Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,432)

Search Parameters:
Keywords = UAV positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3135 KB  
Article
Delay-Doppler-Based Joint mmWave Beamforming and UAV Selection in Multi-UAV-Assisted Vehicular Communications
by Ehab Mahmoud Mohamed, Mohammad Ahmed Alnakhli and Sherief Hashima
Aerospace 2025, 12(9), 757; https://doi.org/10.3390/aerospace12090757 - 24 Aug 2025
Abstract
Vehicular communication is crucial for the future of intelligent transportation systems. However, providing continuous high-data-rate connectivity for vehicles in hard-to-reach areas, such as highways, rural regions, and disaster zones, is challenging, as deploying ground base stations (BSs) is either infeasible or too costly. [...] Read more.
Vehicular communication is crucial for the future of intelligent transportation systems. However, providing continuous high-data-rate connectivity for vehicles in hard-to-reach areas, such as highways, rural regions, and disaster zones, is challenging, as deploying ground base stations (BSs) is either infeasible or too costly. In this paper, multiple unmanned aerial vehicles (UAVs) using millimeter-wave (mmWave) bands are proposed to deliver high-data-rate and secure communication links to vehicles. This is due to UAVs’ ability to fly, hover, and maneuver, and to mmWave properties of high data rate and security, enabled by beamforming capabilities. In this scenario, the vehicle should autonomously select the optimal UAV to maximize its achievable data rate and ensure long coverage periods so as to reduce the frequency of UAV handovers, while considering the UAVs’ battery lives. However, predicting UAVs’ coverage periods and optimizing mmWave beam directions are challenging, since no prior information is available about UAVs’ positions, speeds, or altitudes. To overcome this, out-of-band communication using orthogonal time-frequency space (OTFS) modulation is employed to enable the vehicle to estimate UAVs’ speeds and positions by assessing channel state information (CSI) in the Delay-Doppler (DD) domain. This information is used to predict maximum coverage periods and optimize mmWave beamforming, allowing for the best UAV selection. Compared to other benchmarks, the proposed scheme shows significant performance in various scenarios. Full article
Show Figures

Figure 1

20 pages, 3484 KB  
Article
Monitoring Fertilizer Effects in Hardy Kiwi Using UAV-Based Multispectral Chlorophyll Estimation
by Sangyoon Lee, Hongseok Mun and Byeongeun Moon
Agriculture 2025, 15(16), 1794; https://doi.org/10.3390/agriculture15161794 - 21 Aug 2025
Viewed by 201
Abstract
This study addresses the need for efficient and non-destructive monitoring of the nutrient status of hardy kiwi (Actinidia arguta), a plantation crop native to East Asia. Traditional nutrient monitoring methods are labor-intensive and often destructive, limiting their practicality in precision agriculture. [...] Read more.
This study addresses the need for efficient and non-destructive monitoring of the nutrient status of hardy kiwi (Actinidia arguta), a plantation crop native to East Asia. Traditional nutrient monitoring methods are labor-intensive and often destructive, limiting their practicality in precision agriculture. To overcome these challenges, we deployed a rotary-wing unmanned aerial vehicle (UAV) equipped with a multispectral camera to capture monthly images of 10 hardy kiwi orchards in South Korea from June to October 2019. We extracted spectral bands (i.e., red, red-edge, green, and near-infrared) to generate normalized difference vegetation index and canopy chlorophyll content index maps, which were correlated with in situ chlorophyll measurements using a chlorophyll meter. Strong positive correlations were observed between vegetation indexes and actual chlorophyll content, with canopy chlorophyll content index achieving the highest predictive accuracy (average correlation coefficient > 0.84). Regression models based on multispectral data enabled reliable estimation of leaf chlorophyll across months and regions, with an average RMSE of 3.1. Our results confirmed that UAV-based multispectral imaging is an effective, scalable approach for real-time monitoring of nutrient status, supporting timely, site-specific fertilizer management. This method has the potential to enhance fertilizer efficiency, reduce environmental impact, and improve the quality of hardy kiwi cultivations. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 3795 KB  
Article
Leaf Area Index Estimation of Grassland Based on UAV-Borne Hyperspectral Data and Multiple Machine Learning Models in Hulun Lake Basin
by Dazhou Wu, Saru Bao, Yi Tong, Yifan Fan, Lu Lu, Songtao Liu, Wenjing Li, Mengyong Xue, Bingshuai Cao, Quan Li, Muha Cha, Qian Zhang and Nan Shan
Remote Sens. 2025, 17(16), 2914; https://doi.org/10.3390/rs17162914 - 21 Aug 2025
Viewed by 236
Abstract
Leaf area index (LAI) is a crucial parameter reflecting the crown structure of the grassland. Accurately obtaining LAI is of great significance for estimating carbon sinks in grassland ecosystems. However, spectral noise interference and pronounced spatial heterogeneity within vegetation canopies constitute significant impediments [...] Read more.
Leaf area index (LAI) is a crucial parameter reflecting the crown structure of the grassland. Accurately obtaining LAI is of great significance for estimating carbon sinks in grassland ecosystems. However, spectral noise interference and pronounced spatial heterogeneity within vegetation canopies constitute significant impediments to achieving high-precision LAI retrieval. This study used hyperspectral sensor mounted on an unmanned aerial vehicle (UAV) to estimate LAI in a typical grassland, Hulun Lake Basin. Multiple machine learning (ML) models were constructed to reveal a relationship between hyperspectral data and grassland LAI using two input datasets, namely spectral transformations and vegetation indices (VIs), while SHAP (SHapley Additive ExPlanation) interpretability analysis was further employed to identify high-contribution features in the ML models. The analysis revealed that grassland LAI has good correlations with the original spectrum at 550 nm and 750 nm–1000 nm, first and second derivatives at 506 nm–574 nm, 649 nm–784 nm, and vegetation indices including the triangular vegetation index (TVI), enhanced vegetation index 2 (EVI2), and soil-adjusted vegetation index (SAVI). In the models using spectral transformations and VIs, the random forest (RF) models outperformed other models (testing R2 = 0.89/0.88, RMSE = 0.20/0.21, and RRMSE = 27.34%/28.98%). The prediction error of the random forest model exhibited a positive correlation with measured LAI magnitude but demonstrated an inverse relationship with quadrat-level species richness, quantified by Margalef’s richness index (MRI). We also found that at the quadrat level, the spectral response curve pattern is influenced by attributes within the quadrat, like dominant species and vegetation cover, and that LAI has positive relationship with quadrat vegetation cover. The LAI inversion results in this study were also compared to main LAI products, showing a good correlation (r = 0.71). This study successfully established a high-fidelity inversion framework for hyperspectral-derived LAI estimation in mid-to-high latitude grasslands of the Hulun Lake Basin, supporting the spatial refinement of continental-scale carbon sink models at a regional scale. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Figure 1

19 pages, 6878 KB  
Article
LiDAR-Assisted UAV Variable-Rate Spraying System
by Xuhang Liu, Yicheng Liu, Xinhanyang Chen, Yuhan Wan, Dengxi Gao and Pei Cao
Agriculture 2025, 15(16), 1782; https://doi.org/10.3390/agriculture15161782 - 20 Aug 2025
Viewed by 129
Abstract
In wheat pest and disease control methods, pesticide application occupies a dominant position, and the use of UAVs for precise pesticide application is a key technology in precision agriculture. However, it is difficult for existing UAV spraying systems to accurately achieve variable spraying [...] Read more.
In wheat pest and disease control methods, pesticide application occupies a dominant position, and the use of UAVs for precise pesticide application is a key technology in precision agriculture. However, it is difficult for existing UAV spraying systems to accurately achieve variable spraying according to crop growth conditions, resulting in pesticide waste and environmental pollution. To address this issue, this paper proposes a LiDAR-assisted UAV variable-speed spraying system. Firstly, a biomass estimation model based on LiDAR data and RGB data is constructed, LiDAR point cloud data and RGB data are extracted from the target farmland, and, after preprocessing, key parameters including LiDAR feature variables, canopy cover, and visible-light vegetation indices are extracted from the two types of data. Using these key parameters as model inputs, multiple machine learning methods are employed to build a wheat biomass estimation model, and a variable spraying prescription map is generated based on the spatial distribution of biomass. Secondly, the variable-speed spraying system is constructed, which integrates a prescription map interpretation module and a PWM control module. Under the guidance of the variable spraying prescription map, the spraying rate is adjusted to achieve real-time variable spraying. Finally, a comparative experiment is designed, and the results show that the LiDAR-assisted UAV variable spraying system designed in this study performs better than the traditional constant-rate spraying system; while maintaining equivalent spraying effects, the usage of chemical agents is significantly reduced by 30.1%, providing a new technical path for reducing pesticide pollution and lowering grain production costs. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

15 pages, 2580 KB  
Article
The Influence of Ultra-Wideband Anchor Placement on Localization Accuracy
by Luka Kramarić, Mario Muštra and Tomislav Radišić
Sensors 2025, 25(16), 5115; https://doi.org/10.3390/s25165115 - 18 Aug 2025
Viewed by 399
Abstract
Localization of Unmanned Aerial Vehicles (UAVs) in spaces with a limited availability of Global Navigation Satellite System signals presents a challenge, and one possible solution is the usage of Ultra-Wideband (UWB) transceivers as an aid in the localization process. This paper examines the [...] Read more.
Localization of Unmanned Aerial Vehicles (UAVs) in spaces with a limited availability of Global Navigation Satellite System signals presents a challenge, and one possible solution is the usage of Ultra-Wideband (UWB) transceivers as an aid in the localization process. This paper examines the influence of placing the UWB anchors on the UAVs’ localization accuracy in indoor spaces. Different testing scenarios, with variations in the number of anchors and their relative position towards the UAV, were created. Results show that the anchor placement plays an important role and is a significant factor in achieving accurate positioning of UAVs. The error for different testing configurations was shown through the RMSE for each axis, backed up by the standard deviation. The increase in the number of UWB anchors with the combined use of an additional laser ranging sensor for altitude measurement provided the best result. The RMSE was less than 18 cm in each axis of a 3D coordinate system with the standard deviation of up to 4.41 cm. For the testing scenarios that included the usage of a laser altimeter, the RMSE for the z-axis dropped below 1 cm, with the standard deviation of under 0.3 cm. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Graphical abstract

22 pages, 2216 KB  
Article
Joint Placement Optimization and Sum Rate Maximization of RIS-Assisted UAV with LEO-Terrestrial Dual Wireless Backhaul
by Naba Raj Khatiwoda, Babu R. Dawadi and Shashidhar R. Joshi
Telecom 2025, 6(3), 61; https://doi.org/10.3390/telecom6030061 - 18 Aug 2025
Viewed by 751
Abstract
Achieving ubiquitous coverage in 6G networks presents significant challenges due to the limitations of high-frequency signals and the need for extensive infrastructure, and providing seamless connectivity in remote and rural areas remains a challenge. We propose an integrated optimization framework for UAV-LEO-RIS-assisted wireless [...] Read more.
Achieving ubiquitous coverage in 6G networks presents significant challenges due to the limitations of high-frequency signals and the need for extensive infrastructure, and providing seamless connectivity in remote and rural areas remains a challenge. We propose an integrated optimization framework for UAV-LEO-RIS-assisted wireless networks, aiming to maximize system sum rate through the strategic placement and configuration of Unmanned Aerial Vehicles (UAVs), Low Earth Orbit (LEO) satellites, and Reconfigurable Intelligent Surfaces (RIS). The framework employs a dual wireless backhaul and utilizes a grid search method for UAV placement optimization, ensuring a comprehensive evaluation of potential positions to enhance coverage and data throughput. Simulated Annealing (SA) is utilized for RIS placement optimization, effectively navigating the solution space to identify configurations that improve signal reflection and network performance. For sum rate maximization, we incorporate several metaheuristic algorithms, including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Grey Wolf Optimization (GWO), Salp Swarm Algorithm (SSA), Marine Predators Algorithm (MPA), and a hybrid PSO-GWO approach. Simulation results demonstrate that the hybrid PSO-GWO algorithm outperforms individual metaheuristics in terms of convergence speed and achieving a higher sum rate. The coverage improves from 62% to 100%, and the results show an increase in spectrum efficiency of 23.7%. Full article
Show Figures

Figure 1

22 pages, 3265 KB  
Article
A Novel Multi-Core Parallel Current Differential Sensing Approach for Tethered UAV Power Cable Break Detection
by Ziqiao Chen, Zifeng Luo, Ziyan Wang, Zhou Huang, Yongkang He, Zhiheng Wen, Yuanjun Ding and Zhengwang Xu
Sensors 2025, 25(16), 5112; https://doi.org/10.3390/s25165112 - 18 Aug 2025
Viewed by 260
Abstract
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a [...] Read more.
Tethered unmanned aerial vehicles (UAVs) operating in terrestrial environments face critical safety challenges from power cable breaks, yet existing solutions—including fiber optic sensing (cost > USD 20,000) and impedance analysis (35% payload increase)—suffer from high cost or heavy weight. This study proposes a dual innovation: a real-time break detection method and a low-cost multi-core parallel sensing system design based on ACS712 Hall sensors, achieving high detection accuracy (100% with zero false positives in tests). Unlike conventional techniques, the approach leverages current differential (ΔI) monitoring across parallel cores, triggering alarms when ΔI exceeds Irate/2 (e.g., 0.3 A for 0.6 A rated current), corresponding to a voltage deviation ≥ 110 mV (normal baseline ≤ 3 mV). The core innovation lies in the integrated sensing system design: by optimizing the parallel deployment of ACS712 sensors and LMV324-based differential circuits, the solution reduces hardware cost to USD 3 (99.99% lower than fiber optic systems), payload by 18%, and power consumption by 23% compared to traditional methods. Post-fault cable temperatures remain ≤56 °C, ensuring safety margins. The 4-core architecture enhances mean time between failures (MTBF) by 83% over traditional systems, establishing a new paradigm for low-cost, high-reliability sensing systems in terrestrial tethered UAV cable health monitoring. Preliminary theoretical analysis suggests potential extensibility to underwater scenarios with further environmental hardening. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

17 pages, 11092 KB  
Article
Connectivity Between Ephemeral and Permanent Gullies and Its Impact on Gully Morphology: A Regional Study in the Northeast China Black Soil Region
by Hong Liu, Chunmei Wang, Qiang Wang, Shanshan Li, Yongqing Long, Guowei Pang, Lei Wang, Lei Ma and Qinke Yang
Land 2025, 14(8), 1661; https://doi.org/10.3390/land14081661 - 17 Aug 2025
Viewed by 308
Abstract
Gully development is a significant geomorphological and environmental process that affects land degradation worldwide, with ephemeral gullies (EGs) and permanent gullies (PGs) being the two most common types. These two gully types are often spatially connected, and with such EG-PG connectivity can accelerate [...] Read more.
Gully development is a significant geomorphological and environmental process that affects land degradation worldwide, with ephemeral gullies (EGs) and permanent gullies (PGs) being the two most common types. These two gully types are often spatially connected, and with such EG-PG connectivity can accelerate erosion. However, systematic research on this phenomenon remains limited, particularly at the regional scale. This study focuses on the spatial connectivity between EGs and PGs in the Songnen black soil region of northeast China. An unequal probability stratified sampling was used to establish 977 small watershed units, and a database of gullies and their connectivity was constructed based on sub-meter imagery. Among them, 55 representative units were randomly selected within geomorphic zones for field surveys and UAV validation to ensure data accuracy. Spatial patterns of gully connectivity were analyzed, and dominant controlling factors were identified using the Geodetector, which quantifies spatial stratified heterogeneity and evaluates the explanatory power of potential driving factors. The results are as follows: (1) Gully connectivity varies significantly across the region, with hotspot areas where more than 50% of permanent gullies are connected to ephemeral gullies, and cold spot clusters elsewhere. (2) Permanent gullies connected to ephemeral gullies differ significantly from unconnected ones in both length and width, with the former exhibiting a more elongated morphology. (3) Slope length and mean annual precipitation are the primary drivers of gully connectivity, both showing significant positive effects. Moreover, the interaction between mean annual precipitation and slope length shows the strongest explanatory power, indicating that precipitation, in combination with topographic features, plays a dominant role in shaping gully connectivity. By examining the spatial patterns of gully connectivity, this study contributes to a more refined understanding of gully morphological evolution and offers empirical insights for enhancing gully erosion models and optimizing regional soil and water conservation strategies. Full article
Show Figures

Figure 1

20 pages, 1252 KB  
Article
Probability-Constrained Path Planning for UAV Logistics Using Mixed Integer Linear Programming
by Zhongxiang Chen, Shengchun Wang, Kaige Chen and Xiaoke Zhang
Modelling 2025, 6(3), 82; https://doi.org/10.3390/modelling6030082 - 15 Aug 2025
Viewed by 438
Abstract
In three-dimensional (3D) logistics environments, finding optimal paths for unmanned aerial vehicles (UAVs) is challenging due to positioning inaccuracies that require ground-based corrections. These inaccuracies are exacerbated in harsh environments, leading to a significant risk of correction failure. This research proposes a multi-objective [...] Read more.
In three-dimensional (3D) logistics environments, finding optimal paths for unmanned aerial vehicles (UAVs) is challenging due to positioning inaccuracies that require ground-based corrections. These inaccuracies are exacerbated in harsh environments, leading to a significant risk of correction failure. This research proposes a multi-objective mixed integer programming model (MILP) that transforms dynamic uncertainties into binary constraints, utilizing a hierarchical sequencing strategy in the Gurobi optimizer to efficiently identify optimal paths. Our simulations indicate that achieving an 80% mission success probability necessitates an optimal path of 104,946 m with nine corrections. For a 100% success rate, the path length increases to 105,874 m, with corrections remaining constant. These results validate the model’s effectiveness in navigating environments with probabilistic constraints, highlighting its potential for addressing complex logistical challenges. Full article
(This article belongs to the Special Issue Advanced Modelling Techniques in Transportation Engineering)
Show Figures

Figure 1

25 pages, 3078 KB  
Article
Research on Hierarchical Composite Adaptive Sliding Mode Control for Position and Attitude of Hexarotor UAVs
by Xiaowei Han, Hai Wang, Nanmu Hui and Gaofeng Yue
Actuators 2025, 14(8), 401; https://doi.org/10.3390/act14080401 - 12 Aug 2025
Viewed by 218
Abstract
This study proposes a hierarchical composite adaptive sliding-mode control strategy to address the strong nonlinear dynamics of a hexarotor Unmanned Aerial Vehicle (UAV) and the external disturbances encountered during flight. First, within the position-control loop, a Terminal Sliding Mode Control (TSMC) is designed [...] Read more.
This study proposes a hierarchical composite adaptive sliding-mode control strategy to address the strong nonlinear dynamics of a hexarotor Unmanned Aerial Vehicle (UAV) and the external disturbances encountered during flight. First, within the position-control loop, a Terminal Sliding Mode Control (TSMC) is designed to guarantee finite-time convergence of the system states, thereby significantly improving the UAV’s rapid response to complex trajectories. Concurrently, an online Adaptive rates mechanism is introduced to estimate and compensate unknown disturbances and modeling uncertainties in real time, further enhancing disturbance rejection. In the attitude-control loop, a Super-twisting Sliding Mode Control (STSMC) method is employed, where an Adaptive rate law dynamically adjusts the sliding gain to prevent overestimation and high-frequency chattering, while ensuring fast convergence and smooth response. To comprehensively validate the feasibility and superiority of the proposed scheme, a representative helical trajectory-tracking experiment was conducted and systematically compared, via simulation, against conventional control methods. Experimental results demonstrate that the proposed approach achieves stable control within 0.15 s, with maximum position and attitude tracking errors of 0.05 m and 0.15°, respectively. Moreover, it exhibits enhanced robustness and adaptability to external disturbances and parameter uncertainties, effectively improving the motion-control performance of hexacopter UAVs in complex missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

26 pages, 10272 KB  
Article
Research on Disaster Environment Map Fusion Construction and Reinforcement Learning Navigation Technology Based on Air–Ground Collaborative Multi-Heterogeneous Robot Systems
by Hongtao Tao, Wen Zhao, Li Zhao and Junlong Wang
Sensors 2025, 25(16), 4988; https://doi.org/10.3390/s25164988 - 12 Aug 2025
Viewed by 565
Abstract
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to [...] Read more.
The primary challenge that robots face in disaster rescue is to precisely and efficiently construct disaster maps and achieve autonomous navigation. This paper proposes a method for air–ground collaborative map construction. It utilizes the flight capability of an unmanned aerial vehicle (UAV) to achieve rapid three-dimensional space coverage and complex terrain crossing for rapid and efficient map construction. Meanwhile, it utilizes the stable operation capability of an unmanned ground vehicle (UGV) and the ground detail survey capability to achieve precise map construction. The maps constructed by the two are accurately integrated to obtain precise disaster environment maps. Among them, the map construction and positioning technology is based on the FAST LiDAR–inertial odometry 2 (FAST-LIO2) framework, enabling the robot to achieve precise positioning even in complex environments, thereby obtaining more accurate point cloud maps. Before conducting map fusion, the point cloud is preprocessed first to reduce the density of the point cloud and also minimize the interference of noise and outliers. Subsequently, the coarse and fine registrations of the point clouds are carried out in sequence. The coarse registration is used to reduce the initial pose difference of the two point clouds, which is conducive to the subsequent rapid and efficient fine registration. The coarse registration uses the improved sample consensus initial alignment (SAC-IA) algorithm, which significantly reduces the registration time compared with the traditional SAC-IA algorithm. The precise registration uses the voxelized generalized iterative closest point (VGICP) algorithm. It has a faster registration speed compared with the generalized iterative closest point (GICP) algorithm while ensuring accuracy. In reinforcement learning navigation, we adopted the deep deterministic policy gradient (DDPG) path planning algorithm. Compared with the deep Q-network (DQN) algorithm and the A* algorithm, the DDPG algorithm is more conducive to the robot choosing a better route in a complex and unknown environment, and at the same time, the motion trajectory is smoother. This paper adopts Gazebo simulation. Compared with physical robot operation, it provides a safe, controllable, and cost-effective environment, supports efficient large-scale experiments and algorithm debugging, and also supports flexible sensor simulation and automated verification, thereby optimizing the overall testing process. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

32 pages, 3055 KB  
Article
Research on Scheduling Return Communication Tasks for UAV Swarms in Disaster Relief Scenarios
by Zhangquan Tang, Yuanyuan Jiao, Xiao Wang, Xiaogang Pan and Jiawu Peng
Drones 2025, 9(8), 567; https://doi.org/10.3390/drones9080567 - 12 Aug 2025
Viewed by 223
Abstract
This study investigates the scheduling problem of return communication tasks for unmanned aerial vehicle (UAV) swarms, where disaster relief environmental global positioning is hampered. To characterize the utility of these tasks and optimize scheduling decisions, we developed a time window-constrained scheduling model that [...] Read more.
This study investigates the scheduling problem of return communication tasks for unmanned aerial vehicle (UAV) swarms, where disaster relief environmental global positioning is hampered. To characterize the utility of these tasks and optimize scheduling decisions, we developed a time window-constrained scheduling model that operates under constraints, including communication base station time windows, battery levels, and task uniqueness. To solve the above model, we propose an enhanced algorithm through integrating Dueling Deep Q-Network (Dueling DQN) into adaptive large neighborhood search (ALNS), referred to as Dueling DQN-ALNS. The Dueling DQN component develops a method to update strategy weights, while the action space defines the destruction and selection strategies for the ALNS scheduling solution across different time windows. Meanwhile, we design a two-stage algorithm framework consisting of centralized offline training and decentralized online scheduling. Compared to traditionally optimized search algorithms, the proposed algorithm could continuously and dynamically interact with the environment to acquire state information about the scheduling solution. The solution ability of Dueling DQN is 3.75% higher than that of the Ant Colony Optimization (ACO) algorithm, 5.9% higher than that of the basic ALNS algorithm, and 9.37% higher than that of the differential evolution algorithm (DE). This verified its efficiency and advantages in the scheduling problem of return communication tasks for UAVs. Full article
Show Figures

Figure 1

21 pages, 3492 KB  
Article
Integrity Monitoring for BDS/INS Real-Time Kinematic Positioning Between Two Moving Platforms
by Yangyang Li, Weiming Tang, Chenlong Deng, Xuan Zou, Siyu Zhang, Zhiyuan Li and Yipeng Wang
Remote Sens. 2025, 17(16), 2766; https://doi.org/10.3390/rs17162766 - 9 Aug 2025
Viewed by 222
Abstract
In recent years, the rapid development of moving platforms, especially unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), has promoted their widespread applications in various fields such as precision agriculture and formation flight. In these applications, for accurate real-time kinematic positioning between [...] Read more.
In recent years, the rapid development of moving platforms, especially unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), has promoted their widespread applications in various fields such as precision agriculture and formation flight. In these applications, for accurate real-time kinematic positioning between two moving platforms, receiver autonomous integrity monitoring (RAIM) is necessary to assure the reliability of the obtained relative positioning. However, the existing carrier phase-based RAIM (CRAIM) algorithms are mainly a direct extension of pseudorange-based RAIM (PRAIM), whose availability is also a major challenge in signal-harsh environments. Learning from the integrated system between Global Navigation Satellite System (GNSS) and INS and based on a multiple hypothesis solution separation (MHSS) algorithm, we have developed an improved CRAIM algorithm, which combines Beidou Navigation Satellite System (BDS) and INS to offer integrity information for real-time kinematic relative positioning between two moving platforms in challenging environments. To achieve more robust and efficient fault detection and exclusion (FDE) results, an algorithm of observation-domain outlier detection combined with MHSS (OOD-MHSS) is also proposed. In this algorithm, the kinematic relative positioning method with INS addition is performed first, then, based on double-difference (DD) phase observations with known integer ambiguities and the OOD-MHSS method, the integrity monitoring information can be provided for the kinematic relative positioning between two moving platforms. To assess the performance of the OOD-MHSS and the improved CRAIM algorithm, a series of kinematic experiments between different platforms was analyzed and discussed. The results show that the improved CRAIM algorithm can perform effective FDE and provide reliable integrity information, which offers centimeter-level relative position solutions with decimeter-level protection levels (PLs) (integrity budget: 1×105/h). Both observation outlier detection and INS improve the continuity and availability of kinematic relative positioning and the PLs in horizontal and vertical directions. The PL values have been improved by up to 24.3%, and availability has reached 96.67% in harsh urban areas. This is of great significance for applications requiring higher precision and integrity in kinematic relative positioning. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

21 pages, 4331 KB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Viewed by 331
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

20 pages, 1971 KB  
Article
FFG-YOLO: Improved YOLOv8 for Target Detection of Lightweight Unmanned Aerial Vehicles
by Tongxu Wang, Sizhe Yang, Ming Wan and Yanqiu Liu
Appl. Syst. Innov. 2025, 8(4), 109; https://doi.org/10.3390/asi8040109 - 4 Aug 2025
Viewed by 762
Abstract
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), [...] Read more.
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), where small targets are often occluded, multi-scale semantic information is easily lost, and there is a trade-off between real-time processing and computational resources. Existing algorithms struggle to effectively extract multi-dimensional features and deep semantic information from images and to balance detection accuracy with model complexity. To address these limitations, we developed FFG-YOLO, a lightweight small-target detection method for UAVs based on YOLOv8. FFG-YOLO incorporates three modules: a feature enhancement block (FEB), a feature concat block (FCB), and a global context awareness block (GCAB). These modules strengthen feature extraction from small targets, resolve semantic bias in multi-scale feature fusion, and help differentiate small targets from complex backgrounds. We also improved the positioning accuracy of small targets using the Wasserstein distance loss function. Experiments showed that FFG-YOLO outperformed other algorithms, including YOLOv8n, in small-target detection due to its lightweight nature, meeting the stringent real-time performance and deployment requirements of UAVs. Full article
Show Figures

Figure 1

Back to TopTop