Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = U-13C-metabolite internal standard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5080 KB  
Article
Olaris Global Panel (OGP): A Highly Accurate and Reproducible Triple Quadrupole Mass Spectrometry-Based Metabolomics Method for Clinical Biomarker Discovery
by Masoumeh Dorrani, Jifang Zhao, Nihel Bekhti, Alessia Trimigno, Sangil Min, Jongwon Ha, Ahram Han, Elizabeth O’Day and Jurre J. Kamphorst
Metabolites 2024, 14(5), 280; https://doi.org/10.3390/metabo14050280 - 11 May 2024
Viewed by 2936
Abstract
Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity [...] Read more.
Mass spectrometry (MS)-based clinical metabolomics is very promising for the discovery of new biomarkers and diagnostics. However, poor data accuracy and reproducibility limit its true potential, especially when performing data analysis across multiple sample sets. While high-resolution mass spectrometry has gained considerable popularity for discovery metabolomics, triple quadrupole (QqQ) instruments offer several benefits for the measurement of known metabolites in clinical samples. These benefits include high sensitivity and a wide dynamic range. Here, we present the Olaris Global Panel (OGP), a HILIC LC-QqQ MS method for the comprehensive analysis of ~250 metabolites from all major metabolic pathways in clinical samples. For the development of this method, multiple HILIC columns and mobile phase conditions were compared, the robustness of the leading LC method assessed, and MS acquisition settings optimized for optimal data quality. Next, the effect of U-13C metabolite yeast extract spike-ins was assessed based on data accuracy and precision. The use of these U-13C-metabolites as internal standards improved the goodness of fit to a linear calibration curve from r2 < 0.75 for raw data to >0.90 for most metabolites across the entire clinical concentration range of urine samples. Median within-batch CVs for all metabolite ratios to internal standards were consistently lower than 7% and less than 10% across batches that were acquired over a six-month period. Finally, the robustness of the OGP method, and its ability to identify biomarkers, was confirmed using a large sample set. Full article
Show Figures

Figure 1

18 pages, 2583 KB  
Article
Method Development and Validation for the Simultaneous Quantitation of Pentoxifylline, Its Pharmacologically Active Metabolites, and Donepezil Using LC-MS/MS in Rat Plasma: Its Application to a Pharmacokinetic Study
by Sanghee Choi, Wang-Seob Shim, Jiyoung Yoon, Doowon Choi, Eunseo Song, Yeo Jin Choi, Soo-Heui Paik and Kyung-Tae Lee
Separations 2023, 10(5), 276; https://doi.org/10.3390/separations10050276 - 24 Apr 2023
Cited by 5 | Viewed by 2881
Abstract
This study developed a simple, rapid, reproducible, and analytical method using liquid chromatography and electrospray ionization (ESI) with tandem mass spectrometry (LC-MS/MS) to simultaneously quantify pentoxifylline (PTX), its pharmacological active metabolites, lisofylline (PTX-M1) and 1-(3-carboxypropyl)-3,7-dimethylxanthine (PTX-M5), and donepezil (DNP) in rat plasma, using [...] Read more.
This study developed a simple, rapid, reproducible, and analytical method using liquid chromatography and electrospray ionization (ESI) with tandem mass spectrometry (LC-MS/MS) to simultaneously quantify pentoxifylline (PTX), its pharmacological active metabolites, lisofylline (PTX-M1) and 1-(3-carboxypropyl)-3,7-dimethylxanthine (PTX-M5), and donepezil (DNP) in rat plasma, using PTX-d6 and DNP-d7 as the internal standards. The LC-MS/MS procedure was performed at the ESI interface, operating in positive ionization and multiple reaction monitoring (MRM) modes; the monitoring of transitions comprised m/z 279.3 > 181.1 for PTX, m/z 281.1 > 263.1 > 160.90 for PTX-M1, m/z 267.1 > 249.0 > 220.9 for PTX-M5, m/z 380.3 > 90.9 for DNP, m/z 285.3 > 187.1 for PTX-d6 (IS1), and m/z 387.3 > 98.3 for DNP-d7 (IS2). After plasma protein precipitation (PP) with methanol, chromatographic separation was performed with an Imtakt Cadenza® CD-C18 (100 × 3 mm, 3 µm) column, using an isocratic mobile phase consisting of 0.1% formic acid in water and methanol (20:80, v/v) at a flow rate of 0.2 mL/min. The retention times of DNP, PTX-M5, PTX, and PTX-M1 were 2.24, 2.50, 2.68, and 2.72 min, respectively, with a total run time of 5 min. This method was validated over a linear concentration range of 5–8000, 10–5000, 20–15,000, and 2–500 ng mL−1 for PTX, PTX-M1, PTX-M5, and DNP, respectively, with a high correlation coefficient (r2 ≥ 0.99). The established method was fully validated in terms of selectivity, the lower limit of quantitation, precision, accuracy, recovery, matrix effect, stability, and dilution integrity according to the regulatory guidelines from the U.S. Food and Drug Administration and the Korea Ministry of Food and Drug Safety. The validated method was successfully applied to a pharmacokinetic study on the concurrent administration of DNP and PTX in rats. Full article
(This article belongs to the Section Bioanalysis/Clinical Analysis)
Show Figures

Figure 1

18 pages, 726 KB  
Article
Gas Chromatography Mass Spectrometry (GC-MS) Quantification of Metabolites in Stool Using 13C Labelled Compounds
by Oliver Gould, Ben De Lacy Costello, Amy Smart, Peter Jones, Angus Macmaster, Karen Ransley and Norman Ratcliffe
Metabolites 2018, 8(4), 75; https://doi.org/10.3390/metabo8040075 - 31 Oct 2018
Cited by 8 | Viewed by 4975
Abstract
It has become increasingly important to qualitatively and quantitatively assess the volatile metabolites in a range of bodily fluids for use in monitoring health. There has been relatively little work on the quantitative analysis of compounds, particularly with respect to the effects of [...] Read more.
It has become increasingly important to qualitatively and quantitatively assess the volatile metabolites in a range of bodily fluids for use in monitoring health. There has been relatively little work on the quantitative analysis of compounds, particularly with respect to the effects of ethnicity or geographic location. A novel method for the quantification of compounds in stool using 13C labelled compounds as internal standards is presented. Using thermal desorption gas chromatography mass spectrometry, stool samples from 38 healthy volunteers were analysed. The 13C labelled compounds, acetone, ethyl butanoate, ethanoic acid, butanoic acid, 3-methylbutanoic acid, and indole, were added as internal standards. This process mimics the solubility characteristics of the compounds and thus the method was able to quantify the compounds within the solid stool. In total, 15 compounds were quantified: Dimethyl sulphide (26–25,626 ng/g), acetone (442–3006 ng/g), ethyl butanoate (39–2468 ng/g), ethyl 2-methylbutanoate (0.3–180 ng/g), dimethyl disulphide (35–1303 ng/g), 1-octen-3-one (12 ng/g), dimethyl trisulphide (10–410 ng/g), 1-octen-3-ol (0.4–58 ng/g), ethanoic acid (672–12,963 ng/g), butanoic acid (2493–11,553 ng/g), 3-methylbutanoic acid (64–8262 ng/g), pentanoic acid (88–21,886 ng/g), indole (290–5477 ng/g), and 3-methyl indole (37–3483 ng/g). Moreover, by altering the pH of the stool to pH 13 in conjunction with the addition of 13C trimethylamine, the method was successful in detecting and quantifying trimethylamine for the first time in stool samples (range 40–5312 ng/g). Statistical analysis revealed that samples from U.K. origin had five significantly different compounds (ethyl butanoate, 1-octen-3-ol, ethanoic acid, butanoic acid, pentanoic acid, and indole) from those of South American origin. However, there were no significant differences between vegetarian and omnivore samples. These findings are supported by pre-existing literature evidence. Moreover, we have tentatively identified 12 compounds previously not reported as having been found in stool. Full article
Show Figures

Figure 1

Back to TopTop