Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = VHR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7270 KB  
Article
A Fast Rotation Detection Network with Parallel Interleaved Convolutional Kernels
by Leilei Deng, Lifeng Sun and Hua Li
Symmetry 2025, 17(10), 1621; https://doi.org/10.3390/sym17101621 - 1 Oct 2025
Viewed by 184
Abstract
In recent years, convolutional neural network-based object detectors have achieved extensive applications in remote sensing (RS) image interpretation. While multi-scale feature modeling optimization remains a persistent research focus, existing methods frequently overlook the symmetrical balance between feature granularity and morphological diversity, particularly when [...] Read more.
In recent years, convolutional neural network-based object detectors have achieved extensive applications in remote sensing (RS) image interpretation. While multi-scale feature modeling optimization remains a persistent research focus, existing methods frequently overlook the symmetrical balance between feature granularity and morphological diversity, particularly when handling high-aspect-ratio RS targets with anisotropic geometries. This oversight leads to suboptimal feature representations characterized by spatial sparsity and directional bias. To address this challenge, we propose the Parallel Interleaved Convolutional Kernel Network (PICK-Net), a rotation-aware detection framework that embodies symmetry principles through dual-path feature modulation and geometrically balanced operator design. The core innovation lies in the synergistic integration of cascaded dynamic sparse sampling and symmetrically decoupled feature modulation, enabling adaptive morphological modeling of RS targets. Specifically, the Parallel Interleaved Convolution (PIC) module establishes symmetric computation patterns through mirrored kernel arrangements, effectively reducing computational redundancy while preserving directional completeness through rotational symmetry-enhanced receptive field optimization. Complementing this, the Global Complementary Attention Mechanism (GCAM) introduces bidirectional symmetry in feature recalibration, decoupling channel-wise and spatial-wise adaptations through orthogonal attention pathways that maintain equilibrium in gradient propagation. Extensive experiments on RSOD and NWPU-VHR-10 datasets demonstrate our superior performance, achieving 92.2% and 84.90% mAP, respectively, outperforming state-of-the-art methods including EfficientNet and YOLOv8. With only 12.5 M parameters, the framework achieves symmetrical optimization of accuracy-efficiency trade-offs. Ablation studies confirm that the symmetric interaction between PIC and GCAM enhances detection performance by 2.75%, particularly excelling in scenarios requiring geometric symmetry preservation, such as dense target clusters and extreme scale variations. Cross-domain validation on agricultural pest datasets further verifies its rotational symmetry generalization capability, demonstrating 84.90% accuracy in fine-grained orientation-sensitive detection tasks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

21 pages, 7001 KB  
Article
CGNet: Remote Sensing Instance Segmentation Method Using Contrastive Language–Image Pretraining and Gated Recurrent Units
by Hui Zhang, Zhao Tian, Zhong Chen, Tianhang Liu, Xueru Xu, Junsong Leng and Xinyuan Qi
Remote Sens. 2025, 17(19), 3305; https://doi.org/10.3390/rs17193305 - 26 Sep 2025
Viewed by 472
Abstract
Instance segmentation in remote sensing imagery is a significant application area within computer vision, holding considerable value in fields such as land planning and aerospace. The target scales of remote sensing images are often small, the contours of different categories of targets can [...] Read more.
Instance segmentation in remote sensing imagery is a significant application area within computer vision, holding considerable value in fields such as land planning and aerospace. The target scales of remote sensing images are often small, the contours of different categories of targets can be remarkably similar, and the background information is complex, containing more noise interference. Therefore, it is essential for the network model to utilize the background and internal instance information more effectively. Considering all the above, to fully adapt to the characteristics of remote sensing images, a network named CGNet, which combines an enhanced backbone with a contour–mask branch, is proposed. This network employs gated recurrent units for the iteration of contour and mask branches and adopts the attention head for branch fusion. Additionally, to address the common issues of missed and misdetections in target detection, a supervised backbone network using contrastive pretraining for feature supplementation is introduced. The proposed method has been experimentally validated in the NWPU VHR-10 and SSDD datasets, achieving average precision metrics of 68.1% and 67.4%, respectively, which are 0.9% and 3.2% higher than those of the suboptimal methods. Full article
Show Figures

Figure 1

24 pages, 2583 KB  
Review
Every Pixel You Take: Unlocking Urban Vegetation Insights Through High- and Very-High-Resolution Remote Sensing
by Germán Catalán, Carlos Di Bella, Paula Meli, Francisco de la Barrera, Rodrigo Vargas-Gaete, Rosa Reyes-Riveros, Sonia Reyes-Packe and Adison Altamirano
Urban Sci. 2025, 9(9), 385; https://doi.org/10.3390/urbansci9090385 - 22 Sep 2025
Viewed by 433
Abstract
Urban vegetation plays a vital role in mitigating the impacts of urbanization, improving biodiversity, and providing key ecosystem services. However, the spatial distribution, ecological dynamics, and social implications of urban vegetation remain insufficiently understood, particularly in underrepresented regions. This systematic review aims to [...] Read more.
Urban vegetation plays a vital role in mitigating the impacts of urbanization, improving biodiversity, and providing key ecosystem services. However, the spatial distribution, ecological dynamics, and social implications of urban vegetation remain insufficiently understood, particularly in underrepresented regions. This systematic review aims to synthesize global research trends in very-high-resolution (VHR) remote sensing of urban vegetation between 2000 and 2024. A total of 123 peer-reviewed empirical studies were analyzed using bibliometric and thematic approaches, focusing on the spatial resolution (<10 m), sensor type, research objectives, and geographic distribution. The findings reveal a predominance of biophysical studies (72%) over social-focused studies (28%), with major thematic clusters related to urban climate, vegetation structure, and technological applications such as UAVs and machine learning. The research is heavily concentrated in the Global North, particularly China and the United States, while regions like Latin America and Africa remain underrepresented. This review identifies three critical gaps: (1) limited research in the Global South, (2) insufficient integration of ecological and social dimensions, and (3) underuse of advanced technologies such as hyperspectral imaging and AI-driven analysis. Addressing these gaps is essential for promoting equitable, technology-informed urban planning. This review provides a comprehensive overview of the state of the field and offers directions for future interdisciplinary research in urban remote sensing. Full article
Show Figures

Figure 1

27 pages, 5866 KB  
Article
DCGAN Feature-Enhancement-Based YOLOv8n Model in Small-Sample Target Detection
by Peng Zheng, Yun Cheng, Wei Zhu, Bo Liu, Chenhao Ye, Shijie Wang, Shuhong Liu and Jinyin Bai
Computers 2025, 14(9), 389; https://doi.org/10.3390/computers14090389 - 15 Sep 2025
Viewed by 425
Abstract
This paper proposes DCGAN-YOLOv8n, an integrated framework that significantly advances small-sample target detection by synergizing generative adversarial feature enhancement with multi-scale representation learning. The model’s core contribution lies in its novel adversarial feature enhancement module (AFEM), which leverages conditional generative adversarial networks to [...] Read more.
This paper proposes DCGAN-YOLOv8n, an integrated framework that significantly advances small-sample target detection by synergizing generative adversarial feature enhancement with multi-scale representation learning. The model’s core contribution lies in its novel adversarial feature enhancement module (AFEM), which leverages conditional generative adversarial networks to reconstruct discriminative multi-scale features while effectively mitigating mode collapse. Furthermore, the architecture incorporates a deformable multi-scale feature pyramid that dynamically fuses generated high-resolution features with hierarchical semantic representations through an attention mechanism. The proposed triple marginal constraint optimization jointly enhances intra-class compactness and inter-class separation, thereby structuring a highly discriminative feature space. Extensive experiments on the NWPU VHR-10 dataset demonstrate state-of-the-art performance, with the model achieving an mAP50 of 90.46% and an mAP50-95 of 57.06%, representing significant improvements of 4.52% and 4.08% over the baseline YOLOv8n, respectively. These results validate the framework’s effectiveness in addressing critical challenges of feature representation scarcity and cross-scale adaptation in data-limited scenarios. Full article
(This article belongs to the Special Issue Machine Learning Applications in Pattern Recognition)
Show Figures

Figure 1

24 pages, 6369 KB  
Article
DeepSwinLite: A Swin Transformer-Based Light Deep Learning Model for Building Extraction Using VHR Aerial Imagery
by Elif Ozlem Yilmaz and Taskin Kavzoglu
Remote Sens. 2025, 17(18), 3146; https://doi.org/10.3390/rs17183146 - 10 Sep 2025
Viewed by 559
Abstract
Accurate extraction of building features from remotely sensed data is essential for supporting research and applications in urban planning, land management, transportation infrastructure development, and disaster monitoring. Despite the prominence of deep learning as the state-of-the-art (SOTA) methodology for building extraction, substantial challenges [...] Read more.
Accurate extraction of building features from remotely sensed data is essential for supporting research and applications in urban planning, land management, transportation infrastructure development, and disaster monitoring. Despite the prominence of deep learning as the state-of-the-art (SOTA) methodology for building extraction, substantial challenges remain, largely stemming from the diversity of building structures and the complexity of background features. To mitigate these issues, this study introduces DeepSwinLite, a lightweight architecture based on the Swin Transformer, designed to extract building footprints from very high-resolution (VHR) imagery. The model integrates a novel local-global attention module to enhance the interpretation of objects across varying spatial resolutions and facilitate effective information exchange between different feature abstraction levels. It comprises three modules: multi-scale feature aggregation (MSFA), improving recognition across varying object sizes; multi-level feature pyramid (MLFP), fusing detailed and semantic features; and AuxHead, providing auxiliary supervision to stabilize and enhance learning. Experimental evaluations on the Massachusetts and WHU Building Datasets reveal the superior performance of DeepSwinLite architecture when compared to existing SOTA models. On the Massachusetts dataset, the model attained an OA of 92.54% and an IoU of 77.94%, while on the WHU dataset, it achieved an OA of 98.32% and an IoU of 92.02%. Following the correction of errors identified in the Massachusetts ground truth and iterative enhancement, the model’s performance further improved, reaching 94.63% OA and 79.86% IoU. A key advantage of the DeepSwinLite model is its computational efficiency, requiring fewer floating-point operations (FLOPs) and parameters compared to other SOTA models. This efficiency makes the model particularly suitable for deployment in mobile and resource-constrained systems. Full article
(This article belongs to the Special Issue Advances in Deep Learning Approaches: UAV Data Analysis)
Show Figures

Figure 1

20 pages, 16382 KB  
Article
Optimization of Object Detection Network Architecture for High-Resolution Remote Sensing
by Hongyan Shi, Xiaofeng Bai and Chenshuai Bai
Algorithms 2025, 18(9), 537; https://doi.org/10.3390/a18090537 - 23 Aug 2025
Cited by 1 | Viewed by 433
Abstract
(1) Objective: This study is aiming at the key problems, such as insufficient detection accuracy of small targets and complex background interference in remote-sensing image target detection; (2) Methods: by optimizing the YOLOv10x model architecture, the YOLO-KRM model is proposed. Firstly, a new [...] Read more.
(1) Objective: This study is aiming at the key problems, such as insufficient detection accuracy of small targets and complex background interference in remote-sensing image target detection; (2) Methods: by optimizing the YOLOv10x model architecture, the YOLO-KRM model is proposed. Firstly, a new backbone network structure is constructed. By replacing the C2f of the third layer of the backbone network with the Kolmogorov–Arnold network, the approximation ability of the model to complete complex nonlinear functions in high-dimensional space is improved. Then, the C2f of the fifth layer of the backbone network is replaced by the receptive field attention convolution, which enhances the model’s ability to capture the global context information of the features. In addition, the C2f and C2fCIB structures in the upsampling operation in the neck network are replaced by the hybrid local channel attention mechanism module, which significantly improves the feature representation ability of the model. Results: In order to validate the effectiveness of the YOLO-KRM model, detailed experiments were conducted on two remote-sensing datasets, RSOD and NWPU VHR-10. The experimental results show that, compared with the original model YOLOv10x, the mAP@50 of the YOLO-KRM model on the two datasets is increased by 1.77% and 2.75%, respectively, and the mAP @ 50:95 index is increased by 3.82% and 5.23%, respectively; (3) Results: by improving the model, the accuracy of target detection in remote-sensing images is successfully enhanced. The experimental results verify the effectiveness of the model in dealing with complex backgrounds and small targets, especially in high-resolution remote-sensing images. Full article
(This article belongs to the Section Combinatorial Optimization, Graph, and Network Algorithms)
Show Figures

Figure 1

20 pages, 5323 KB  
Article
An Object-Based Deep Learning Approach for Building Height Estimation from Single SAR Images
by Babak Memar, Luigi Russo, Silvia Liberata Ullo and Paolo Gamba
Remote Sens. 2025, 17(17), 2922; https://doi.org/10.3390/rs17172922 - 22 Aug 2025
Viewed by 981
Abstract
The accurate estimation of building heights using very-high-resolution (VHR) synthetic aperture radar (SAR) imagery is crucial for various urban applications. This paper introduces a deep learning (DL)-based methodology for automated building height estimation from single VHR COSMO-SkyMed images: an object-based regression approach based [...] Read more.
The accurate estimation of building heights using very-high-resolution (VHR) synthetic aperture radar (SAR) imagery is crucial for various urban applications. This paper introduces a deep learning (DL)-based methodology for automated building height estimation from single VHR COSMO-SkyMed images: an object-based regression approach based on bounding box detection followed by height estimation. This model was trained and evaluated on a unique multi-continental dataset comprising eight geographically diverse cities across Europe, North and South America, and Asia, employing a cross-validation strategy to explicitly assess out-of-distribution (OOD) generalization. The results demonstrate highly promising performance, particularly on European cities where the model achieves a Mean Absolute Error (MAE) of approximately one building story (2.20 m in Munich), significantly outperforming recent state-of-the-art methods in similar OOD scenarios. Despite the increased variability observed when generalizing to cities in other continents, particularly in Asia with its distinct urban typologies and the prevalence of high-rise structures, this study underscores the significant potential of DL for robust cross-city and cross-continental transfer learning in building height estimation from single VHR SAR data. Full article
Show Figures

Graphical abstract

32 pages, 22267 KB  
Article
HAF-YOLO: Dynamic Feature Aggregation Network for Object Detection in Remote-Sensing Images
by Pengfei Zhang, Jian Liu, Jianqiang Zhang, Yiping Liu and Jiahao Shi
Remote Sens. 2025, 17(15), 2708; https://doi.org/10.3390/rs17152708 - 5 Aug 2025
Cited by 1 | Viewed by 944
Abstract
The growing use of remote-sensing technologies has placed greater demands on object-detection algorithms, which still face challenges. This study proposes a hierarchical adaptive feature aggregation network (HAF-YOLO) to improve detection precision in remote-sensing images. It addresses issues such as small object size, complex [...] Read more.
The growing use of remote-sensing technologies has placed greater demands on object-detection algorithms, which still face challenges. This study proposes a hierarchical adaptive feature aggregation network (HAF-YOLO) to improve detection precision in remote-sensing images. It addresses issues such as small object size, complex backgrounds, scale variation, and dense object distributions by incorporating three core modules: dynamic-cooperative multimodal fusion architecture (DyCoMF-Arch), multiscale wavelet-enhanced aggregation network (MWA-Net), and spatial-deformable dynamic enhancement module (SDDE-Module). DyCoMF-Arch builds a hierarchical feature pyramid using multistage spatial compression and expansion, with dynamic weight allocation to extract salient features. MWA-Net applies wavelet-transform-based convolution to decompose features, preserving high-frequency detail and enhancing representation of small-scale objects. SDDE-Module integrates spatial coordinate encoding and multidirectional convolution to reduce localization interference and overcome fixed sampling limitations for geometric deformations. Experiments on the NWPU VHR-10 and DIOR datasets show that HAF-YOLO achieved mAP50 scores of 85.0% and 78.1%, improving on YOLOv8 by 4.8% and 3.1%, respectively. HAF-YOLO also maintained a low computational cost of 11.8 GFLOPs, outperforming other YOLO models. Ablation studies validated the effectiveness of each module and their combined optimization. This study presents a novel approach for remote-sensing object detection, with theoretical and practical value. Full article
Show Figures

Graphical abstract

19 pages, 9284 KB  
Article
UAV-YOLO12: A Multi-Scale Road Segmentation Model for UAV Remote Sensing Imagery
by Bingyan Cui, Zhen Liu and Qifeng Yang
Drones 2025, 9(8), 533; https://doi.org/10.3390/drones9080533 - 29 Jul 2025
Viewed by 1427
Abstract
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes [...] Read more.
Unmanned aerial vehicles (UAVs) are increasingly used for road infrastructure inspection and monitoring. However, challenges such as scale variation, complex background interference, and the scarcity of annotated UAV datasets limit the performance of traditional segmentation models. To address these challenges, this study proposes UAV-YOLOv12, a multi-scale segmentation model specifically designed for UAV-based road imagery analysis. The proposed model builds on the YOLOv12 architecture by adding two key modules. It uses a Selective Kernel Network (SKNet) to adjust receptive fields dynamically and a Partial Convolution (PConv) module to improve spatial focus and robustness in occluded regions. These enhancements help the model better detect small and irregular road features in complex aerial scenes. Experimental results on a custom UAV dataset collected from national highways in Wuxi, China, show that UAV-YOLOv12 achieves F1-scores of 0.902 for highways (road-H) and 0.825 for paths (road-P), outperforming the original YOLOv12 by 5% and 3.2%, respectively. Inference speed is maintained at 11.1 ms per image, supporting near real-time performance. Moreover, comparative evaluations with U-Net show that UAV-YOLOv12 improves by 7.1% and 9.5%. The model also exhibits strong generalization ability, achieving F1-scores above 0.87 on public datasets such as VHR-10 and the Drone Vehicle dataset. These results demonstrate that the proposed UAV-YOLOv12 can achieve high accuracy and robustness in diverse road environments and object scales. Full article
Show Figures

Figure 1

25 pages, 4882 KB  
Article
HSF-YOLO: A Multi-Scale and Gradient-Aware Network for Small Object Detection in Remote Sensing Images
by Fujun Wang and Xing Wang
Sensors 2025, 25(14), 4369; https://doi.org/10.3390/s25144369 - 12 Jul 2025
Viewed by 2926
Abstract
Small object detection (SOD) in remote sensing images (RSIs) is a challenging task due to scale variation, severe occlusion, and complex backgrounds, often leading to high miss and false detection rates. To address these issues, this paper proposes a novel detection framework named [...] Read more.
Small object detection (SOD) in remote sensing images (RSIs) is a challenging task due to scale variation, severe occlusion, and complex backgrounds, often leading to high miss and false detection rates. To address these issues, this paper proposes a novel detection framework named HSF-YOLO, which is designed to jointly enhance feature encoding, attention interaction, and localization precision within the YOLOv8 backbone. Specifically, we introduce three tailored modules: Hybrid Atrous Enhanced Convolution (HAEC), a Spatial–Interactive–Shuffle attention module (C2f_SIS), and a Focal Gradient Refinement Loss (FGR-Loss). The HAEC module captures multi-scale semantic and fine-grained local information through parallel atrous and standard convolutions, thereby enhancing small object representation across scales. The C2f_SIS module fuses spatial and improved channel attention with a channel shuffle strategy to enhance feature interaction and suppress background noise. The FGR-Loss incorporates gradient-aware localization, focal weighting, and separation-aware constraints to improve regression accuracy and training robustness. Extensive experiments were conducted on three public remote sensing datasets. Compared with the baseline YOLOv8, HSF-YOLO improved mAP@0.5 and mAP@0.5:0.95 by 5.7% and 4.0% on the VisDrone2019 dataset, by 2.3% and 2.5% on the DIOR dataset, and by 2.3% and 2.1% on the NWPU VHR-10 dataset, respectively. These results confirm that HSF-YOLO is a unified and effective solution for small object detection in complex RSI scenarios, offering a good balance between accuracy and efficiency. Full article
(This article belongs to the Special Issue Application of Satellite Remote Sensing in Geospatial Monitoring)
Show Figures

Figure 1

24 pages, 2440 KB  
Article
A Novel Dynamic Context Branch Attention Network for Detecting Small Objects in Remote Sensing Images
by Huazhong Jin, Yizhuo Song, Ting Bai, Kaimin Sun and Yepei Chen
Remote Sens. 2025, 17(14), 2415; https://doi.org/10.3390/rs17142415 - 12 Jul 2025
Viewed by 524
Abstract
Detecting small objects in remote sensing images is challenging due to their size, which results in limited distinctive features. This limitation necessitates the effective use of contextual information for accurate identification. Many existing methods often struggle because they do not dynamically adjust the [...] Read more.
Detecting small objects in remote sensing images is challenging due to their size, which results in limited distinctive features. This limitation necessitates the effective use of contextual information for accurate identification. Many existing methods often struggle because they do not dynamically adjust the contextual scope based on the specific characteristics of each target. To address this issue and improve the detection performance of small objects (typically defined as objects with a bounding box area of less than 1024 pixels), we propose a novel backbone network called the Dynamic Context Branch Attention Network (DCBANet). We present the Dynamic Context Scale-Aware (DCSA) Block, which utilizes a multi-branch architecture to generate features with diverse receptive fields. Within each branch, a Context Adaptive Selection Module (CASM) dynamically weights information, allowing the model to focus on the most relevant context. To further enhance performance, we introduce an Efficient Branch Attention (EBA) module that adaptively reweights the parallel branches, prioritizing the most discriminative ones. Finally, to ensure computational efficiency, we design a Dual-Gated Feedforward Network (DGFFN), a lightweight yet powerful replacement for standard FFNs. Extensive experiments conducted on four public remote sensing datasets demonstrate that the DCBANet achieves impressive mAP@0.5 scores of 80.79% on DOTA, 89.17% on NWPU VHR-10, 80.27% on SIMD, and a remarkable 42.4% mAP@0.5:0.95 on the specialized small object benchmark AI-TOD. These results surpass RetinaNet, YOLOF, FCOS, Faster R-CNN, Dynamic R-CNN, SKNet, and Cascade R-CNN, highlighting its effectiveness in detecting small objects in remote sensing images. However, there remains potential for further improvement in multi-scale and weak target detection. Future work will integrate local and global context to enhance multi-scale object detection performance. Full article
(This article belongs to the Special Issue High-Resolution Remote Sensing Image Processing and Applications)
Show Figures

Figure 1

20 pages, 6074 KB  
Article
Remote Sensing Archaeology of the Xixia Imperial Tombs: Analyzing Burial Landscapes and Geomantic Layouts
by Wei Ji, Li Li, Jia Yang, Yuqi Hao and Lei Luo
Remote Sens. 2025, 17(14), 2395; https://doi.org/10.3390/rs17142395 - 11 Jul 2025
Viewed by 1533
Abstract
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing [...] Read more.
The Xixia Imperial Tombs (XITs) represent a crucial, yet still largely mysterious, component of the Tangut civilization’s legacy. Located in northwestern China, this extensive necropolis offers invaluable insights into the Tangut state, culture, and burial practices. This study employs an integrated approach utilizing multi-resolution and multi-temporal satellite remote sensing data, including Gaofen-2 (GF-2), Landsat-8 OLI, declassified GAMBIT imagery, and Google Earth, combined with deep learning techniques, to conduct a comprehensive archaeological investigation of the XITs’ burial landscape. We performed geomorphological analysis of the surrounding environment and automated identification and mapping of burial mounds and mausoleum features using YOLOv5, complemented by manual interpretation of very-high-resolution (VHR) satellite imagery. Spectral indices and image fusion techniques were applied to enhance the detection of archaeological features. Our findings demonstrated the efficacy of this combined methodology for archaeology prospect, providing valuable insights into the spatial layout, geomantic considerations, and preservation status of the XITs. Notably, the analysis of declassified GAMBIT imagery facilitated the identification of a suspected true location for the ninth imperial tomb (M9), a significant contribution to understanding Xixia history through remote sensing archaeology. This research provides a replicable framework for the detection and preservation of archaeological sites using readily available satellite data, underscoring the power of advanced remote sensing and machine learning in heritage studies. Full article
Show Figures

Figure 1

20 pages, 11158 KB  
Article
Fine-Grained Land Use Remote Sensing Mapping in Karst Mountain Areas Using Deep Learning with Geographical Zoning and Stratified Object Extraction
by Bo Li, Zhongfa Zhou, Tianjun Wu and Jiancheng Luo
Remote Sens. 2025, 17(14), 2368; https://doi.org/10.3390/rs17142368 - 10 Jul 2025
Viewed by 670
Abstract
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological [...] Read more.
Karst mountain areas, as complex geological systems formed by carbonate rock development, possess unique three-dimensional spatial structures and hydrogeological processes that fundamentally influence regional ecosystem evolution, land resource assessment, and sustainable development strategy formulation. In recent years, through the implementation of systematic ecological restoration projects, the ecological degradation of karst mountain areas in Southwest China has been significantly curbed. However, the research on the fine-grained land use mapping and quantitative characterization of spatial heterogeneity in karst mountain areas is still insufficient. This knowledge gap impedes scientific decision-making and precise policy formulation for regional ecological environment management. Hence, this paper proposes a novel methodology for land use mapping in karst mountain areas using very high resolution (VHR) remote sensing (RS) images. The innovation of this method lies in the introduction of strategies of geographical zoning and stratified object extraction. The former divides the complex mountain areas into manageable subregions to provide computational units and introduces a priori data for providing constraint boundaries, while the latter implements a processing mechanism with a deep learning (DL) of hierarchical semantic boundary-guided network (HBGNet) for different geographic objects of building, water, cropland, orchard, forest-grassland, and other land use features. Guanling and Zhenfeng counties in the Huajiang section of the Beipanjiang River Basin, China, are selected to conduct the experimental validation. The proposed method achieved notable accuracy metrics with an overall accuracy (OA) of 0.815 and a mean intersection over union (mIoU) of 0.688. Comparative analysis demonstrated the superior performance of advanced DL networks when augmented with priori knowledge in geographical zoning and stratified object extraction. The approach provides a robust mapping framework for generating fine-grained land use data in karst landscapes, which is beneficial for supporting academic research, governmental analysis, and related applications. Full article
Show Figures

Figure 1

19 pages, 6112 KB  
Article
CIMB-YOLOv8: A Lightweight Remote Sensing Object Detection Network Based on Contextual Information and Multiple Branches
by Rongwei Yu, Yixuan Zhang and Shiheng Liu
Electronics 2025, 14(13), 2657; https://doi.org/10.3390/electronics14132657 - 30 Jun 2025
Viewed by 765
Abstract
A lightweight YOLOv8 variant, CIMB-YOLOv8, is proposed to address challenges in remote sensing object detection, such as complex backgrounds and multi-scale targets. The method enhances detection accuracy while reducing computational costs through two key innovations: Contextual Multi-branch Fusion: Integrates a space-to-depth multi-branch pyramid [...] Read more.
A lightweight YOLOv8 variant, CIMB-YOLOv8, is proposed to address challenges in remote sensing object detection, such as complex backgrounds and multi-scale targets. The method enhances detection accuracy while reducing computational costs through two key innovations: Contextual Multi-branch Fusion: Integrates a space-to-depth multi-branch pyramid (SMP) to capture rich contextual features, improving small target detection by 1.2% on DIOR; Lightweight Architecture: Employs Lightweight GroupNorm Detail-enhance Detection (LGDD) with shared convolution, reducing parameters by 14% compared to YOLOv8n. Extensive experiments on DIOR, DOTA, and NWPU VHR-10 datasets demonstrate the model’s superiority, achieving 68.1% mAP on DOTA (+0.7% over YOLOv8n) and 82.9% mAP on NWPU VHR-10 (+1.7%). The model runs at 118.7 FPS on NVIDIA 3090, making it well-suited for real-time applications on resource-constrained devices. Results highlight its practical value for remote sensing scenarios requiring high-precision and lightweight detection. Full article
Show Figures

Figure 1

29 pages, 18908 KB  
Article
Toward Efficient UAV-Based Small Object Detection: A Lightweight Network with Enhanced Feature Fusion
by Xingyu Di, Kangning Cui and Rui-Feng Wang
Remote Sens. 2025, 17(13), 2235; https://doi.org/10.3390/rs17132235 - 29 Jun 2025
Cited by 9 | Viewed by 1120
Abstract
UAV-based small target detection is crucial in environmental monitoring, circuit detection, and related applications. However, UAV images often face challenges such as significant scale variation, dense small targets, high inter-class similarity, and intra-class diversity, which can lead to missed detections, thus reducing performance. [...] Read more.
UAV-based small target detection is crucial in environmental monitoring, circuit detection, and related applications. However, UAV images often face challenges such as significant scale variation, dense small targets, high inter-class similarity, and intra-class diversity, which can lead to missed detections, thus reducing performance. To solve these problems, this study proposes a lightweight and high-precision model UAV-YOLO based on YOLOv8s. Firstly, a double separation convolution (DSC) module is designed to replace the Bottleneck structure in the C2f module with deep separable convolution and point-by-point convolution fusion, which can reduce the model parameters and calculation complexity while enhancing feature expression. Secondly, a new SPPL module is proposed, which combines spatial pyramid pooling rapid fusion (SPPF) with long-distance dependency modeling (LSKA) to improve the robustness of the model to multi-scale targets through cross-level feature association. Then, DyHead is used to replace the original detector head, and the discrimination ability of small targets in complex background is enhanced by adaptive weight allocation and cross-scale feature optimization fusion. Finally, the WIPIoU loss function is proposed, which integrates the advantages of Wise-IoU, MPDIoU and Inner-IoU, and incorporates the geometric center of bounding box, aspect ratio and overlap degree into a unified measure to improve the localization accuracy of small targets and accelerate the convergence. The experimental results on the VisDrone2019 dataset showed that compared to YOLOv8s, UAV-YOLO achieved an 8.9% improvement in the recall of mAP@0.5 and 6.8%, while the parameters and calculations were reduced by 23.4% and 40.7%, respectively. Additional evaluations of the DIOR, RSOD, and NWPU VHR-10 datasets demonstrate the generalization capability of the model. Full article
(This article belongs to the Special Issue Geospatial Intelligence in Remote Sensing)
Show Figures

Figure 1

Back to TopTop