Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = UiO-66

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 341 KB  
Review
Surgical Techniques for Urinary Incontinence in Young Women—Narrative Review
by Romina-Marina Sima, Liana Pleș, Oana-Denisa Bălălău, Mihaela Amza, Ileana-Maria Conea, Tina-Ioana Bunea, Gabriel-Petre Gorecki, Ancuța-Alina Constantin, Cristian-Valentin Toma, Mara-Mădălina Mihai and Mircea-Octavian Poenaru
Surg. Tech. Dev. 2025, 14(3), 28; https://doi.org/10.3390/std14030028 - 22 Aug 2025
Viewed by 326
Abstract
Urinary incontinence (UI) is a widespread worldwide gynecological pathology with a negative impact on women’s quality of life. We performed a narrative review and present a general, descriptive, and comprehensive perspective about surgical techniques for urinary incontinence in young women. Even though parity [...] Read more.
Urinary incontinence (UI) is a widespread worldwide gynecological pathology with a negative impact on women’s quality of life. We performed a narrative review and present a general, descriptive, and comprehensive perspective about surgical techniques for urinary incontinence in young women. Even though parity and vaginal births represent important risk factors for the occurrence of UI, it is also common among young women who are nulliparous. Lifestyle, obesity, smoking, alcohol consumption, and excessive stretching exercises can contribute to the occurrence of UI. Correct diagnosis and treatment may reduce the negative effects of UI on daily activities. Disease management varies depending on the three types of UI: stress, urge, and mixed. Conservative treatment involves lifestyle changes, pharmacological therapy, and pelvic floor muscle training. If symptoms persist, surgical techniques such as midurethral/suburethral slings, anterior colporrhaphy, and retropubic/laparoscopic colposuspension are necessary. Transvaginal tension-free vaginal tape obturator (TVT-O) is the most common surgical technique for the treatment of UI. Its effectiveness has been proven by reducing symptoms and improving quality of life. Alternative modern treatment methods are vaginal laser therapy, periurethral bulking agents injection, or local injection with autologous platelet-rich plasma. Surgical techniques for the treatment of UI are in continuous development and improvement considering the increased incidence of this pathology and the need of patients to improve symptoms and quality of life. Full article
26 pages, 2471 KB  
Article
Fault-Tolerant Tracking Observer-Based Controller Design for DFIG-Based Wind Turbine Affected by Stator Inter-Turn Short Circuit
by Yossra Sayahi, Moez Allouche, Mariem Ghamgui, Sandrine Moreau, Fernando Tadeo and Driss Mehdi
Symmetry 2025, 17(8), 1343; https://doi.org/10.3390/sym17081343 - 17 Aug 2025
Viewed by 417
Abstract
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early [...] Read more.
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early detection is therefore essential to reduce maintenance costs and prevent severe damage to the wind turbine system. To address this, a Fault Detection and Diagnosis (FDD) approach is proposed to identify and assess the severity of ITSC faults in the stator windings. A state-space model of the DFIG under ITSC fault conditions is first developed in the (d,q) reference frame. Based on this model, an Unknown Input Observer (UIO) structured using Takagi–Sugeno (T-S) fuzzy models is designed to estimate the fault level. To mitigate the impact of the fault and ensure continued operation under degraded conditions, a T-S fuzzy fault-tolerant controller is synthesized. This controller enables natural decoupling and optimal power extraction across a wide range of rotor speed variations. Since the effectiveness of the FTC relies on accurate fault information, a Proportional-Integral Observer (PIO) is employed to estimate the ITSC fault level. The proposed diagnosis and compensation strategy is validated through simulations performed on a 3 kW wind turbine system, demonstrating its efficiency and robustness. Full article
(This article belongs to the Special Issue Symmetry, Fault Detection, and Diagnosis in Automatic Control Systems)
Show Figures

Figure 1

14 pages, 2099 KB  
Article
A Turn-On Fluorescence Sensor Based on Guest-Induced Luminescence Ru(bpy)32+@UiO-66 for the Detection of Organophosphorus Pesticides
by Jun Li, Jianlan Deng, Qian Tao, Chenyu Yan, Yuxuan Liu, Jianxiao Yang and Zhong Cao
Molecules 2025, 30(15), 3130; https://doi.org/10.3390/molecules30153130 - 25 Jul 2025
Viewed by 355
Abstract
Luminescent metal–organic frameworks (MOFs) are used for the detection of organophosphorus pesticides (OPs) due to their large surface area and pore volume as well as their special optical properties. However, most self-luminescent MOFs are not only complex to synthesize and unstable in water [...] Read more.
Luminescent metal–organic frameworks (MOFs) are used for the detection of organophosphorus pesticides (OPs) due to their large surface area and pore volume as well as their special optical properties. However, most self-luminescent MOFs are not only complex to synthesize and unstable in water but also feature a “turn-off” sensing system, which has highly restricted their practical applications in OP detection. Herein, a “turn-on” fluorescence sensor based on the guest-induced luminescence MOF Ru(bpy)32+@UiO-66 was constructed, which realized the sensitive detection of OPs through a dual-enzyme system for the first time. Compared with self-luminescent MOFs, Ru(bpy)32+@UiO-66 was not only more easily synthesized but also had higher chemical and photostability in water. In this strategy, by means of the hydrolysis of AChE and ChOx, H2O2 will be produced, which can oxidize Fe2+ to Fe3+, thereby quenching the fluorescence of Ru(bpy)32+@UiO-66. In the presence of OPs, the activity of AChE can be inhibited, resulting in the inability to generate H2O2 and Fe3+, which will turn on the fluorescence signal of Ru(bpy)32+@UiO-66. As a result, the Ru(bpy)32+@UiO-66 sensing system not only had high sensitivity for OPs detection but also possessed a satisfactory detection recovery rate for parathion-methyl in real samples, which provides a new approach for OP detection in food safety as well as environmental monitoring. Full article
Show Figures

Graphical abstract

12 pages, 1535 KB  
Article
Highly Efficient Adsorption of Uranium(VI) Ions in Aqueous Solution by Imidazole-4,5-Dicarboxylic Acid-Functionalized UiO-66
by Tian Lan, Xiechun Liu, Haifeng Cong, Xiaofan Ding, Jing Zhao and Songtao Xiao
Molecules 2025, 30(14), 2966; https://doi.org/10.3390/molecules30142966 - 15 Jul 2025
Viewed by 465
Abstract
In this study, a novel adsorbent, UiO-66-H3IMDC, was successfully prepared by functionalizing UiO-66 with imidazole-4,5-dicarboxylic acid (H3IMDC). The effective functionalization of H3IMDC on UiO-66 was confirmed by powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR). The relationships [...] Read more.
In this study, a novel adsorbent, UiO-66-H3IMDC, was successfully prepared by functionalizing UiO-66 with imidazole-4,5-dicarboxylic acid (H3IMDC). The effective functionalization of H3IMDC on UiO-66 was confirmed by powder X-ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FT-IR). The relationships between the adsorption of U(VI) on UiO-66-H3IMDC and the contact time, the pH of the solution, as well as the initial concentration of U(VI) were investigated. Additionally, the selective adsorption of U(VI) by UiO-66-H3IMDC and its cyclic regeneration performance were also studied. The results demonstrate that the UiO-66-H3IMDC adsorbent exhibits excellent adsorption performance for uranium in aqueous solutions. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

23 pages, 3308 KB  
Review
Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx
by Yu Zhang and Rui Wang
Molecules 2025, 30(13), 2836; https://doi.org/10.3390/molecules30132836 - 2 Jul 2025
Viewed by 1029
Abstract
Metal–organic frameworks (MOFs) are a novel type of porous crystalline materials assembled from metal ions and organic linkers. Their derivatives can inherit characteristics such as high specific surface area, tunable porosity, and unique topological structures, which make MOF-derived metal oxides ideal catalysts for [...] Read more.
Metal–organic frameworks (MOFs) are a novel type of porous crystalline materials assembled from metal ions and organic linkers. Their derivatives can inherit characteristics such as high specific surface area, tunable porosity, and unique topological structures, which make MOF-derived metal oxides ideal catalysts for the selective catalytic reduction (SCR) of NOx. This review focuses on the synthetic strategies of MOF-derived metal oxides and the latest progress of oxides derived from various typical MOFs materials (including MILs, ZIFs, UiO, BTC series, MOF-74, MOF-5, and Prussian blue analogs, etc.) in the catalytic reduction in NOx, and analyzes the mechanisms for the enhanced catalytic performance. In addition, the challenges and prospects of MOF derivatives in catalytic applications are discussed. It is hoped that this review will help researchers understand the latest research progress of MOF-derived metal oxide materials in the catalytic removal of NOx pollution. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

24 pages, 6924 KB  
Article
Application of Ulva intestinalis Linnaeus Biomass-Derived Biosorbents for Eco-Friendly Removal of Metal Contaminants from Water
by Alaa M. Younis and Ghada M. Almutairi
Processes 2025, 13(6), 1928; https://doi.org/10.3390/pr13061928 - 18 Jun 2025
Viewed by 591
Abstract
The study examines the biosorption potential of Ulva intestinalis (UI) and calcium oxide-modified Ulva intestinalis (CaO-UI) for the environmentally favorable removal of cadmium (Cd2+), nickel (Ni2+), and lead (Pb2+) from aqueous solutions. This research addresses the critical [...] Read more.
The study examines the biosorption potential of Ulva intestinalis (UI) and calcium oxide-modified Ulva intestinalis (CaO-UI) for the environmentally favorable removal of cadmium (Cd2+), nickel (Ni2+), and lead (Pb2+) from aqueous solutions. This research addresses the critical need for sustainable water treatment solutions by developing a green-synthesized biosorbent that combines renewable biomass with enhanced adsorption properties. The adsorption properties of the biomass were improved by preparing calcium oxide (CaO) using Ulva intestinalis extract by green synthesis. Langmuir, Freundlich, and Temkin isotherms were employed to model the results of adsorption experiments that were conducted under a variety of conditions, such as contact time, biosorbent dose, and initial metal ion concentration. Langmuir (R2 = 0.999) and Freundlich (R2 = 0.999) models both provided an exceptionally well-fitted model for the adsorption isotherms, suggesting a hybrid mechanism that integrates monolayer chemisorption at CaO-active sites and multilayer adsorption on the heterogeneous algal matrix. Key findings demonstrate that the maximum adsorption capacity (qm) of CaO-UI was substantially higher than that of UI, with values of 571.21 mg/g for Cd2+, 665.51 mg/g for Ni2+, and 577.87 mg/g for Pb2+, respectively, in comparison to 432.47 mg/g, 335.75 mg/g, and 446.65 mg/g for UI. The adsorption process was dominated by pseudo-second-order (PSO) chemisorption, as evidenced by kinetic studies (R2 = 0.949–0.993). CaO-UI exhibited substantially higher rate constants (k2 = 9.00–10.15 mg/mg·min) than raw UI (k2 = 4.72–5.71 mg/mg·min). The green synthesis of calcium oxide has resulted in an increase in surface area, porosity, and functional group density, which is responsible for the enhanced performance of CaO-UI. The adsorption efficacy of Pb2+ was the highest, followed by Cd2+ and Ni2+, which was indicative of the differences in metal ion affinity and hydration energy. These results underscore the potential of CaO-UI as a biosorbent that is both cost-effective and sustainable for the removal of heavy metals in wastewater treatment applications. Full article
(This article belongs to the Special Issue Natural Low-Cost Adsorbents in Water Purification Processes)
Show Figures

Figure 1

15 pages, 1476 KB  
Article
The Facile Construction of Defect-Engineered and Surface-Modified UiO-66 MOFs for Promising Oxidative Desulfurization Performance
by Chao Wang, Junchao Ding, Haoyu Wu, Jiaxuan Zhang, Jing Xu, Ying Zhang, Mindan Ma, Ming Zhang and Hongping Li
Nanomaterials 2025, 15(12), 931; https://doi.org/10.3390/nano15120931 - 15 Jun 2025
Viewed by 1077
Abstract
The effective and deep removal of unreactive sulfides to achieve ultra-low-sulfur or sulfur-free oils has recently attracted extensive attention. In this work, a series of UiO-66 based catalysts have been prepared facilely for the effective removal of unreactive sulfides. Here, the incorporation of [...] Read more.
The effective and deep removal of unreactive sulfides to achieve ultra-low-sulfur or sulfur-free oils has recently attracted extensive attention. In this work, a series of UiO-66 based catalysts have been prepared facilely for the effective removal of unreactive sulfides. Here, the incorporation of nitro functional groups into UiO-66, along with the construction of defects, results in remarkable sulfur removal for dibenzothiophene (DBT), achieving oil with sulfur content of less than 1 ppm. The successful construction of the designed catalysts was verified through a series of characterization studies. The exposed unsaturated metal sites help provide significantly more active reaction sites. In addition, the incorporated nitro group, with its electron-withdrawing property, would help increase the Lewis acidity of the catalytic metal sites. Thus, the catalytic oxidative capability of the designed UiO-66-based catalysts would be significantly increased. The enhanced catalytic oxidative performance helps ensure acceptable sulfur removal for oils with much higher sulfur concentrations. Additionally, the catalyst developed in this work can also be used to remove the derivatives of DBT with even lower reactivity. The relatively mild reaction conditions, combined with the exceptional sulfur removal, demonstrate the practicality of this reaction system. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

20 pages, 15403 KB  
Article
Computational Study on the Separation of Pentane Isomers in Functionalized UiO-66 Metal-Organic Frameworks
by Néstor Ariel Pérez-Chávez, Matias Rafti and Alberto Gustavo Albesa
Separations 2025, 12(6), 152; https://doi.org/10.3390/separations12060152 - 4 Jun 2025
Viewed by 453
Abstract
The efficient separation of light hydrocarbons, particularly alkanes from their isomers (C5–C6), represents a significant and energy-intensive challenge for the petrochemical industry. Metal-Organic Frameworks (MOFs) offer promising solutions due to their exceptional porosity, surface area, and, crucially, their structural [...] Read more.
The efficient separation of light hydrocarbons, particularly alkanes from their isomers (C5–C6), represents a significant and energy-intensive challenge for the petrochemical industry. Metal-Organic Frameworks (MOFs) offer promising solutions due to their exceptional porosity, surface area, and, crucially, their structural and chemical tunability. This study employs advanced computational methods, including Grand Canonical Monte Carlo (GCMC) simulations and Molecular Dynamics (MD), to systematically investigate the adsorption and separation of pentane isomers (n-pentane, isopentane, and neopentane) in the UiO-66 MOF family. Specifically, the impact of organic linker functionalization with -H (parent), -NH2, -CH3, and -COOH groups on adsorption isotherms, isosteric heats, and competitive behavior in mixtures is evaluated. The analysis provides a molecular-level view of host-guest and guest-guest interactions, elucidating the recognition and selectivity mechanisms governing the separation of these C5 isomers and the potential for engineering MOF materials for this application. Full article
(This article belongs to the Special Issue Recent Advances in Gas Separation and Purification)
Show Figures

Figure 1

20 pages, 3177 KB  
Article
Smart Underwater Sensor Network GPRS Architecture for Marine Environments
by Blanca Esther Carvajal-Gámez, Uriel Cedeño-Antunez and Abigail Elizabeth Pallares-Calvo
Sensors 2025, 25(11), 3439; https://doi.org/10.3390/s25113439 - 30 May 2025
Viewed by 638
Abstract
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant [...] Read more.
The rise of the Internet of Things (IoT) has made it possible to explore different types of communication, such as underwater IoT (UIoT). This new paradigm allows the interconnection of ships, boats, coasts, objects in the sea, cameras, and animals that require constant monitoring. The use of sensors for environmental monitoring, tracking marine fauna and flora, and monitoring the health of aquifers requires the integration of heterogeneous technologies as well as wireless communication technologies. Aquatic mobile sensor nodes face various limitations, such as bandwidth, propagation distance, and data transmission delay issues. Owing to their versatility, wireless sensor networks support remote monitoring and surveillance. In this work, an architecture for a general packet radio service (GPRS) wireless sensor network is presented. The network is used to monitor the geographic position over the coastal area of the Gulf of Mexico. The proposed architecture integrates cellular technology and some ad hoc network configurations in a single device such that coverage is improved without significantly affecting the energy consumption, as shown in the results. The network coverage and energy consumption are evaluated by analyzing the attenuation in a proposed channel model and the autonomy of the electronic system, respectively. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

13 pages, 2423 KB  
Article
Optimizing the Size of Zr-Based Metal–Organic Frameworks for Enhanced Anticancer Efficacy
by Zan Cheng, Mei Yu, Yilong Wan, Huandong Xiang, Haoran Wei, Xu Zu, Xin Li, Ruiting Zhang, Fangshu Li, Shanshan Wang and Yongxin She
Nanomaterials 2025, 15(11), 826; https://doi.org/10.3390/nano15110826 - 29 May 2025
Viewed by 493
Abstract
Metal–organic frameworks (MOFs) have great potential for drug delivery systems due to their tunnel pore size, structural versatility, and high surface area. Among them, UiO-67 have recently attracted substantial attention as functional nanocarriers for effective delivery of small molecule chemical drugs. However, the [...] Read more.
Metal–organic frameworks (MOFs) have great potential for drug delivery systems due to their tunnel pore size, structural versatility, and high surface area. Among them, UiO-67 have recently attracted substantial attention as functional nanocarriers for effective delivery of small molecule chemical drugs. However, the influence of the size on cellular uptake of UiO-67 remains ambiguous. Here, we use polyvinyl pyrrolidone (PVP) as the capping agent of UiO-67 to synthesize spherical Zr-based MOFs with various diameters, including 40 nm, 60 nm, and 120 nm. The highest cellular uptake is observed in the case of Zr-based MOFs with a diameter of 40 nm (PU40 MOFs). Moreover, doxorubicin can be loaded into the inner pores of PU40 MOF via π-π and electrostatic interactions (DPU40 MOFs), with a loading capacity of 82 wt%, and gradually released under acidic conditions. In vitro, the resulting DPU40 MOFs can be internalized by cancer cells more effectively, thereby enhancing the delivery of doxorubicin into cancer cells. Ultimately, this results in enhanced antitumor efficacy toward 4T1, Hs 578T, and MCF-7 cells. Our findings indicate that approximately 40 nm may be the optimum diameter for the special Zr-based MOFs to be internalized by cells more effectively, providing potent potential nanocarriers for drug delivery. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

20 pages, 6117 KB  
Article
Preparation and Evaluation of an Oral Administration System of Albendazole-Metal-Organic Framework Based on Dual Response to pH and Enzymes
by Weiqi Liu, Zhimei Guo, Yong Zhang, Yufei Guo, Ting Wang, Dahuan Liu and Chunhui Hu
Pharmaceuticals 2025, 18(6), 819; https://doi.org/10.3390/ph18060819 - 29 May 2025
Viewed by 489
Abstract
Objective: This study aims to develop a metal–organic framework (ABZ-MOFs)-based oral drug delivery system for albendazole (ABZ) to enhance its dissolution rate and oral bioavailability. Methods: ABZ@MOF-802, ABZ@UiO-66-NH2, and ABZ@MIL-125-NH2 were synthesized using a solvothermal method, and their physicochemical properties [...] Read more.
Objective: This study aims to develop a metal–organic framework (ABZ-MOFs)-based oral drug delivery system for albendazole (ABZ) to enhance its dissolution rate and oral bioavailability. Methods: ABZ@MOF-802, ABZ@UiO-66-NH2, and ABZ@MIL-125-NH2 were synthesized using a solvothermal method, and their physicochemical properties were characterized. The in vitro drug release was investigated under pH- and enzyme-responsive conditions, followed by transmembrane transport studies in Caco-2 cells. Finally, the oral bioavailability of ABZ@MOFs was evaluated in rats. Results: The particle sizes of ABZ@MOF-802, ABZ@UiO-66-NH2, and ABZ@MIL-125-NH2 were (1062.6 ± 94.8), (228.3 ± 12.3), and (502.3 ± 16.2) nm, with drug loading efficiencies of (1.71 ± 0.08%), (12.13 ± 0.04%), and (26.17 ± 0.10%), respectively. The ABZ@MOFs demonstrated structural stability in acidic environments and released ABZ under weakly acidic and neutral conditions, exhibiting distinct release profiles in the presence of different enzymes. Cellular experiments confirmed that ABZ@MOFs significantly improved transmembrane drug absorption. Pharmacokinetic analysis revealed that the bioavailability of ABZ@UiO-66-NH2 and ABZ@MIL-125-NH2 was 10.3-fold and 1.8-fold higher, respectively, compared to ABZ. Conclusions: The ABZ@MOFs systems effectively improved ABZ dissolution and oral bioavailability, with ABZ@UiO-66-NH2 showing a dual response mechanism to pH and enzymes. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

2 pages, 518 KB  
Correction
Correction: Amari et al. Thermodynamic Investigation and Study of Kinetics and Mass Transfer Mechanisms of Oily Wastewater Adsorption on UIO-66–MnFe2O4 as a Metal–Organic Framework (MOF). Sustainability 2023, 15, 2488
by Abdelfattah Amari, Heba Saed Kariem Alawameleh, Mubeen Isam, Mohammed Abdul Jaleel Maktoof, Haitham Osman, Balamurugan Panneerselvam and Maciej Thomas
Sustainability 2025, 17(11), 4903; https://doi.org/10.3390/su17114903 - 27 May 2025
Viewed by 319
Abstract
The authors would like to make the following corrections about the published paper [...] Full article
(This article belongs to the Special Issue Drinking Water and Wastewater Resilience)
Show Figures

Figure 1

21 pages, 6580 KB  
Article
Probing Acidic and Defective Sites in Sulfated UiO-66 and ZrO2 via Adsorptive FTIR Spectroscopy
by Vera V. Butova, Olga A. Burachevskaia, Nikola L. Drenchev, Andrei A. Tereshchenko and Konstantin I. Hadjiivanov
Nanomaterials 2025, 15(11), 779; https://doi.org/10.3390/nano15110779 - 22 May 2025
Viewed by 764
Abstract
Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal–organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems—sulfated UiO-66 (UiO-66-SO4 [...] Read more.
Sulfation is a common strategy to enhance the acidity and modify the adsorption properties of metal–organic frameworks (MOFs), yet its impact on the coordination and accessibility of active sites remains unclear. In this study, we investigate two structurally related systems—sulfated UiO-66 (UiO-66-SO4) and sulfated tetragonal zirconia (S-ZrO2)—by FTIR spectroscopy with probe molecules. Isotope exchange experiments on S-ZrO2 reveal that dehydration above 250 °C induces tridentate SO4 coordination, while hydration leads to a reversible transition to a bidentate coordination mode. In UiO-66-SO4, sulfates are coordinated in a bidentate fashion to Zr6O6 clusters, significantly affecting the accessibility of Zr sites in defective pores. This coordination prevents CO adsorption but allows acetonitrile adsorption even after room temperature activation. Unlike S-ZrO2, due to its lower thermal stability, UiO-66-SO4 cannot be evacuated at high temperatures and dehydration at 250 °C does not induce tridentate coordination. The presence of H-bonded hydroxyls in UiO-66-SO4 after activation at 250 °C supports this coordination model, indicating the formation of OH-coordinated Zr sites that are inaccessible to CO but interact with stronger bases like acetonitrile. Overall, this study provides new insights into the coordination chemistry of sulfated UiO-66 and highlights that sulfation can tune acidity and adsorption in MOFs for potential catalytic and adsorption applications. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

13 pages, 3483 KB  
Article
Pressure Sensitivity of UiO-66 Framework with Encapsulated Spin Probe: A Molecular Dynamics Study
by Dmitry V. Alimov, Artem S. Poryvaev and Matvey V. Fedin
Molecules 2025, 30(10), 2247; https://doi.org/10.3390/molecules30102247 - 21 May 2025
Viewed by 527
Abstract
Probes sensitive to mechanical stress are in high demand for analyzing pressure distributions in materials. Metal–organic frameworks (MOFs) are especially promising for designing pressure sensors due to their structural tunability. In this work, using classical molecular dynamics (MD) simulations, we clarified the mechanism [...] Read more.
Probes sensitive to mechanical stress are in high demand for analyzing pressure distributions in materials. Metal–organic frameworks (MOFs) are especially promising for designing pressure sensors due to their structural tunability. In this work, using classical molecular dynamics (MD) simulations, we clarified the mechanism of exceptional pressure sensitivity of the material based on the UiO-66 framework with a trace amount of spin probes encapsulated in cavities. The role of defects in the MOF structure has been revealed using a combination of electron paramagnetic resonance (EPR) spectroscopy and MD calculations, and potential degradation pathways under mechanical stress have been proposed. The combined MD and EPR study provides valuable insights for further development of new MOF-based sensors applicable for non-destructive pressure mapping in various materials. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

22 pages, 5233 KB  
Article
A Novel Green In Situ Amine-Functionalized Aerogel UiO-66-NH2/TOCNF for the Removal of Azo Anionic Dyes
by Rabia Amen, Islam Elsayed, Yunsang Kim, Gregory T. Schueneman, Emad M. El-Giar and El Barbary Hassan
Gels 2025, 11(5), 365; https://doi.org/10.3390/gels11050365 - 15 May 2025
Viewed by 1371
Abstract
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue [...] Read more.
UiO-66-NH2 is a metal–organic framework (MOF) with open metal sites, making it a promising candidate for adsorption and catalysis. However, the powdery texture of MOFs and the use of toxic solvents during synthesis limit their application. A novel solution to this issue is to create a layered porous composite by encasing the MOF within a flexible and structurally robust aerogel substrate using safe, eco-friendly, and green solvents such as ethanol. The fibrous MOF aerogels, characterized by a desirable macroscopic shape of cylindrical block and hierarchical porosity, were synthesized by two approaches: in situ growth of amine-functionalized UiO-66-NH2 crystals on a TEMPO-oxidized cellulose nanofiber (TOCNF) and ex situ crosslinking of UiO-66-NH2 crystals onto a TOCNF network to form UiO-66-NH2/TOCNF. The incorporation of MOF into the cellulose nanofibrils via the in situ method reduces their aggregation potential, alters the nucleation/growth balance to produce smaller MOF crystals, and enhances mechanical flexibility, as evidenced by SEM images. The three adsorbents, including UiO-66-NH2, ex situ UiO-66-NH2/TOCNF, and in situ UiO-66-NH2/TOCNF, were synthesized and used in this study. The effects of pH, time, temperature, and initial concentration were studied. A maximum adsorption capacity (Qmax) of 549.45 mg/g for Congo Red (CR) and 171.23 mg/g for Orange II (ORII) was observed at pH 6, using 10 mg of in situ UiO-66-NH2/TOCNF at 40 °C with a contact time of 75 min for CR and 2 h for ORII. The adsorption of both dyes primarily occurs through monolayer chemisorption on the in situ UiO-66-NH2/TOCNF. The main removal mechanisms were hydrogen bonding and surface complexation. The noteworthy adsorption capacity of in situ UiO-66-NH2/TOCNF coupled with environment-friendly fabrication techniques indicates its potential applications on a large scale in real wastewater systems. Full article
(This article belongs to the Special Issue Cellulose-Based Gels: Synthesis, Properties, and Applications)
Show Figures

Figure 1

Back to TopTop