Massimo Dell’Edera, Francesca Petronella, Alessandra Truppi, Leonarda Francesca Liotta, Nunzio Gallì, Teresa Sibillano, Cinzia Giannini, Rosaria Brescia, Francesco Milano, Marinella Striccoli, Angela Agostiano, Maria Lucia Curri and Roberto Comparelli
Catalysts 2020, 10(8), 893; https://doi.org/10.3390/catal10080893 - 7 Aug 2020
Cited by 22 | Viewed by 5176
Abstract
We report the synthesis of mesoporous TiO2 nanostructures based on the decomposition of TiOSO4 in aqueous alkaline solution at room temperature, followed by mild thermal treatment (110 °C) in an oven and suitable to yield up to 40 g of product [...] Read more.
We report the synthesis of mesoporous TiO2 nanostructures based on the decomposition of TiOSO4 in aqueous alkaline solution at room temperature, followed by mild thermal treatment (110 °C) in an oven and suitable to yield up to 40 g of product per batch. The duration of the thermal treatment was found to be crucial to control crystalline phase composition, specific surface area, surface chemistry and, accordingly, the photocatalytic properties of the obtained TiO2 nanocrystals. The thorough investigation of the prepared samples allowed us to explain the relationship between the structure of the obtained nanoparticles and their photocatalytic behavior, that was tested in a model reaction. In addition, the advantage of the mild treatment against a harsher calcination at 450 °C was illustrated. The proposed approach represents a facile and sustainable route to promptly access an effective photocatalyst, thus holding a significant promise for the development of solutions suitable to real technological application in environmental depollution. Full article
(This article belongs to the Special Issue Nanomaterials in Photo(Electro)catalysis)
Show Figures

Graphical abstract

21 pages, 4755 KB  
Article
Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation
by Anastasiia V. Dubenko, Mykola V. Nikolenko, Andrii Kostyniuk and Blaž Likozar
Minerals 2020, 10(6), 538; https://doi.org/10.3390/min10060538 - 13 Jun 2020
Cited by 23 | Viewed by 6585
Abstract
The kinetics of the sulfuric acid leaching of altered ilmenite, mechanisms, and process intensification methods were studied. The effect of changing the chemical composition during grinding was determined. The content of ilmenite and pseudorutile decreased from 5.3% to 3.1% and from 90.2% to [...] Read more.
The kinetics of the sulfuric acid leaching of altered ilmenite, mechanisms, and process intensification methods were studied. The effect of changing the chemical composition during grinding was determined. The content of ilmenite and pseudorutile decreased from 5.3% to 3.1% and from 90.2% to 63.1%, respectively. Rutile increased from 4.5% to 28.7%, while a pseudobrookite new phase appeared in the amount of 5.1% after 2 h of grinding. It was found that the modification of raw material by sulfuric acid led to the increase of the decomposition rate, and at the same time, decreased when the ore was utilized due to an increase of insoluble TiO2 content. Isothermal conditions were evaluated with H2SO4 concentration varying from 50 to 96%. The data obtained were described with the approximation of the contracting sphere model. It was shown for the first time that H2SO4 > 85 wt% causes a sharp constant decrease of titanium. Correlating these phenomena allows for the consideration of H2SO4·H2O as reagents, rather than H2SO4 molecules. It was experimentally proven that at a temperature above 190 °C, the Ti leaching degree dropped, which is explained by the formation of polymerized TiOSO4. Finally, it was shown that adding NaF reduced the activation energy to 45 kJ/mol. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

Back to TopTop