Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,503)

Search Parameters:
Keywords = UHPLC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1659 KB  
Article
Gastrointestinal Survivability of a BSH-Positive Lacticaseibacillus rhamnosus VB4 Strain and Its Effect on Bile Acid Deconjugation in a Dynamic In Vitro Gut Model
by Amanda Vaccalluzzo, Gianluigi Agolino, Alessandra Pino, Marianna Cristofolini, Davide Tagliazucchi, Alice Cattivelli, Cinzia Caggia, Lisa Solieri and Cinzia Lucia Randazzo
Nutrients 2025, 17(19), 3179; https://doi.org/10.3390/nu17193179 - 8 Oct 2025
Abstract
Background: Bile salt hydrolase (BSH) is a key probiotic trait, as it facilitates both host metabolism and bacterial survival into the gastrointestinal tract (GIT), through bile acid (BA) deconjugation, keeping intestinal homeostasis. Objectives: The present study aims to investigate the viability [...] Read more.
Background: Bile salt hydrolase (BSH) is a key probiotic trait, as it facilitates both host metabolism and bacterial survival into the gastrointestinal tract (GIT), through bile acid (BA) deconjugation, keeping intestinal homeostasis. Objectives: The present study aims to investigate the viability of the Lacticaseibacillus rhamnosus VB4 strain and its effects on bile acid deconjugation during the gastrointestinal tract (GIT) passage, under a fed condition, using the in vitro SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) model. Methods: Gastric, small intestinal and colonic fractions were monitored and a fecal slurry from a healthy donor was inoculated into the colonic compartment to establish the intestinal microbiota. Samples were collected at the end of stomach, duodenum, jejunum, ileum phases, and colon after 0, 16 and 24 h. Strain survival was assessed by culturing method, and bsh gene expression was revealed by quantitative PCR (qPCR). In addition, UHPLC/HR-MS was performed to reveal the hypothetical changes in BAs profile after strain administration. Results: Good survivability of the VB4 strain in the upper GIT was revealed. Furthermore, VB4-inculated sample showed sustained expression of bsh in both the stomach/small intestine and colon fractions at all sampling times. Analysis of the BAs profile shown that the VB4 strain reduced the levels of the main conjugated BAs in the small intestine under fed condition and improved the deconjugation efficiency during colonic transit compared with the control. Conclusions: These findings highlight the survivability of L. rhamnosus VB4 strain inside the gut and its potential as biotherapeutic BAs-mediator candidate, demonstrating that transcriptomic and metabolomic approaches coupled to a dynamic in vitro gut model represent a robust tool for selection of a BSH-positive probiotic candidate. Full article
(This article belongs to the Topic News and Updates on Probiotics)
22 pages, 2773 KB  
Article
Antioxidant, Neuroprotective, and Antinociceptive Effects of Peruvian Black Maca (Lepidium meyenii Walp.)
by Iván M. Quispe-Díaz, Roberto O. Ybañez-Julca, Daniel Asunción-Alvarez, Cinthya Enriquez-Lara, José L. Polo-Bardales, Rafael Jara-Aguilar, Edmundo A. Venegas-Casanova, Ricardo D. D. G. de Albuquerque, Noé Costilla-Sánchez, Edison Vásquez-Corales, Pedro Buc Calderon and Julio Benites
Antioxidants 2025, 14(10), 1214; https://doi.org/10.3390/antiox14101214 - 8 Oct 2025
Abstract
Lepidium meyenii Walp. (black maca, BM) is a traditional Andean crop increasingly studied for its bioactive potential. This work characterized the phytochemical profile and evaluated the antioxidant, antinociceptive, and neuroprotective properties of a lyophilized aqueous extract of BM hypocotyls. UHPLC-ESI-QTOF-MS/MS identified twelve major [...] Read more.
Lepidium meyenii Walp. (black maca, BM) is a traditional Andean crop increasingly studied for its bioactive potential. This work characterized the phytochemical profile and evaluated the antioxidant, antinociceptive, and neuroprotective properties of a lyophilized aqueous extract of BM hypocotyls. UHPLC-ESI-QTOF-MS/MS identified twelve major compounds, including macamides, imidazole alkaloids, sterols, and fatty acid amides. BM showed a moderate total phenolic content but strong electron transfer-based antioxidant activity in CUPRAC and FRAP assays, together with moderate radical scavenging capacity in ABTS and DPPH systems. In ovariectomized rats, BM significantly reduced brain malondialdehyde levels, mitigated oxidative stress, and improved spatial learning during acquisition in the Morris water maze, confirming its neuroprotective effect. Antinociceptive assays (hot plate, cold plate, and tail immersion) further revealed a rapid but transient increase in nociceptive thresholds. This study provides experimental evidence supporting the analgesic effect of black maca. Molecular docking highlighted lepidiline B and campesterol as key metabolites with strong interactions with redox enzymes, the μ-opioid receptor, and the FAAH enzyme, supporting their role in the observed bioactivities. ADMET predictions indicated favorable oral bioavailability, CNS penetration, systemic clearance, and acceptable safety profiles. These results substantiate the role of black maca as a neuroprotective nutraceutical and highlight its promise as a novel source of rapidly acting natural analgesic compounds. Full article
Show Figures

Figure 1

16 pages, 2458 KB  
Communication
Machine Learning and UHPLC–MS/MS-Based Discrimination of the Geographical Origin of Dendrobium officinale from Yunnan, China
by Tao Lin, Yanping Ye, Jiao Zhang, Jing Wang, Zhengxu Hu, Khine Zar Linn, Xinglian Chen, Hongcheng Liu, Zhenhuan Liu and Qinghua Yao
Foods 2025, 14(19), 3442; https://doi.org/10.3390/foods14193442 - 8 Oct 2025
Abstract
A rapid targeted screening method for 22 compounds, including flavonoids, glycosides, and phenolics, in Dendrobium officinale was developed using UHPLC–MS/MS, demonstrating good linear correlation coefficients, precision, repeatability, and stability. D. officinale from the Guangnan and Maguan regions can be effectively classified into two [...] Read more.
A rapid targeted screening method for 22 compounds, including flavonoids, glycosides, and phenolics, in Dendrobium officinale was developed using UHPLC–MS/MS, demonstrating good linear correlation coefficients, precision, repeatability, and stability. D. officinale from the Guangnan and Maguan regions can be effectively classified into two distinct categories using PCA. In addition, OPLS-DA discriminant analysis enables clear separation between groups, with samples forming well-defined clusters. The 22 chemical components provide valuable origin-related information for D. officinale. The compounds with VIP values of >1 included eriodictyol, vanillic acid, protocatechuic acid, gentisic acid, and naringenin. The difference in naringenin content between D. officinale from the two production areas was minimal. By contrast, eriodictyol and vanillic acid were relatively abundant in D. officinale from Guangnan, while gentisic acid and protocatechuic acid were more prevalent in D. officinale from Maguan. The pathways with higher Kyoto Encyclopedia of Genes and Genomes enrichment were primarily associated with lipid metabolism and atherosclerosis, fluid shear stress and atherosclerosis, and nonalcoholic fatty liver disease. These findings suggest that D. officinale exhibits promising lipid-balancing properties and potential cardiovascular health benefits. Seven machine learning algorithms—Random Forest, XGBoost, Support Vector Machine, k-Nearest Neighbor, Backpropagation Neural Network, Random Tree, and CatBoost—demonstrated superior accuracy and precision in distinguishing D. officinale from the Guangnan and Maguan regions. The key compounds with higher weights—vanillic acid, chrysoeriol, trigonelline, isoquercitrin, gallic acid, 4-hydroxybenzaldehyde, eriodictyol, sweroside, apigenin, and homoeriodictyol—play a crucial role in model construction and the identification of D. officinale from the Guangnan and Maguan regions. The quantification of 22 compounds using UHPLC–MS/MS, combined with PCA, OPLS-DA, and machine learning, enables effective discrimination of D. officinale from these two Yunnan production areas. Full article
Show Figures

Figure 1

15 pages, 3066 KB  
Article
Optimal Extraction of Antioxidants, Flavonoids, and Phenolic Acids from the Leaves of Apocynum venetum L. by Response Surface Methodology with Integrated Chemical Profiles and Bioactivity Evaluation
by Rulan Qin, Jinhang Song, Qiang Wang, Yingli Guan and Chongning Lv
Molecules 2025, 30(19), 4006; https://doi.org/10.3390/molecules30194006 - 7 Oct 2025
Viewed by 175
Abstract
The leaves of Apocynum venetum L. (A. venetum L.) are a functional food that plays an important role in antioxidation due to its high content of flavonoids and phenolic acids. Therefore, the extraction process of leaves of A. venetum L. is closely [...] Read more.
The leaves of Apocynum venetum L. (A. venetum L.) are a functional food that plays an important role in antioxidation due to its high content of flavonoids and phenolic acids. Therefore, the extraction process of leaves of A. venetum L. is closely related to their activity. In this study, ultra-high-performance liquid chromatography (UHPLC) coupled with diode array detector (DAD), electrospray ionization (ESI), and quadrupole time-of-flight mass spectrometry (QTOF/MS) techniques has been established for qualitative and quantitative analysis of three phenolic acids and six flavonoids in the leaves of A. venetum L. Ultrasonic-assisted extraction conditions for the maximum recovery of phenolic and flavonoid compounds with a high antioxidation effect were optimized by response surface methodology (RSM). The optimum extraction conditions were as follows: ethanol concentration 64%, extraction time 20 min, and liquid-to-solid ratio 16:1 mL/g. The yields of three phenolic acids and six flavonoids under the optimal process were found to be 8.932 ± 0.091 and 20.530 ± 0.198 mg/g, respectively, which matched with those predicted (8.751 and 20.411 mg/g) within a 95% confidence level. Antioxidant activities based on ABTS and DPPH assays showed that the optimal extracts had strong activities compared with those of conventional reflux extraction methods. Moreover, the contribution of total and individual phenolic acids and flavonoids to antioxidant activity was also estimated by Pearson correlation analysis. Full article
Show Figures

Figure 1

18 pages, 2202 KB  
Article
Modulation of Piceatannol Skin Diffusion by Spilanthol and UV Filters: Insights from the Strat-M™ Model
by Gisláine C. da Silva, Rodney A. F. Rodrigues and Carla B. G. Bottoli
Dermato 2025, 5(4), 19; https://doi.org/10.3390/dermato5040019 - 7 Oct 2025
Viewed by 97
Abstract
Background: currently, there is a growing trend toward multifunctional cosmetics, which combine several active ingredients in a single product to enhance efficacy and user convenience. As ingredients may influence one another, it is important to study the behavior of mixing multiple compounds in [...] Read more.
Background: currently, there is a growing trend toward multifunctional cosmetics, which combine several active ingredients in a single product to enhance efficacy and user convenience. As ingredients may influence one another, it is important to study the behavior of mixing multiple compounds in complex formulations, especially regarding their interaction with the skin. Piceatannol, for instance, is a naturally occurring stilbene recognized for its in vitro potent antioxidant, anti-inflammatory, and anti-aging activities, making it a promising candidate for dermocosmetic use in suncare. But despite its beneficial biological activities, its cutaneous permeation remains poorly understood, particularly when delivered from complex formulations containing multiple ingredients. Objectives: in this sense, this study aimed to evaluate the in vitro skin diffusion profile of piceatannol from a passion fruit seed extract (Pext) incorporated into a topical base (Bem) or an organic sunscreen emulsion (Oem), with or without a spilanthol-rich Acmella oleracea extract (Jext) used as a natural permeation enhancer. Methods: due to ethical and variability issues with human and animal skins, the Strat-M™ synthetic membrane was chosen as a standardized model for the in vitro skin permeation assays. Piceatannol localization within membrane layers was examined by confocal Raman microscopy (CRM), while compound identification in donor and receptor compartments was performed via UHPLC-DAD. Results: piceatannol from Bem was detected up to 140 µm from the Strat-M™ surface and exceeded 180 µm in depth when Jext and organic sunscreens were included in the formulation. Notably, formulations containing Jext and those based on Oem promoted enhanced accumulation in both the stratum corneum and deeper skin layers, suggesting an improved delivery potential in lipid-rich vehicles. Conclusions: even though some instability issues were observed, piceatannol penetration into Strat-M™ from the proposed formulations was confirmed, and the results provide a foundation for further research on its topical delivery, supporting the rational development of formulations capable of harnessing its demonstrated biological properties. Full article
(This article belongs to the Special Issue Systemic Photoprotection: New Insights and Novel Approaches)
Show Figures

Figure 1

25 pages, 2327 KB  
Article
Extraction Methods Shape the Phenolic Composition and Bioactivities of Defatted Moroccan Pistacia lentiscus L. Resin
by Abdessamad Beraich, Daniela Batovska, Krastena Nikolova, Burak Dikici, Göksen Gören, Yousra Belbachir, Mohamed Taibi, Amine Elbouzidi, Irena Mincheva, Natalina Panova, Abdesselam Tahani, Abdeslam Asehraou and Abdelmonaem Talhaoui
Antioxidants 2025, 14(10), 1207; https://doi.org/10.3390/antiox14101207 - 5 Oct 2025
Viewed by 379
Abstract
Mastic gum from Pistacia lentiscus L. has long been valued in Mediterranean medicine and food preservation, yet its bioactive potential remains underexplored in specific geographic contexts. In Morocco, the resin—locally known as Meska Horra—is abundant but insufficiently characterized. This study compared three extraction [...] Read more.
Mastic gum from Pistacia lentiscus L. has long been valued in Mediterranean medicine and food preservation, yet its bioactive potential remains underexplored in specific geographic contexts. In Morocco, the resin—locally known as Meska Horra—is abundant but insufficiently characterized. This study compared three extraction methods—cold maceration (CM), Soxhlet extraction (SE), and ultrasound-assisted extraction (UAE)—using sequential acetone and 70% ethanol to recover complementary phenolic compounds from defatted resin. Targeted UHPLC–ESI–MS/MS profiling identified and quantified 30 phenolics, mainly flavonoids and phenolic acids, providing the first systematic dataset for Moroccan mastic gum. UAE–EtOH extract displayed the strongest antioxidant activity (DPPH IC50 = 0.029 mg/mL; ABTS•+ IC50 = 0.026 mg/mL). SE–acetone and SE–EtOH extracts showed potent antifungal activity, particularly against Geotrichum candidum, Rhodotorula glutinis, and Aspergillus niger (MBC = 1.7%). The SE–acetone extract exhibited cytotoxicity toward MIA PaCa-2 pancreatic cancer cells (IC50 = 19 µg/mL). These findings demonstrate that extraction method and solvent choice strongly influence phenolic recovery and associated bioactivities, supporting the valorization of Moroccan mastic gum as a promising source for nutraceutical and pharmaceutical applications. Full article
(This article belongs to the Special Issue Green Extraction of Antioxidant from Natural Source)
Show Figures

Graphical abstract

17 pages, 1533 KB  
Article
UHPLC-QTOF-ESI-MS/MS, SNAP-MS Identification, In Silico Prediction of Pharmacokinetic Properties of Constituents from the Stem Bark of Holarrhena floribunda (G. Don) T. Durand and Schinz (Apocynaceae)
by Franck Landry Djila Possi, Mc Jesus Kinyok, Joseph Eric Mbasso Tameko, Bel Youssouf G. Mountessou, Johanne Kevine Jumeta Dongmo, Mariscal Brice Tchatat Tali, Appolinaire Kene Dongmo, Fabrice Fekam Boyom, Jean Jules Kezetas Bankeu, Norbert Sewald, Jean Rodolphe Chouna and Bruno Ndjakou Lenta
Biomolecules 2025, 15(10), 1415; https://doi.org/10.3390/biom15101415 - 4 Oct 2025
Viewed by 253
Abstract
The present work reports the bioguided isolation of constituents from the ethanol extract of Holarrhena floribunda stem bark, their identification by UHPLC-ESI-QTOF-MS/MS identification, and the in silico prediction of the pharmacokinetic and toxicity parameters. The crude extract, along with its n-hexane and [...] Read more.
The present work reports the bioguided isolation of constituents from the ethanol extract of Holarrhena floribunda stem bark, their identification by UHPLC-ESI-QTOF-MS/MS identification, and the in silico prediction of the pharmacokinetic and toxicity parameters. The crude extract, along with its n-hexane and alkaloid-rich fractions, displayed moderate to good antiplasmodial activity in vitro against chloroquine-sensitive (3D7) and multidrug-resistant (Dd2) strains of Plasmodium falciparum, with IC50 values ranging from 6.54 to 43.54 µg/mL. Seventeen steroidal alkaloids (117) were identified in the most active fraction using UHPLC-ESI-QTOF-MS/MS, based on their fragmentation patterns and analysis with the Structural Similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS). Furthermore, bioguided isolation of the ethanol extract yielded twenty-one compounds (3, 5, 10, 1416, 1831), whose structures were elucidated by spectroscopic methods. Among them, compounds 5, 14, and 27 showed the highest potency against the two strains of P. falciparum, with IC50 values between 25.97 and 55.78 µM. In addition, the in silico prediction of pharmacokinetic parameters and drug-likeness using the SwissADME web tool indicated that most of the evaluated compounds (1, 35, and 1416) complied with Lipinski’s rule of five. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

21 pages, 679 KB  
Article
Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath)
by Reneta Gevrenova, Rositsa Mihaylova, Nikolay Bebrivenski, Georgi Momekov and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(19), 3063; https://doi.org/10.3390/plants14193063 - 3 Oct 2025
Viewed by 285
Abstract
Erica spiculifolia Salisb. (Balkan heath) is an evergreen shrub growing in the mountain shrublands of Eastern Europe. E. spiculifolia was used as a diuretic, anti-inflammatory, and antioxidant herbal remedy. The present study aims to conduct an evaluation of the phytochemical composition and antitumor [...] Read more.
Erica spiculifolia Salisb. (Balkan heath) is an evergreen shrub growing in the mountain shrublands of Eastern Europe. E. spiculifolia was used as a diuretic, anti-inflammatory, and antioxidant herbal remedy. The present study aims to conduct an evaluation of the phytochemical composition and antitumor activity of the methanol–aqueous extract from E. spiculifolia aerial parts to explore its potential in cancer treatment. Overall, a total of 54 secondary metabolites, including 28 hydroxybenzoic, hydroxycinnamic acids, and phenolic glycosides, and 10 triterpene acids, together with 17 flavonoids, were identified or annotated in the assayed E. spiculifolia extract using liquid chromatography-high-resolution mass spectrometry. The cytotoxic activity of the extract, alongside gallic, protocatechuic, and oleanolic acids as its constituents, was screened against a panel of malignant human cell lines of different origin (LAMA-84, HL-60, MDA-MB-231, MCF-7, and CASKI). The most prominent antiproliferative effect of the studied extract (with IC50 16.6 μg/mL), matched with the highest tumor selectivity (SI > 120), was observed in the LAMA-84 myeloid cells. These findings were further supported by gallic and oleanolic acid (IC50 6.2 and 1.7 μg/mL, respectively), accounting for a more distinct cytotoxicity. The strongest selective antineoplastic activity was achieved towards the triple-negative breast carcinoma cell line MDA-MB-231, with an IC50 of 32.5 μg/mL. This study provided compelling evidence for a wide spectrum of E. spiculifolia antitumor activity, indicating its potential as a natural alternative for future therapeutic applications. Full article
(This article belongs to the Special Issue Phytochemical Profiling and Bioactive Potential of Plants)
Show Figures

Figure 1

19 pages, 4414 KB  
Article
Seasonal, Organ-, and Location-Dependent Variations in the Alkaloid Content of Pachysandra terminalis Investigated by Multivariate Data Analysis of LC-MS Profiles
by Lizanne Schäfer, Jandirk Sendker and Thomas J. Schmidt
Plants 2025, 14(19), 3060; https://doi.org/10.3390/plants14193060 - 3 Oct 2025
Viewed by 280
Abstract
Pachysandra terminalis (P. terminalis), a plant belonging to the Buxaceae family, is known as a great source of aminosteroid alkaloids. In a previous communication, we reported on the isolation of a variety of aminosteroids from P. terminalis, which presented interesting activity [...] Read more.
Pachysandra terminalis (P. terminalis), a plant belonging to the Buxaceae family, is known as a great source of aminosteroid alkaloids. In a previous communication, we reported on the isolation of a variety of aminosteroids from P. terminalis, which presented interesting activity against the protozoan pathogens, Trypanosoma brucei rhodesiense and Plasmodium falciparum. In the present study, variations in the alkaloid profile of P. terminalis related to seasonal changes as well as differences between plant organs (leaves and twigs) and between plant populations were investigated to prioritize candidates for targeted isolation in further studies. For this purpose, sample material of P. terminalis was collected from the two nearby populations in monthly intervals over one year. The ethanolic (75%) extracts were analyzed using UHPLC/+ESI-QqTOF-MS/MS, and the resulting data converted to variables encoding the intensity of MS signals in particular m/z and retention time (tR) intervals over the chromatographic runs. The very large and complex data matrix of these <tR:m/z> variables was evaluated using multivariate data analysis, especially principal component analysis (PCA) and volcano plot analysis of t-test data. The results of these analyses, for the first time, allowed a holistic analysis of variation in the alkaloid profiles in P. terminalis organs over the vegetation period. The evaluation of the PCA scores and loadings plots of principal components 1 through 3, as well as of volcano plots, highlighted 25 different compounds, mostly identified as aminosteroid alkaloids, that were most relevant for the differences between leaves and twigs and between the two populations and mainly determined the changes in their chemical profiles over the vegetation period. Full article
Show Figures

Figure 1

15 pages, 12128 KB  
Article
Metabolomic and Transcriptomic Analyses of Soft-Body Coloration in Jinjiang Oyster (Crassostrea ariakensis)
by Zhuanzhuan Li, Shuqi Zhao, Jianing Yu, Biao Wu, Peizhen Ma, Xiujun Sun, Liqing Zhou and Zhihong Liu
Fishes 2025, 10(10), 499; https://doi.org/10.3390/fishes10100499 - 3 Oct 2025
Viewed by 276
Abstract
The coloration of shellfish significantly influences both environmental adaptability and economic value. In the Jinjiang oyster (Crassostrea ariakensis), soft-body color varies between individuals, with an orange-yellow phenotype distinct from the milky white coloration of the wild type. To elucidate the compositional [...] Read more.
The coloration of shellfish significantly influences both environmental adaptability and economic value. In the Jinjiang oyster (Crassostrea ariakensis), soft-body color varies between individuals, with an orange-yellow phenotype distinct from the milky white coloration of the wild type. To elucidate the compositional differences and molecular mechanisms underlying orange-yellow (designated as CaR) versus milky white (CaW) soft-body color in C. ariakensis, we conducted comparative ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) non-targeted and transcriptomic analyses. A total of 280 differential accumulation metabolites (DAMs) and 691 differentially expressed genes (DEGs) were detected between the CaR and CaW groups. The metabolite set enrichment analysis (MSEA) revealed that DAMs were significantly enriched in pigment metabolism pathways, including tyrosine metabolism, porphyrin metabolism, and lipid metabolism. Furthermore, genes associated with melanin synthesis and carotenoids conversions or transports were upregulated in the CaR vs. CaW group. These genes included Cyp4z1, Cyp4f22, Cyp17a1, Cyp1a5, Cyp2d28a, Lrp4, Aldh, and Tyr-3, potentially driving the accumulation of pheomelanin and carotenoids. This study demonstrates the vital roles of melanin and carotenoid metabolism in Jinjiang oyster body color formation, providing key insights into the molecular mechanisms of color determination in shellfish. Full article
(This article belongs to the Special Issue Germplasm Resources and Genetic Breeding of Aquatic Animals)
Show Figures

Figure 1

23 pages, 1003 KB  
Article
Enhanced “Greener” and Sustainable Ultrasonic Extraction of Bioactive Components from Waste Wild Apple (Malus sylvestris (L.) Mill.) Fruit Dust: The Impact of Pretreatment with Natural Deep Eutectic Solvents
by Slađana V. Dončić, Dragan Z. Troter, Miroslav M. Sovrlić, Nebojša D. Zdravković, Aleksandar G. Kočović, Miloš N. Milosavljević, Milos Stepovic, Emina M. Mrkalić, Jelena B. Zvezdanović, Dušica P. Ilić and Sandra S. Konstantinović
Analytica 2025, 6(4), 38; https://doi.org/10.3390/analytica6040038 - 2 Oct 2025
Viewed by 339
Abstract
Significant depletion of natural resources, coupled with increased environmental pollution resulting from the constant evolution of global industrialization, poses a considerable problem. Therefore, it is unsurprising that sustainable “green” chemistry and technology are gathering the worldwide scientific community, whose common goal is to [...] Read more.
Significant depletion of natural resources, coupled with increased environmental pollution resulting from the constant evolution of global industrialization, poses a considerable problem. Therefore, it is unsurprising that sustainable “green” chemistry and technology are gathering the worldwide scientific community, whose common goal is to find applicable solutions for the abovementioned problems. This paper combined the ultrasonic extraction method (a form of “green” technology) with natural deep eutectic solvents (NADESs, a type of “green” solvent) for the production of extracts from an industrial by-product (discarded waste wild apple dust). Waste wild apple dust was pretreated with different NADESs in order to explore the pretreatment benefits regarding ultrasonic extraction of bioactive compounds. Among all solvents used, aqueous propylene glycol was chosen as the best system, which, combined with Reline NADES pretreatment, provided the highest TPC and TFC values, together with the best antioxidant activities. UHPLC-DAD-MS analyses of extracts revealed the presence of natural organic acids, quercetin and kaempferol derivatives, tannins, and flavones. Following this procedure, valorization of agro-industrial apple herbal waste resulted in obtaining extracts with high potential for utilization in different industrial branches (food and pharmaceutical industries), contributing to both cleaner production and reduced environmental impact. Full article
(This article belongs to the Section Sample Pretreatment and Extraction)
Show Figures

Figure 1

31 pages, 2721 KB  
Article
Phytochemical Composition and Antioxidant Activity of Traditional Plant Extracts with Biocidal Effects and Soil-Enhancing Potential
by Camelia Hodoșan, Cerasela Elena Gîrd, Ștefan-Claudiu Marin, Alexandru Mihalache, Emanuela-Alice Luță, Elena-Iuliana Ioniță, Andrei Biță, Ştefania Gheorghe, Laura Feodorov, Violeta Popovici, Elena Pogurschi, Lucica Nistor, Iulius Sorin Bărbuică and Lăcrămioara Popa
Antioxidants 2025, 14(10), 1198; https://doi.org/10.3390/antiox14101198 - 2 Oct 2025
Viewed by 568
Abstract
This research provides a comprehensive evaluation of the phytochemical composition, antioxidant potential, and biological properties of four plant species with longstanding use in ethnobotanical traditions: Calendula officinalis, Mentha × piperita, Urtica dioica, and Juglans regia. Plant extracts were obtained [...] Read more.
This research provides a comprehensive evaluation of the phytochemical composition, antioxidant potential, and biological properties of four plant species with longstanding use in ethnobotanical traditions: Calendula officinalis, Mentha × piperita, Urtica dioica, and Juglans regia. Plant extracts were obtained using a range of solvent systems and subsequently analyzed for their content of total polyphenols, flavonoids, and phenolic acids. Ultra-high-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) enabled the accurate identification and quantification of major polyphenolic constituents. The antioxidant capacity was assessed through a series of in vitro assays, and elemental analysis was conducted to determine microelement content. To evaluate potential ecological implications, acute toxicity was tested using Daphnia magna, while phytotoxic effects were also examined. The results demonstrate pronounced antioxidant activity along with notable biocidal and soil-enhancing properties. These findings underscore the potential of such plant-based formulations as sustainable alternatives to conventional agrochemicals and highlight the relevance of integrating traditional botanical knowledge with modern strategies for enhancing soil quality, crop performance, and environmental sustainability. Full article
(This article belongs to the Special Issue Antioxidant and Protective Effects of Plant Extracts—2nd Edition)
Show Figures

Figure 1

12 pages, 267 KB  
Article
Multi-Analyte Method for Antibiotic Residue Determination in Honey Under EU Regulation 2021/808
by Helena Rodrigues, Marta Leite, Maria Beatriz P. P. Oliveira and Andreia Freitas
Antibiotics 2025, 14(10), 987; https://doi.org/10.3390/antibiotics14100987 - 2 Oct 2025
Viewed by 316
Abstract
Background/Objectives: Antibiotic detection in honey is challenging due to the complexity of this product, the typically low levels of residues, and the absence of Maximum Residue Levels (MRLs) for beehive products. The use of antibiotics in apiculture poses potential risks to human health, [...] Read more.
Background/Objectives: Antibiotic detection in honey is challenging due to the complexity of this product, the typically low levels of residues, and the absence of Maximum Residue Levels (MRLs) for beehive products. The use of antibiotics in apiculture poses potential risks to human health, including antimicrobial resistance and toxic effects. Reliable, sensitive, and selective analytical methods are essential to ensure food safety and enable accurate monitoring of antibiotic contamination in honey. This study aimed to validate a multi-analyte procedure in accordance with the parameters established in Commission Implementing Regulation (EU) 2021/808 for the identification and quantification of antibiotics, including tetracyclines, lincosamides, quinolones, macrolides, β-lactams, sulfonamides, and diaminopyrimidines. Methods: An extraction protocol was developed using 0.1% formic acid in ACN:H2O (80:20, v/v), followed by a modified QuEChERS with the addition of 1 g NaCl and 2 g MgSO4. The extracts were analyzed by UHPLC-TOF-MS. Results: The method, validated under CIR (EU) 2021/808, demonstrated robust performance, with recoveries ranging from 80.1% to 117.6%, repeatability between 0.5% and 32.2%, reproducibility between 2.3% and 31.6%, and determination coefficients (R2) ranging from 0.9429 to 0.9982. Validation was achieved for 15 antibiotic residues, with CCβ from 3 to 15 μg·kg−1, LODs between 0.09 and 6.19 μg·kg−1, and LOQs between 0.29 and 18.77 μg·kg−1. Application to 10 commercial Portuguese honey revealed no detectable levels of the target antibiotics. Conclusions: The combination of a simplified extraction with UHPLC-TOF-MS provides a reliable approach for the determination of antibiotics in honey. This validated method represents a valuable tool for food safety monitoring and risk assessment of apiculture practices. Full article
18 pages, 1153 KB  
Article
Pulsed Electric Fields Reshape the Malting Barley Metabolome: Insights from UHPLC-HRMS/MS
by Adam Behner, Nela Prusova, Marcel Karabin, Lukas Jelinek, Jana Hajslova and Milena Stranska
Molecules 2025, 30(19), 3953; https://doi.org/10.3390/molecules30193953 - 1 Oct 2025
Viewed by 257
Abstract
The Pulsed Electric Field (PEF) technique represents a modern technology for treating and processing food and agricultural raw materials. The application of high-voltage electric pulses has been shown to modify macrostructure, improve extractability, and enhance the microbial safety of the treated matrix. In [...] Read more.
The Pulsed Electric Field (PEF) technique represents a modern technology for treating and processing food and agricultural raw materials. The application of high-voltage electric pulses has been shown to modify macrostructure, improve extractability, and enhance the microbial safety of the treated matrix. In this study, we investigated metabolomic changes occurring during the individual technological steps of malting following PEF treatment. Methanolic extracts of technological intermediates of malting barley were analyzed using metabolomic fingerprinting performed with UHPLC-HRMS/MS. For data processing and interpretation, the freely available MS-DIAL—MS-CleanR—MS-Finder software platform was used. The metabolomes of the treated and untreated barley samples revealed significant changes. Tentatively identified PEF-related biomarkers included 1,2-diacylglycerol-3-phosphates, triacylglycerols, linoleic acids and their derivatives, octadecanoids, N-acylserotonins, and very long-chain fatty acids, and probably reflect abiotic stress response. Monitoring of the profiles of selected biomarkers in PEF malting batch indirectly revealed a potential enhancement of enzymatic activity after the PEF treatment. These results contribute to fundamental knowledge regarding the influence of PEF on final malt from a metabolomic perspective. Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

26 pages, 1840 KB  
Article
Bioactive Compounds Discovery from French Guiana Plant Extracts Through Antitubercular Screening and Molecular Networking
by Célia Breaud, Clémentine Saunier, Béatrice Baghdikian, Fathi Mabrouki, Myriam Bertolotti, Mariana Royer, Pierre Silland, Marc Maresca, Eldar Garaev, Jean-François Cavalier, Stéphane Canaan, Sok-Siya Bun-Llopet and Elnur Garayev
Plants 2025, 14(19), 3028; https://doi.org/10.3390/plants14193028 - 30 Sep 2025
Viewed by 249
Abstract
Tuberculosis (TB) is still a significant public health threat, with rising drug resistance and high incidence in multiple areas worldwide. In the search for novel antitubercular agents, this study explores the application of a bioactivity-guided molecular networking approach to identify bioactive compounds from [...] Read more.
Tuberculosis (TB) is still a significant public health threat, with rising drug resistance and high incidence in multiple areas worldwide. In the search for novel antitubercular agents, this study explores the application of a bioactivity-guided molecular networking approach to identify bioactive compounds from seven plant species (Curatella americana, Davilla nitida, Dipteryx punctata, Indigofera suffruticosa, Quassia amara, Tetradenia riparia, and Zingiber zerumbet) collected in French Guiana. Using ultrasound-assisted extraction followed by liquid–liquid partitioning and UHPLC-HRMS/MS analysis, a library of 72 samples was tested against Mycobacterium tuberculosis. The non-polar fractions from Indigofera suffruticosa, Tetradenia riparia, and Zingiber zerumbet showed the highest activity. The integration of metabolomic and bioassay data on molecular networks allowed the prioritization and annotation of active compounds, revealing flavonoids as contributors to the antitubercular activity of the active samples. In addition, the use of computational tools such as GNPS, SIRIUS, and TIMA-R enabled dereplication and increased the confidence in the structural prediction of active metabolites. This approach demonstrated its potential in accelerating the identification of both known and novel bioactive compounds without requiring exhaustive isolation, offering a robust strategy for natural product-based drug development against TB. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

Back to TopTop