Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (290)

Search Parameters:
Keywords = Tween 20

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2828 KB  
Article
Innovative Biobased Active Composites of Cellulose Acetate Propionate with Tween 80 and Cinnamic Acid for Blueberry Preservation
by Ewa Olewnik-Kruszkowska, Martina Ferri, Micaela Degli Esposti, Agnieszka Richert and Paola Fabbri
Polymers 2025, 17(15), 2072; https://doi.org/10.3390/polym17152072 - 29 Jul 2025
Viewed by 463
Abstract
In order to develop modern polymer films intended for food packaging, materials based on cellulose acetate propionate (CAP) with the addition of Tween 80 as a plasticizer and cinnamic acid (CA), known for its antibacterial properties, were prepared. It should be emphasized that [...] Read more.
In order to develop modern polymer films intended for food packaging, materials based on cellulose acetate propionate (CAP) with the addition of Tween 80 as a plasticizer and cinnamic acid (CA), known for its antibacterial properties, were prepared. It should be emphasized that materials based on CAP combined with Tween 80 have not been previously reported in the literature. Therefore, not only is the incorporation of cinnamic acid into these systems an innovative approach, but also the use of the CAP-Tween80 matrix itself represents a novel strategy in the context of the proposed applications. The conducted studies made it possible to assess the properties of the obtained materials with and without the addition of cinnamic acid. The obtained results showed that the addition of cinnamic acid significantly influenced the crucial properties relevant to food storage. The introduction of CA into the polymer matrix notably enhanced the UV barrier properties achieving complete (100%) blockage of UVB radiation and approximately a 20% reduction of UVA transmittance. Furthermore, the modified films exhibited pronounced antibacterial activity, with over 99% reduction in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa populations observed for samples containing 2 and 3% CA. This antibacterial effect contributed to the extended freshness of stored blueberries. Moreover, the addition of cinnamic acid did not significantly affect the transparency of the films, which remained high (97–99%), thereby allowing the fruit to remain visible. Full article
(This article belongs to the Special Issue Applications of Biopolymer-Based Composites in Food Technology)
Show Figures

Figure 1

15 pages, 1743 KB  
Article
Development of Bioresponsive Poloxamer-Based Self-Nanoemulsifying System for Enhanced Febuxostat Bioavailability: Solidification Strategy Using I-Optimal Approach
by Abdelrahman Y. Sherif and Ehab M. Elzayat
Pharmaceutics 2025, 17(8), 975; https://doi.org/10.3390/pharmaceutics17080975 - 28 Jul 2025
Viewed by 358
Abstract
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based [...] Read more.
Background/Objectives: The major limitations of self-nanoemulsifying systems include complex processing and expensive instrumentation required for solidification approaches. In this study, smart poloxamer-based solidification strategies were used to develop and optimize febuxostat-loaded formulations. Methods: A self-nanoemulsifying drug delivery system (SNEDDS) component was selected based on solubility and emulsification tests. The influence of poloxamer molecular weight (low or high) and its concentration (2–10% w/w) on formulation performance was assessed through the design of experiments. Finally, in-vitro melting assessment and a comparative dissolution test were performed on the optimized SNEDDS formulation. Results: Imwitor 988 and Tween 20 were selected to prepare the formulations. Increasing the molecular weight and concentration of the poloxamer significantly increased the temperature and time required for the melting of the SNEDDS formulation. The optimized SNEDDS formulation comprised 3.98% w/w poloxamer 188, which melts at 36 °C within 111 s. In-vitro melting showed that the formulation completely converted to a liquid state upon exposure to body temperature. Finally, the optimized SNEDDS formulation exhibited superior dissolution efficiency (96.66 ± 0.28%) compared to raw febuxostat (72.09 ± 4.33%) and marketed tablets (82.23 ± 3.10%). Conclusions: The poloxamer-based approach successfully addressed the limitations associated with conventional solidification while maintaining superior dissolution performance. Therefore, it emerges as a promising alternative approach for enhancing the bioavailability of poorly water-soluble drugs. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

20 pages, 2314 KB  
Article
Effects of 2-Hydroxypropyl-β-Cyclodextrin on the Antioxidant Efficiency of Some Gallic Acid Derivatives in Soybean Oil-in-Water Emulsions
by Tamara Martínez-Senra, Sonia Losada-Barreiro and Carlos Bravo-Díaz
Antioxidants 2025, 14(7), 887; https://doi.org/10.3390/antiox14070887 - 18 Jul 2025
Viewed by 456
Abstract
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for [...] Read more.
Cyclodextrins (CDs) have been widely employed as natural host molecules to form inclusion complexes with bioactive molecules such as antioxidants. Their particular spatial configuration, in the form of truncated cones formed through α(1–4) ether linkages of glucopyranose units, makes them very appropriate for the formation of host–guest complexes, modifying their physicochemical properties and their location in multiphasic systems. Here, we investigated the effects of 2-hydroxypropyl-β-cyclodextrin (HPCD) on the efficiency of a series of gallic acid derivatives (propyl (PG), butyl (BG), octyl (OG), and lauryl (LG) gallates) in inhibiting the oxidation of soybean oil-in-water emulsions. For this purpose, we investigated the effects of HPCD on both the kinetics of lipid oxidation and the distribution of antioxidants in the same intact emulsions. The results show that in an aqueous solution, the antioxidants form 1:1 inclusion complexes with HPCD, with inclusion constants ranging from 383 M−1 (PG) to 1946 M−1 (OG). The results also show that the addition of HPCD to emulsions containing antioxidants does not lead to significant changes in their antioxidant effectiveness, with their efficiency being similar to that when no HPCD molecules are present. The results are interpreted in terms of the blocking effect exerted by the Tween 20 molecules, which act as effective guest competitors capable of removing the antioxidants from the HPCD cavity. The Tween 20 surfactant molecules need to be employed to stabilize the emulsions kinetically. This blocking effect, as a primary consequence, indicates that the interfacial concentration of the antioxidants, which is the region where the inhibition reaction takes place, remains constant; thus, their efficiency is not altered. Full article
(This article belongs to the Special Issue Antioxidants for the Oxidative Stabilisation of Food Lipids)
Show Figures

Figure 1

30 pages, 5331 KB  
Article
Development of a Novel Drug Delivery System “Nanoemulfoam” for Topical Delivery of Terbinafine Hydrochloride as a Repurposed Therapy in Skin Cancer: Formulation, Optimization, In Vitro Characterization, Ex Vivo Transdermal Permeability, Cytotoxicity Studies, and In Silico Assessment
by Abeer A. Musallam, Reem A. Aldeeb, Riham M. Mansour, Manar Abd El-karim Kassem, Doaa Fayez Saeed, Mahmoud A. Mahdy, Rana M. Abdelnaby, Hanan M. Elnahas and Tarek M. Ibrahim
Pharmaceuticals 2025, 18(7), 972; https://doi.org/10.3390/ph18070972 - 27 Jun 2025
Viewed by 710
Abstract
Background: Skin cancer has become a global health issue because of increasing exposure to environmental contaminants and UV radiation. Terbinafine hydrochloride (TRB), a broad-spectrum antifungal medication, has demonstrated notable anti-tumor properties in previous studies; however, its repurposing for skin cancer therapy remains underexplored. [...] Read more.
Background: Skin cancer has become a global health issue because of increasing exposure to environmental contaminants and UV radiation. Terbinafine hydrochloride (TRB), a broad-spectrum antifungal medication, has demonstrated notable anti-tumor properties in previous studies; however, its repurposing for skin cancer therapy remains underexplored. Objective: This study reports for the first time, the development of a new delivery system: a nanoemulsion (NE)–foam hybrid system, i.e., “nanoemulfoam” (NEF), designed to enhance the topical TRB delivery to the skin. The study applied this new hybrid system on TRB for managing skin cancer. Method: The TRB-loaded NEF was produced by loading TRB into a liquid NE. then this was incorporated into a liquid foam base and actuated into foam using a non-propellant mechanism. The NE was developed utilizing peppermint oil as the oil phase and Tween-20/ethanol as the surfactant/co-surfactant combination (Smix). The formulation underwent optimization using the D-optimal design that enabled the simultaneous evaluation of the impact of oil concentration and Tween 20 concentration in the Smix on the particle size (PS), zeta potential (ZP), and dissolution efficiency percent (DE%). Results: The optimal NE formula displayed a small PS of 186.60 ± 2.84 nm, ZP of −13.90 ± 0.99 mV, and DE% of 68.50 ± 1.78% (mean ± SD, n = 3). After incorporation into the foam system, the produced TRB-loaded NEF demonstrated a 7.43-fold increase in the drug transdermal flux in comparison with plain drug foam (p < 0.05). The TRB-loaded NEF showed no signs of inflammation or irritation when applied to abdominal rabbit skin, indicating its safety. The optimum formula exhibited a statistically significant 10-fold increase in cytotoxicity against A-431 skin cancer cells compared to TRB alone, along with a 1.54-fold increase in apoptosis (p < 0.05). Molecular docking studies targeting CDK2, a key regulator of cell proliferation and a known TRB target, revealed that TRB displayed highly favorable binding scores compared to the reference drug. Conclusions: The TRB-loaded NEF represents a promising nanotechnology-based approach for the topical treatment of skin cancer, supporting further investigation toward clinical translation. Full article
Show Figures

Graphical abstract

17 pages, 2384 KB  
Article
Gene Cloning, Purification, and Characterization of a Cold-Active Alkaline Lipase from Bacillus cereus U2
by Baoxiang He, Ning Li, Yan Qin, Liang Xian, Jin Zhou, Sijia Liu, Jing Zhang, Jingtao Wu, Qingyan Wang and Xinquan Liang
Fermentation 2025, 11(7), 365; https://doi.org/10.3390/fermentation11070365 - 25 Jun 2025
Viewed by 681
Abstract
Lipases are important industrial enzymes with a wide range of applications across various sectors. Cold-active lipases are particularly well suited for industrial processes that operate at low temperatures (such as food processing and environmental remediation) due to their high catalytic efficiency and energy-saving [...] Read more.
Lipases are important industrial enzymes with a wide range of applications across various sectors. Cold-active lipases are particularly well suited for industrial processes that operate at low temperatures (such as food processing and environmental remediation) due to their high catalytic efficiency and energy-saving benefits. In this study, a novel lipase—LipU (GenBank accession: PV094892)—was heterologously expressed from Bacillus cereus U2 and characterized for its low-temperature adaptability and alkaline resistance. LipU belongs to the lipase Subfamily I.5 and shares the highest amino acid sequence identity (53.32%) with known homologs. Enzymatic assays revealed that LipU exhibits optimal activity at 20 °C and pH 11. It retained 95% of its initial activity after 24 h of incubation at 4 °C and pH 11.0. Furthermore, the activity of LipU was enhanced by Ca2⁺, Na⁺, Tween 20, and Tween 80, whereas it was inhibited by Cu2⁺, Zn2⁺, Mn2⁺, and sodium dodecyl sulfate (SDS). LipU demonstrated tolerance to various organic solvents of differing polarity; after 1 h of exposure to 15% (v/v) ethanol, n-butanol, isoamyl alcohol, dimethyl sulfoxide, or glycerol, it retained over 78.6% of its activity. These properties make LipU a promising candidate for industrial applications, including for leather degreasing, alkaline wastewater treatment, and low-temperature biocatalysis. Full article
(This article belongs to the Special Issue Fermentation: 10th Anniversary)
Show Figures

Figure 1

13 pages, 621 KB  
Article
Influence of Sugars and Surface Properties on Wettability and Adhesion of Starch-Based Model Suspensions on Polytetrafluoroethylene (PTFE) and Polyethylene Terephthalate (PET) Surfaces
by Ana Caroline Frabetti, Jaqueline Oliveira de Moraes, Vanessa Jury, Lionel Boillereaux and João Borges Laurindo
Foods 2025, 14(12), 2033; https://doi.org/10.3390/foods14122033 - 9 Jun 2025
Viewed by 516
Abstract
In food drying processes such as cast-tape drying, refractance window, and drum drying, spreading food suspensions on hydrophobic surfaces is critical. This study investigated the effects of low-molar-mass sugars (glucose, sucrose, and fructose) on the rheology and surface tension of cassava starch suspensions, [...] Read more.
In food drying processes such as cast-tape drying, refractance window, and drum drying, spreading food suspensions on hydrophobic surfaces is critical. This study investigated the effects of low-molar-mass sugars (glucose, sucrose, and fructose) on the rheology and surface tension of cassava starch suspensions, which served as model systems. Wettability was assessed on hydrophobic surfaces, including new polytetrafluoroethylene (PTFE) and polyethylene terephthalate (PET) films, with additional testing on sandpaper-abraded PTFE (named PTFE R+) to evaluate the influence of surface roughness. PET film exhibited lower roughness (Ra = X µm) and higher surface tension (71 mN/m) compared to PTFE (surface tension 65 mN/m). Contact angles on PET (93–124°) were significantly higher than on PTFE (89–113°), indicating greater product adhesion on PET. All suspensions showed pseudoplastic behavior, and the addition of the surfactant Tween 20 slightly reduced surface tension (by ≈1–5 mN/m) but did not significantly enhance wettability. Sucrose and fructose increased wettability on PTFE R+, but the effects of the sugar varied depending on the surface. These findings suggest that PTFE surfaces reduce product sticking during drying compared to PET. Interactions between sugars, Tween 20, and hydrophobic surfaces must be considered to optimize spreading and reduce product sticking during drying. This knowledge can guide improvements in drying processes for food products. Full article
Show Figures

Figure 1

21 pages, 4236 KB  
Article
Study of the Stability and Anti-Inflammatory Activity of Paeonol–Oleanolic Acid Liposomes by Microfluidic Technology
by Xianzheng Ma, Hui Zhang, Jinkai Luan, Mingfa Tian, Xiuxin Zhang, Ammara Sohail, Dong Liang, Jiguo Liu, Fuzhan Tao, Zheng Wang and Daijie Wang
Foods 2025, 14(12), 2030; https://doi.org/10.3390/foods14122030 - 8 Jun 2025
Viewed by 1039
Abstract
(1) Background: This study used a microfluidic approach to prepare paeonol (PAE) liposomes with oleanolic acid (PAE-ONLs) instead of cholesterol (PAE-CNLs), aiming to reduce cholesterol levels and enhance stability and anti-inflammatory activity. (2) Methods: The liposome formula was optimized, characterized, and tested for [...] Read more.
(1) Background: This study used a microfluidic approach to prepare paeonol (PAE) liposomes with oleanolic acid (PAE-ONLs) instead of cholesterol (PAE-CNLs), aiming to reduce cholesterol levels and enhance stability and anti-inflammatory activity. (2) Methods: The liposome formula was optimized, characterized, and tested for anti-inflammatory activities in zebrafish and RAW 264.7 macrophages, utilizing various stability and molecular interaction methods. (3) Results: The best PAE-ONL preparation conditions were 10.25 mg/mL of soy lecithin, 0.82 mg/mL of oleanolic acid, and 0.22% (wt%) of Tween 80, with an EE of 64.61 ± 0.42%. TEM confirmed the uniform spherical morphology, and FTIR confirmed that oleanolic acid was incorporated into the liposomes. PAE-ONLs showed better stabilities than PAE-CNLs. Molecular interaction results revealed that PAE-ONLs achieved a greater energy reduction, reaching −85.07 kJ/mol vs. the −62.64 kJ/mol of PAE-CNLs, with stable hydrogen bonding interactions. PAE-ONLs significantly reduced inflammatory cell migration in zebrafish and decreased NO, TNF-α, IL-6, and IL-1β levels in LPS-induced RAW 264.7 macrophages at 20 μg/mL. A network pharmacology analysis showed that oleanolic acid and paeonol interacted with 45 and 11 anti-inflammatory targets, respectively, and their combination in PAE-ONLs enhanced their anti-inflammatory coverage. (4) Conclusions: PAE-ONLs, utilizing oleanolic acid as a cholesterol substitute, exhibit enhanced stability and superior anti-inflammatory effects. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Graphical abstract

21 pages, 1977 KB  
Article
Effect of Combining Surfactants with Potato Protein Hydrolysates on Their Emulsifying and Antioxidant Properties in Fish-Oil-in-Water Emulsions
by Cansu Yay, Betül Yesiltas and Charlotte Jacobsen
Foods 2025, 14(11), 1974; https://doi.org/10.3390/foods14111974 - 2 Jun 2025
Viewed by 788
Abstract
This study investigated the emulsifying and antioxidant properties of potato protein hydrolysates (PPHs) obtained through enzymatic hydrolysis with trypsin, aiming to utilize them as natural emulsifiers in 5 wt% fish-oil-in-water emulsions. Unfractionated and fractionated PPH fractions (>10 kDa, 5–10 kDa, 0.8–5 kDa, and [...] Read more.
This study investigated the emulsifying and antioxidant properties of potato protein hydrolysates (PPHs) obtained through enzymatic hydrolysis with trypsin, aiming to utilize them as natural emulsifiers in 5 wt% fish-oil-in-water emulsions. Unfractionated and fractionated PPH fractions (>10 kDa, 5–10 kDa, 0.8–5 kDa, and <0.8 kDa) in combination with surfactants (Tween 20 or DATEM) were evaluated. Unfractionated PPH alone resulted in unstable emulsions; however, combining it with 67 wt% DATEM or Tween 20 improved physical stability. Smaller PPH fractions (<10 kDa) produced smaller droplet sizes (0.352–0.764 μm) with DATEM, whereas for Tween 20-stabilized emulsions, the smallest droplet size was observed with unfractionated PPH (1.051 ± 0.015 µm). Notably, the 5–10 kDa fraction exhibited the best oxidative stability when combined with Tween 20, likely due to its antioxidant properties. While further refinement is necessary to improve PPHs’ effectiveness as standalone emulsifiers, their potential is evident. Full article
Show Figures

Figure 1

23 pages, 5089 KB  
Article
Integrated In Silico and In Vitro Assessment of the Anticancer Potential of Origanum vulgare L. Essential Oil
by Gabriel Mardale, Florina Caruntu, Alexandra Mioc, Marius Mioc, Alexandra Teodora Lukinich-Gruia, Maria-Alexandra Pricop, Calin Jianu, Armand Gogulescu, Tamara Maksimovic and Codruța Șoica
Processes 2025, 13(6), 1695; https://doi.org/10.3390/pr13061695 - 28 May 2025
Viewed by 806
Abstract
Oregano essential oil (OEO) has gained attention for its broad pharmacological activities, such as anti-inflammatory, antimicrobial, and anticancer properties. This study aimed to analyze the phytochemical composition and biological activity of OEO obtained from wild-growing Origanum vulgare L. in Romania. Gas chromatography–mass spectrometry [...] Read more.
Oregano essential oil (OEO) has gained attention for its broad pharmacological activities, such as anti-inflammatory, antimicrobial, and anticancer properties. This study aimed to analyze the phytochemical composition and biological activity of OEO obtained from wild-growing Origanum vulgare L. in Romania. Gas chromatography–mass spectrometry (GC–MS) analysis identified p-cymene (43.98%), γ-terpinene (22.16%), and thymol (11.46%) as major constituents, with notable differences from previously reported chemotypes. Antioxidant activity was assessed using the DPPH, ABTS radical scavenging assay, and TPC. OEO has a moderate antioxidant activity, with IC50 values of 134.67 ± 1.32 µg/mL (DPPH) and 88.15 ± 0.045 Inh% (ABTS) and a TPC of 159.63 mg GAE/g extract. The cytotoxicity of the simple water dispersion of OEO, OEO solubilized with polyethylene glycol 400 (OEO-PEG), and that solubilized with Tween 20 (OEO-Tw) was evaluated on human melanoma (A375) and human colorectal adenocarcinoma (HT-29) cancer cell lines, as well as on the normal human immortalized keratinocytes (HaCaT) cell line. The results demonstrated a significant inhibition of cancer cell viability with no recorded cytotoxic effect on normal cells. The highest inhibition of cell viability was recorded for OEO-PEG 200 µg/mL (7.22% ± 6.51 in A375 cell line and 22.25% ± 10.08 in HT-29 cell line). In cancer cells, OEO and its formulations significantly reduced malondialdehyde (MDA) levels (up to 41.24% in A375 cells and up to 48.58% in HT-29 cells), suggesting potent antioxidant activity. Moreover, treatment with OEO increased caspase 3/7 activation two-fold in treated A375 cells, while high-resolution respirometry studies revealed that OEO induces mitochondrial dysfunction by acting as a potential uncoupling agent. Molecular docking analysis suggested that β-caryophyllene oxide (CPO), a minor constituent of OEO, may act as a potential inhibitor of 3-phosphoinositide-dependent protein kinase-1 (PDPK1), indicating a possible mechanism of anticancer activity. Our findings highlight the potential of OEO as a natural anticancer agent, emphasizing the need for further investigations to elucidate its exact molecular mechanisms and therapeutic applicability. Full article
(This article belongs to the Special Issue Extraction, Separation, and Medicinal Analysis of Natural Products)
Show Figures

Figure 1

19 pages, 3012 KB  
Article
A Novel Brain-Targeting Nanoparticle Loaded with Biatractylolide and Its Protective Effect on Alzheimer’s Disease
by Qianmei Hu, Candi Liu, Jiawang Tan, Jixiang Wang, Hao Yang, Yi Liu, Haochu Mao, Zixuan Jiang, Xing Feng and Xiaojun Tao
Pharmaceuticals 2025, 18(6), 809; https://doi.org/10.3390/ph18060809 - 28 May 2025
Viewed by 686
Abstract
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which [...] Read more.
Background: To enhance the bioavailability and neuroprotective efficacy of biatractylolide against Alzheimer’s disease by developing a novel Tween-80-modified pullulan–chenodeoxycholic acid nanoparticle as a delivery vehicle. Methods: Chenodeoxycholic acid (CDCA) was chemically conjugated to pullulan to yield hydrophobically modified pullulan (PUC), onto which polysorbate 80 (Tween-80) was subsequently adsorbed. The PUC polymers with CDCA substitution levels were analyzed by 1H NMR spectroscopy. Nanoparticles were fabricated via the dialysis method and characterized by transmission electron microscopy and dynamic light scattering for morphology, size, and surface charge. In vitro neuroprotection was assessed by exposing SH-SY5Y and PC12 cells to 20 µM Aβ25-35 to induce cytotoxicity, followed by pretreatment with biatractylolide-loaded PUC (BD-PUC) nanoparticle solutions at various biatractylolide concentrations. The in vivo brain-targeting capability of both empty PUC and BD-PUC particles was evaluated using a live imaging system. Results: The 1H NMR analysis confirmed three distinct CDCA substitution degrees (8.97%, 10.66%, 13.92%). Transmission electron microscopy revealed uniformly dispersed, spherical nanoparticles. Dynamic light scattering measurements showed a hydrodynamic diameter of ~200 nm and a negative zeta potential. Exposure to 20 µM Aβ25-35 significantly reduced SH-SY5Y and PC12 cell viability; pretreatment with BD-PUC nanoparticles markedly enhanced cell survival rates and preserved cellular morphology compared to cells treated with free biatractylolide. Notably, the cytoprotective effect of BD-PUC exceeded that of the free drug. In vivo imaging demonstrated that both empty PUC and Tween-80-adsorbed BD-PUC nanoparticles effectively accumulated in the brain. Conclusions: The protective effect of BD-PUC on SH-SY5Y and PC12 cells induced by Aβ25-35 was higher than free biatractylolide solution, and the BD-PUC nanosolution modified with Tween-80 showed a brain-targeting effect. Full article
(This article belongs to the Special Issue Natural Products for Therapeutic Potential)
Show Figures

Figure 1

17 pages, 4687 KB  
Article
Comparative Toxicological Evaluation of Solubilizers and Hydrotropic Agents Using Daphnia magna as a Model Organism
by Iulia Ioana Olaru, Dragos Paul Mihai, Octavian Tudorel Olaru, Cerasela Elena Gird, Anca Zanfirescu, Gheorghe Stancov, Corina Andrei, Emanuela-Alice Luta and George Mihai Nitulescu
Environments 2025, 12(5), 172; https://doi.org/10.3390/environments12050172 - 21 May 2025
Viewed by 703
Abstract
Improving the aqueous solubility of poorly soluble pharmaceuticals is essential for accurate pharmacotoxicological testing, but the biological safety of solubilizers and hydrotropic agents used for this purpose requires careful evaluation. This study assessed the acute toxicity, physiological parameters (heart rate, claw and appendage [...] Read more.
Improving the aqueous solubility of poorly soluble pharmaceuticals is essential for accurate pharmacotoxicological testing, but the biological safety of solubilizers and hydrotropic agents used for this purpose requires careful evaluation. This study assessed the acute toxicity, physiological parameters (heart rate, claw and appendage movement), behavioral responses (swimming speed), and embryotoxicity of 15 commonly used solubilizers and hydrotropes using Daphnia magna as a biological model. Compounds included surfactants (polysorbate 20 (Tween 20), polysorbate 80 (Tween 80), sodium lauryl sulfate (SLS)), sulfonated hydrotropes (sodium xylene sulfonate (SXS), sodium benzenesulfonate (SBS), sodium p-toluenesulfonate (PTS), sodium 1,3-benzenedisulfonate (SBDS)), and solubilizing solvents (dimethyl sulfoxide (DMSO), glycerol (GLY), propylene glycol (PDO), dimethylformamide (DMF), N,N’-Dimethylbenzamide (DMBA), N,N-Diethylnicotinamide (DENA), N,N-Dimethylurea (DMU), urea). Acute lethality was evaluated across concentration ranges appropriate to each compound group (e.g., 0.0005–0.125% for surfactants; up to 5% for less toxic solvents). Surfactants exhibited extreme toxicity, with Tween 20 and SLS causing 100% lethality even at 0.0005%, while Tween 80 induced 40–50% lethality at that concentration. In contrast, DMSO, GLY, and PDO showed low acute toxicity, maintaining normal heart rate (202–395 bpm), claw and appendage movement, and swimming speed at ≤1%, though embryotoxicity became evident at higher concentrations (≥1–2%). SXS, SBS, PTS, and SBDS displayed clear dose-dependent toxicity but were generally tolerated up to 0.05%. DMBA, DENA, and DMU caused physiological suppression, including reduced heart rate (e.g., DMBA: 246 bpm vs. control 315 bpm) and impaired mobility. Behavioral assays revealed biphasic effects for DMSO and DMBA, with early stimulation (24 h) followed by inhibition (48 h). Embryotoxicity assays demonstrated significant morphological abnormalities and developmental delays at elevated concentrations, especially for DMSO, GLY, and PDO. Overall, DMSO, GLY, PDO, SXS, and DMF can be safely used at tightly controlled concentrations in Daphnia magna toxicity assays to ensure accurate screening without solvent-induced artifacts. Full article
Show Figures

Figure 1

25 pages, 5176 KB  
Article
Flowing Microreactors for Periodate/H2O2 Advanced Oxidative Process: Synergistic Degradation and Mineralization of Organic Dyes
by Abderrahmane Talbi, Slimane Merouani and Aissa Dehane
Processes 2025, 13(5), 1487; https://doi.org/10.3390/pr13051487 - 13 May 2025
Cited by 1 | Viewed by 571
Abstract
The periodate/hydrogen peroxide (PI/H2O2) system is a recently developed advanced oxidation process (AOP) characterized by its rapid reaction kinetics, making it highly suitable for continuous-flow applications compared to conventional batch systems. Despite its potential, no prior studies have investigated [...] Read more.
The periodate/hydrogen peroxide (PI/H2O2) system is a recently developed advanced oxidation process (AOP) characterized by its rapid reaction kinetics, making it highly suitable for continuous-flow applications compared to conventional batch systems. Despite its potential, no prior studies have investigated its performance under flowing conditions. This work presents the first application of the PI/H2O2 process in a tubular microreactor, a promising technology for enhancing mass transfer and process efficiency. The degradation of textile dyes (specifically Basic Yellow 28 (BY28)) was systematically evaluated under various operating conditions, including reactant concentrations, flow rates, reactor length, and temperature. The results demonstrated that higher H2O2 flow rates, increased PI dosages, and moderate dye concentrations (25 µM) significantly improved degradation efficiency, achieving complete mineralization at 2 mM PI and H2O2 flow rates of 80–120 µL/s. Conversely, elevated temperatures negatively impacted the process performance. The influence of organic and inorganic constituents was also examined, revealing that surfactants (SDS, Triton X-100, Tween 20, and Tween 80) and organic compounds (sucrose and glucose) acted as strong hydroxyl radical scavengers, substantially inhibiting dye oxidation—particularly at higher concentrations, where nearly complete suppression was observed. Furthermore, the impact of water quality was assessed using different real matrices, including tap water, seawater, river water, and secondary effluents from a municipal wastewater treatment plant (SEWWTP). While tap water exhibited minimal inhibition, river water and SEWWTP significantly reduced process efficiency due to their high organic content competing with reactive oxygen species (ROS). Despite its high salt content, seawater remained a viable medium for dye degradation, suggesting that further optimization could enhance process performance in saline environments. Overall, this study highlights the feasibility of the PI/H2O2 process in continuous-flow microreactors and underscores the importance of considering competing organic and inorganic constituents in real wastewater applications. The findings provide valuable insights for optimizing AOPs in industrial and municipal wastewater treatment systems. Full article
(This article belongs to the Special Issue Advanced Oxidation Processes in Water Treatment)
Show Figures

Figure 1

22 pages, 4622 KB  
Article
An Inhaled Nanoemulsion Encapsulating a Herbal Drug for Non-Small Cell Lung Cancer (NSCLC) Treatment
by Mural Quadros, Mimansa Goyal, Gautam Chauhan, Dnyandev Gadhave and Vivek Gupta
Pharmaceutics 2025, 17(5), 540; https://doi.org/10.3390/pharmaceutics17050540 - 22 Apr 2025
Cited by 1 | Viewed by 1138
Abstract
Background: Celastrol (Cela), a phytochemical extracted from Tripterygium wilfordii, has been extensively investigated for its potential anti-inflammatory, anti-psoriatic, antioxidant, neuroprotective, and antineoplastic properties. However, its clinical translation is limited due to poor bioavailability, low solubility, and nonspecific toxicity. This study aimed to [...] Read more.
Background: Celastrol (Cela), a phytochemical extracted from Tripterygium wilfordii, has been extensively investigated for its potential anti-inflammatory, anti-psoriatic, antioxidant, neuroprotective, and antineoplastic properties. However, its clinical translation is limited due to poor bioavailability, low solubility, and nonspecific toxicity. This study aimed to develop and evaluate an inhalable Cela-loaded nanoemulsion (NE) formulation to enhance targeted drug delivery and therapeutic efficacy in non-small cell lung cancer (NSCLC). Methods: The NE formulation was optimized using Capmul MCM (25%), Tween 80 (20%), Transcutol HP (5%), and water (50%) as the oil, surfactant, co-surfactant, and aqueous phase, respectively. Physicochemical characterization included globule size, zeta potential, and drug release in simulated lung fluid. In vitro aerosolization performance, cytotoxicity in NSCLC cell lines (A549), scratch and clonogenic assays, and 3D tumor spheroid models were employed to assess therapeutic potential. Results: The NE showed a globule size of 201.4 ± 3.7 nm and a zeta potential of −15.7 ± 0.2 mV. Drug release was sustained, with 20.4 ± 5.5%, 29.1 ± 10%, 64.6 ± 4.1%, and 88.1 ± 5.2% released at 24, 48, 72, and 120 h, respectively. In vitro aerosolization studies indicated a median aerodynamic particle size of 4.8 ± 0.2 μm, confirming its respirability in the lung. Cell culture studies indicated higher toxicity of NE-Cela in NSCLC cells. NE-Cela significantly reduced A549 cell viability, showing a ~6-fold decrease in IC50 (0.2 ± 0.1 μM) compared to Cela alone (1.2 ± 0.2 μM). Migration and clonogenic assays demonstrated reduced cell proliferation, and 3D spheroid models supported its therapeutic activity in tumor-like environments. Conclusions: The inhalable NE-Cela formulation improved Cela’s physicochemical limitations and demonstrated enhanced anti-cancer efficacy in NSCLC models. These findings support its potential as a targeted, well-tolerated therapeutic option for lung cancer treatment. Full article
Show Figures

Graphical abstract

13 pages, 1437 KB  
Article
Control of Aerosolised Type A Influenza Virus H1N1 and a Coronavirus with Vapours Containing Catmint Essential Oil
by Muhammad Yasir, Mark D. P. Willcox, John Ings and Peter van Bruinessen
Hygiene 2025, 5(2), 15; https://doi.org/10.3390/hygiene5020015 - 6 Apr 2025
Viewed by 1736
Abstract
Background: Respiratory viruses spread through airborne droplets and aerosols, causing highly contagious acute respiratory syndromes in humans. This study evaluated the antiviral potential of vapours of catmint-oil-based formulations against respiratory viruses. Methods: The antiviral activity of formulations with or without catmint oil [...] Read more.
Background: Respiratory viruses spread through airborne droplets and aerosols, causing highly contagious acute respiratory syndromes in humans. This study evaluated the antiviral potential of vapours of catmint-oil-based formulations against respiratory viruses. Methods: The antiviral activity of formulations with or without catmint oil (CO) in solution or in aerosolised form was determined against influenza virus H1N1 ATCC VR-1469 and mouse hepatitis virus (MHV-1) ATCC/VR261. In solution, both viruses were exposed to CO formulations for 2–3 h. In aerosolised form, H1N1 was exposed to formulations for 2 min in a closed cylinder and MHV-1 for 10 min in a booth. The antiviral effect of the formulations was evaluated by growing H1N1 in a Madin–Darby canine kidney (MDCK; ATCC-CRL-2936) and MHV-1 in A9 ATCC/CCL 1.4 cells using TCID50 and a plaque assay, respectively. Transmission electron microscopy (TEM) was conducted to investigate the mode of action of the formulations. Results: In solution, the formulation containing hydrogenated CO (HCO), bromelain, N-acetylcysteine and Tween 20 (Formulation (1)) reduced the viability of H1N1 by 2.6 ± 0.07 log10 (p = 0.025) and MHV-1 by 4.5 ± 0.14 log10 (p = 0.014) within 2–3 h. In vapourised form, Formulation (1) produced similar antiviral effects against H1N1, reducing it by 3.00 ± 0.07 log10 (p = 0.002) within 2 min, and Formulation (1) produced a 3.00 ± 0.07 log10 reduction of MHV-1 (p < 0.001) within 10 min (the minimum time needed to detect infective viral particles in the experimental set-ups). Formulation (3) (without bromelain) reduced H1N1 by 1.57 ± 0.14 log10 (p = 0.008) after 2 min and MHV-1 by 1.3 ± 0.04 log10 (p = 0.057) after 10 min. In the absence of catmint oil (Formulation (4)) or in the absence of catmint oil and bromelain (Formulation (5)), there were only slight reductions in the viability of aerosolised H1N1 (1.00 ± 0.14 log10, p = 0.046; <1 log10, p = 0.966, respectively) and MHV-1 (1.07 ± 0.02 log10, p = 0.013; 0.16 ± 0.03 log10, p = 0.910, respectively). The TEM analysis showed that the formulation disrupted the H1N1 envelopes and caused a reduction in size of the viral particles. Conclusions: The catmint-oil-based formulations reduced the H1N1 and MHV-1 by disrupting the vial envelopes. Full article
Show Figures

Figure 1

6 pages, 209 KB  
Proceeding Paper
Influence of Dispersant and Surfactant on nZVI Characterization by Dynamic Light Scattering
by Filipe Fernandes, Ana Isabel Oliveira, Cristina Delerue-Matos and Clara Grosso
Eng. Proc. 2025, 87(1), 33; https://doi.org/10.3390/engproc2025087033 - 2 Apr 2025
Viewed by 296
Abstract
The agrifood industries generate tremendous amounts of waste, with the valorization of these wastes being of the utmost importance. The aim of this work was to synthesize green zero-valent iron nanoparticles (nZVI) using hydromethanolic extracts of spent coffee grounds (SCGs) and post-distillation residues [...] Read more.
The agrifood industries generate tremendous amounts of waste, with the valorization of these wastes being of the utmost importance. The aim of this work was to synthesize green zero-valent iron nanoparticles (nZVI) using hydromethanolic extracts of spent coffee grounds (SCGs) and post-distillation residues of Cistus ladanifer L. leaves (CLL). The synthesized nZVI were then analyzed by dynamic light scattering (DLS), and their size, polydispersity index (PDI), and zeta potential (ZP) were determined. Different dispersants (water and methanol) and the impact of a surfactant (Tween® 20) were tested for DLS analysis. nZVI dispersed in water and added with Tween® 20 displayed lower agglomeration, particle size, and PDI, but higher ZP than nZVI without the addition of surfactant and methanolic suspension. These results provide further insight into the applicability of surfactants in nZVI characterization. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Back to TopTop